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© 2023 Biçe, Schalles, Sheldon, Alber
and Meile. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 06 April 2023

DOI 10.3389/fmars.2023.1130958
Temporal patterns and causal
drivers of aboveground plant
biomass in a coastal
wetland: Insights from
time-series analyses

Kadir Biçe 1*, John Schalles2, Joan E. Sheldon 1,
Merryl Alber 1 and Christof Meile 1*

1Department of Marine Sciences, University of Georgia, Athens, GA, United States, 2Department of
Biology, Creighton University, Omaha, NE, United States
Salt marshes play a crucial role in coastal biogeochemical cycles and provide

unique ecosystem services. Salt marsh biomass, which can strongly influence

such services, varies over time in response to hydrologic conditions and other

environmental drivers. We used gap-filled monthly observations of Spartina

alterniflora aboveground biomass derived from Landsat 5 and Landsat 8

satellite imagery from 1984-2018 to analyze temporal patterns in biomass in

comparison to air temperature, precipitation, river discharge, nutrient input, sea

level, and drought index for a southeastern US salt marsh. Wavelet analysis and

ensemble empirical mode decomposition identified month to multi-year

periodicities in both plant biomass and environmental drivers. Wavelet

coherence detected cross-correlations between annual biomass cycles and

precipitation, temperature, river discharge, nutrient concentrations (NOx and

PO4
3–) and sea level. At longer periods we detected coherence between biomass

and all variables except precipitation. Through empirical dynamic modeling we

showed that temperature, river discharge, drought, sea level, and river nutrient

concentrations were causally connected to salt marsh biomass and exceeded

the confounding effect of seasonality. This study demonstrated the insights into

biomass dynamics and causal connections that can be gained through the

analysis of long-term data.

KEYWORDS

salt marsh, biomass, time series, wavelet, causality
1 Introduction

Salt marshes are the dominant intertidal habitat in the SE US and have important roles

in carbon sequestration, the modulation of organic and inorganic nutrient supplies to the

coastal ocean, and many additional ecosystem services (Mcleod et al., 2011; Mitsch and

Gosselink, 2015). These systems are highly productive, but their primary productivity –
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and the strength of the associated ecosystem services - can vary

substantially among years, as reflected in 2-3-fold interannual

variations in observed Spartina aboveground biomass (Więski

and Pennings, 2014). As prior long term ecological studies

reported, coastal marshes are sensitive to climate change (Reed

et al., 2022). Therefore, with a changing climate and increases in

temperature, drought frequency and severity, and sea level, the

connections between these drivers and plant production are even

more critical to understand, particularly since plant biomass and

productivity are tightly linked to CO2 exchange with the

atmosphere (Abdul-Aziz et al., 2018).

Patterns of primary production in salt marshes can be

correlated with climate and hydrologic variables (Odum, 1988).

Using an extensive set of field observations, Więski & Pennings

(2014) showed that over a 10-year period annual net primary

production of Spartina alterniflora, the dominant plant species in

salt marshes in the SE US, varied with nearby river discharge,

precipitation, sea level, and air temperature. Changes in vegetation

can also be captured using the spatially extensive observations from

repeated satellite flyovers. O’Donnell and Schalles (2016) used

Landsat 5 imagery and connected these to in situ measurements

to successfully estimate salt marsh aboveground biomass. They

found that peak fall biomass in Spartinamarshes at and near Sapelo

Island, Georgia estimated with Landsat 5 imagery captured between

1984 and 2011 was correlated with river discharge, drought index,

precipitation, and mean sea level. However, these studies do not

address longer-term periodicities or causation.

Identifying causal connections between abiotic conditions and

ecosystem responses (Morris et al., 2002; Hanson et al., 2016;

Crosby et al., 2017) can be challenging because of complex

interactions and nonlinear or time-delayed relationships of

climate variables and various ecosystem properties such as

aboveground biomass (Feher et al., 2017). However, techniques

such as convergent cross mapping can extract embedded causal

connections from time series measurements that then may prompt

further investigation in replicated experimental efforts. Along with

that, wavelets and empirical mode decomposition can be used to

identify periodicities in these complex systems. Moreover,

subtracting shorter-term periodicities can reveal underlying long-

term patterns. Although wavelets have been applied to investigate

connections between tidal salt marshes and CO2 and CH4 fluxes (Li

et al., 2018; Wei et al., 2020; Chu et al., 2021), this suite of

techniques has not been used previously to evaluate decadal-scale

patterns in salt marsh biomass and detect causal connections.

In this study, we examined the temporal patterns in marsh plant

biomass in a southeastern US salt marsh and its potential

environmental drivers over 35 years (1984-2018). We first

produced a continuous time series of aboveground biomass

estimates, which involved comparing several methods of gap-

filling. Second, we characterized the intrinsic temporal patterns of

both biomass and potential environmental drivers with wavelets

and empirical mode decomposition. As part of this, we were able to

remove shorter periodicities and identify underlying long-term

patterns. Third, we explored similarities in the variations of

biomass and environmental parameters, as well as lags between

them, using wavelet coherence. Lastly, going beyond the
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identification of correlations and coherence of patterns, we

identified potential causal connections between salt marsh

biomass and environmental variables through empirical dynamic

modeling, illustrating that the analysis of ecological timeseries can

discover known (and potentially new) ecological interactions in

complex natural systems such as coastal marshes.
2 Methods

2.1 Site description

The Altamaha River is one of the largest freshwater sources to

the Atlantic Ocean within the United States. It has a significant

impact on the Georgia coast and forms a complex system of

distributary channels, creeks, and intertidal areas (Di Iorio and

Castelao, 2013). The Altamaha estuary experiences semidiurnal

tides with an average amplitude of ~2 m; intrusion of saltwater is

limited to approximately the lower 20 km of the river (Alber and

Sheldon, 1999). The polyhaline portion of the estuary has extensive

salt marshes dominated by Spartina alterniflora (Więski and

Pennings, 2014).

Our study encompassed S. alterniflora marshes located within

the lower Altamaha tidal watershed (Figure 1; light blue), as

delineated by the US Geological Survey HUC boundary (USGS

HUC 03070106; see https://water.usgs.gov/GIS/huc.html) and an

overlay of S. alterniflora communities (green shading) along the

central Georgia coast. Recent digital mapping of Georgia’s coastal

saltmarsh and brackish marsh at 2 m resolution (Alexander and

Hladik, 2015) was resized using ENVI 5.3 (Harris L3Geospatial) to

30 m resolution, in order to match the 30 m pixel resolution of the

Landsat 5 imagery used in this study (Figure 1). Within the

Altamaha tidal watershed, there are 43,847 pixels of S.

alterniflora, 30 m in size, covering ~ 39.46 million m2 (3,946 ha).
FIGURE 1

Study site and environmental data sources. A - River Discharge
(USGS Doctortown, Gauge 02226000); B - River Nutrients (USGS
near Gardi), C - Air Temp & Precipitation (NOAA Sapelo Island), D -
Sea Level & Tidal Data (NOAA Fort Pulaski, Gauge 8670870), E -
PDSI (NOAA NCDC). Light blue is the contour of the HUC in which
the biomass was quantified, the light green pixels are those
identified as Spartina alterniflora.
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2.2 Spartina alterniflora biomass data

Spartina alterniflora aboveground biomass estimates were

obtained from satellite images as described in O’Donnell and

Schalles (2016). Briefly, the Landsat Ecosystem Disturbance

Adaptive Processing System (LEDAPS) protocol for atmospheric

correction of Landsat 5 and Landsat 8 images was used to estimate

Spartina biomass in salt marshes within the study site. The nominal

return rate for Landsat imagery is 16 days; however, two

overlapping Landsat Path/Rows (16/38 and 17/38) cover the

study area (O’Donnell and Schalles, 2016), providing two

prospective scenes every 16 days. Many satellite images were

discarded because of cloud coverage and tidal inundation, which

obscured the canopy reflectance signals of coastal marshes. As

described in O’Donnell and Schalles (2016), no images coinciding

with a tidal inundation recording above 0.65 m relative to NAVD88

at the Fort Pulaski gauge (NOAA station 8670870, the closest to the

study site) (offset by +25 minutes) were used.
2.3 Gap-filling

The analyses used in this study require equally spaced timeseries.

Therefore, from the available satellite imagery, monthly means of

Spartina alterniflora aboveground biomass (g/m2) were calculated

from the beginning of 1984 to the end of 2018. However, due to cloud

coverage, inundation, and lack of Landsat data from late 2011 to early

2013, the availability of suitable images varied widely. Over the 35-

year observational period, there were a total of 227 missing monthly

biomass estimates out of 420 months (193 existing data points), with

data gaps ranging from 1 to 17 months.

To establish a continuous time series of biomass at monthly

resolution, we tested several gap-filling approaches including

autoregressive integrated moving average (ARIMA) models,

kriging, and inpainting. ARIMA models utilize autoregressive and

moving average components of time series data to predict (Box

et al., 2015) or gap-fill (e.g., Afrifa-Yamoah et al., 2020; Dorich et al.,

2020) time series. We used the R package imputeTS (v3.2), which

seasonally decomposes time series, fits an ARIMAmodel to the time

series, uses Kalman smoothing to fill the gaps, and then adds the

seasonal component again (Moritz and Bartz-Beielstein, 2017).

Kriging is a geostatistical approach commonly used for spatial

interpolation (Li and Heap, 2008). As suggested by Knotters and

Heuvelink (2010) and Lepot et al. (2017), this approach can be

adapted to temporal interpolation such as predicting missing values

in air temperature time series (Shtiliyanova et al., 2017). In this

study, ordinary kriging was performed. Due to the strong

seasonality in marsh aboveground biomass, the data were recast

in two dimensions, with the time of year (i.e., month) as one axis

and the calendar year of an observation as the second axis, similar to

the approach of Walter et al. (2013). This 2D kriging method was

implemented using the R package gstat (v2.0-9) (Pebesma, 2004).

From the available variogram models the exponential model was

selected as it produced the best fit for our biomass data. Since

satellite data coverage was more complete during winter than

summer months due to reduced cloud cover, the seasonal axis
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was set to start in January, ensuring that the regions of data gaps

were well embedded into measured data. For the inpainting

approach, we again separated the seasonal pattern from

interannual long-term trends. Missing biomass values in the 2D

month vs. year coordinates were in-filled by solving a boundary

value problem for an elliptic partial differential equation. This was

implemented using the MATLAB script inpaint_nans (their spring-

metaphor method) by D'Errico (2022).

The performance of gap-filling methods was assessed both

quantitatively and qualitatively. The former was measured by the

accuracy of predicting existing data points with bootstrapping using

100 Monte Carlo realizations and computing prediction

uncertainties by comparing modeled and observed data. The

qualitative assessment focused on periods with long data gaps

(such as the 17-month period between the last data from Landsat

5 in November 2011 and the first data from Landsat 8 in March

2013) where the lack of data constraints can lead to poor gap-fill

performance. Reproducing seasonal patterns was also critical since

late Summer/Fall season peaks in biomass are important metrics of

salt marsh productivity (Visser et al., 2006; Kirwan et al., 2009).
2.4 Environmental data

Monthly records of air temperature, precipitation, sea level and

Palmer Drought Severity Index (PDSI: high = wet; low = dry) for

1984-2018 were obtained from the NOAA National Climatic Data

Center (NCDC). Monthly mean air temperature and total

precipitation data were acquired from the NOAA Sapelo station

(Figure 1, Lawrimore et al., 2016). PDSI data were retrieved as a

monthly time series for the Southeast Climatic Division (NOAA,

2022). In contrast to the biomass data, these datasets have minimal

gaps (~10%), which were gap-filled with kriging, as this was the

method selected for gap-filling the biomass data (see Results). River

discharge data for the Altamaha River were obtained from the

USGS Doctortown station because it is the most downstream river

gage that covers the time period of our study and provides an

accurate measure of all of the water that enters the estuary (Figure 1,

U.S. Geological Survey, 2016). Nutrient concentrations (NOx and

PO4
3–) were obtained from the USGS Altamaha River Near Gardi

station which is approximately 30 miles upstream from the

Altamaha Estuary (Figure 1, U.S. Geological Survey, 2016b). We

used nutrient concentrations as a proxy for the composition of the

water flooding the marsh to which the plants are exposed. The small

number of missing values (<10%) in the nutrient dataset were also

gap-filled by kriging. Monthly mean sea level data and tidal

projections were obtained from the NOAA Fort Pulaski station

(Figure 1; NOAA 2022a; NOAA 2022b).
2.5 Wavelet analysis and
wavelet coherence

The continuous wavelet transform (CWT) was used to analyze

the time series in time/frequency space. We selected Morlet

wavelets for their balance of time and frequency localization and
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facilitation of detection of time-dependent amplitude and phase

(Lau and Weng, 1995; Grinsted et al., 2004). To investigate local

correlations between CWTs of environmental variables and

biomass, coherence patterns in time/frequency space were

computed and phase shifts were quantified. Statistical significance

of the results was estimated using Monte Carlo randomizations.

Both wavelet and wavelet coherence analyses were implemented

using the biwavelet (v0.20.21) R package (Grinsted et al., 2004).
2.6 Empirical mode decomposition

Ensemble empirical mode decomposition (EEMD) was used to

decompose the time series into intrinsic mode functions (IMF) (Wu

& Huang, 2009). This data-driven method analyzes nonlinear and

nonstationary processes by breaking down complex time series into

components that are based on the observed minima and maxima in

the signal. By sequentially subtracting these modes from the original

signal, the time series is effectively decomposed into signals of

increasingly lower frequencies (modes). To address the issue of the

occurrence of similar frequency signals in multiple modes (mode

mixing), IMFs are computed as the ensemble average of multiple

stochastic realizations of empirical mode decomposition (Huang

et al., 1998), after addition of white noise to the original data. Noise

was set to 20% of the standard deviation as suggested by Wu and

Huang (2009), and the MATLAB implementation of Yang et al.

(2018) was used with Z-score normalization.
2.7 Convergent cross mapping

To explore univariate causal connections between

environmental variables and salt marsh biomass, we used

convergent cross mapping (CCM; Sugihara et al., 2012). This

empirical dynamic modeling approach builds on Takens’ theorem

(Takens, 1981), creating state-space reconstructions from lagged

time series. The dimensionality of the state space and prediction

time lags between biomass and other variables were determined as

the ones that maximize prediction skill (Ye et al., 2015). A causal

connection was then inferred from the information embedded in

the response variable (i.e., biomass) that leads to higher prediction

skills with an increasing length of the time series (library size used in

the reconstruction of the manifold). Prediction skills produced by

causal variables were expected to be higher than regular cross

correlation between the two variables (Bonotto et al., 2022). This

method was implemented using the R package rEDM (v1.9.3).

To avoid potential false causal implication resulting from

seasonality in two variables, we compared our analysis of the

observed data with outcomes using randomized seasonal time

series (Deyle et al., 2016). One thousand surrogate time series

were generated with a seasonal pattern based on the multi-year

monthly averages and adding randomly shuffled residuals to each

point. These surrogates were tested against biomass in CCM, and

the resulting prediction skills were obtained. By comparing those

with the prediction skill computed for the real data, the

confounding effect of seasonality was quantified.
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3 Results

3.1 Satellite imagery-derived biomass
estimates and gap filling

A strong seasonal pattern was apparent in our biomass data

(Figure S1, top panel). Notably, imagery (and derived biomass

estimates) was most limited during summer months because of

frequent cloud coverage during months with high humidity,

precipitation, and temperature (bottom panel in Figure S1; see

also O’Donnell and Schalles, 2016), which led to larger uncertainties

in the biomass estimates during peak season. Additionally,

interannual differences in biomass led to larger variability during

periods of substantial growth or decay (spring green-up and fall

senescence), contributing to larger uncertainties during those parts

of the year.

The different gap-filling methods for the monthly biomass data

showed similar performance. ARIMA/Kalman performed best

when data gaps were small, but yielded the lowest accuracy when

the number of missing data points was high (i.e. > 50%) (Figure S2).

The two non-traditional temporal interpolation methods,

inpainting and kriging, with years and time of year as major axes,

performed comparably to or better than the ARIMA/Kalman

approach, depending on the amount of missing data. Both yielded

similar results and produced realistic seasonal peaks. Given the

similar gap-filling performance, datasets filled by kriging were used

in this study because of its statistical basis and more extensive

literature support than inpainting (Shtiliyanova et al., 2017).

Monthly averaged biomass ranged from 254 g/m2 to 2650 g/m2,

and gap-filling could recover missing peaks in biomass data

(Figure 2). The largest gap between the end of 2011 and Spring

2013 was caused by the interval between the end of Landsat 5 and

the start of Landsat 8 operations.
3.2 Observed temporal patterns

We used both wavelet analysis and EEMD to identify

periodicities in the data. As described below, these yielded

similar results.

Wavelet analysis of biomass identified significant periodicity at

the episodic (0-4 mo), multi-month (4-8 mo), annual (8-16 mo),

and multi-year (64-128 mo) scales (Figure 3A). At the sub-annual

scale (0-8 mo), intermittent signals of short duration were observed

between the late 1980s and late 1990s. There was a strong annual

band between 1984 and 2009, after which the annual periodicity

became weaker for the remainder of the time series (Figure 3A).

Multi-year signals were apparent for the period of 1995-2006 (the

only years not influenced by edge effects at these long periods).

Similar patterns were observed using EEMD, with sub-annual

cycles captured in IMF 1, the dominant annual cycle captured in

IMFs 2 and 3, and the multi-year signal in IMF 5, with the rest of the

IMFs contributing less to the signal (Figure 4, left). The EEMD

residuals (original signal with all the modes subtracted) showed an

overall increase of biomass over time, in particular prior to 2000

(Figure 4, top right).
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Monthly precipitation on Sapelo Island showed annual

patterns, but the signal was discontinuous throughout the time

series (Figure 3B). It also showed multiple intermittent episodic

(i.e., <4 months) signals. EEMD of precipitation also showed these

high frequency signals, with the largest signal contributions by

intrinsic modes 1 and 2 (Figure 4, left). In line with the absence of

low frequency signals in the wavelet analysis, intrinsic modes

representing variations over longer timescales made a small

contribution to the observed precipitation signal (Figures 4, S5 left).

Air temperature showed the expected strong and consistent

annual pattern (Figure 3C). Additionally, signals with longer

periodicities (i.e., >1 year) were weaker than the average signal

intensities observed in other variables. This pure seasonality was

also evident in the EEMD with a dominant IMF2 that exhibited a

minimal difference between maximum and average range, and the

remaining IMFs contributing considerably less to the observed

temperature signal (Figures 4, S4 right). The EEMD residual

showed an increasing trend of approximately 2°C over 35 years

(Figure 4, right).

River discharge showed time-frequency patterns similar to

precipitation, but with a stronger annual signal and some

discontinuous sub-annual signals (Figure 3D); this pattern was

also apparent in the larger amplitudes in IMFs 1, 2 and 3

(Figure 4, left). Discharge also showed higher power at lower

frequencies (Figure 3D) compared to precipitation.

Annual and sub-annual periodicities in sea level were identified

by both CWT and EEMD (Figures 3E, 4); however, these

periodicities were intermittent, and most pronounced in 2000 -

2013. The residual in the EEMD analysis revealed the rising trend in

sea level during the study period of approximately 0.15 m over the

last 3 decades (Figure 4, right). Additionally, CWT for NOAA tidal

projections showed high seasonality (Figure S3).

The drought index showed periodicities on the order of 8-20

months in the wavelet analysis from the 1980s until around 2000

(Figure 3F). In the second half of the time series a shift to a longer

period (~5 yr) was observed. EEMD also demonstrated the slower

variations of the drought index. It revealed a shift to longer period

signals in the second half of the data set with decreased amplitude in

IMF2 and increased contributions of IMFs 4 and 5 (Figure 3, S6

right). Additionally, the long-term trend showed intensifying

drought conditions until the mid-2000s, which aligned with the
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decrease in precipitation and continuous increase in temperature as

underlying variables (Figure 4, right). This alignment between

environmental variables might have a synergistic effect on

biomass; however, since our methods do not consider combined

impact of variables on biomass, we could not quantify such effects.

Both riverine NOx and PO4
3– concentrations showed

intermittent seasonality and sub-annual signals (Figures 3G, H),

which resulted in larger differences between maximum and average

ranges of modes 1 and 2 (Figures 4, S7).
3.3 Coherence of biomass with
environmental variables

To compare the patterns in hydrological, climatic and nutrient

variables with those in the biomass, we analyzed the coherence of

their respective wavelets.

The strongest coherence between biomass and precipitation

occurred in the annual band, reflecting the seasonality of both

biomass and precipitation. Coherence was not persistent over time,

and the two variables were mostly in phase (Figure 5A).

Temperature and biomass showed coherence in the annual

band, which was significant for the period 1984-2014 and weaker

afterwards (Figure 5B). Phase differences were around 0-3 months,

with temperature leading biomass. This in-phase relationship

reflected the strong seasonality in both signals, as increases and

decreases were aligned. Additionally, longer term signals showed

coherence around the 8-year period with a 6.5-year lag between

temperature and biomass which was partially affected by the cone

of influence.

The wavelet coherence of river discharge with biomass was high

in the annual band, with most of the significant values between

1984-2016 (Figure 5C). The approximately 6-month lag between

discharge and biomass is consistent with the observation that river

discharge peaks in early spring and biomass peaks in early fall. After

2008, multi-year patterns (i.e., 3-6 years) of river discharge

correlated with biomass, with discharge leading biomass by

several months. Note though that the multi-year coherence is

affected by the cone of influence and hence has limited support.

Coherence of sea level with biomass showed roughly in-phase

annual patterns (Figure 5D). From 1984-2001, sea level showed

coherence with biomass in longer period signals (~3 years). In these

regions, sea level led biomass by approximately 2 years.

Drought index and biomass did not show an annual band in

wavelet coherence (Figure 5E). The only significant patterns

occurred during a 5-year period around 2009 in which PDSI led

biomass by less than a year, suggesting that a wet (dry) fall period

was followed by high (low) biomass the next year. The drought

index was also strongly coherent and in-phase with river discharge

over longer periodicities (not shown).

Nutrients generally showed intermittent coherence with

biomass. NOx only had two interpretable short significant zones

(annual and 5-year periods), only one of which was outside the cone

of influence. This was around the mid-1990s in the annual band,

where NOx led biomass by ~1.5 months. PO4
3– had three similar

zones in the annual band, with a slight out-of-phase relationship
FIGURE 2

Monthly biomass estimates (black dots) and gap-filled data set using
kriging (blue line). The red shaded area shows the gap between the
operation of Landsat 5 and 8.
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with biomass. After the mid-2000s, PO4
3– showed out-of-phase

coherence with biomass around 3- and 5-year periods.
3.4 Causal connections

To assess if the observed coherences between environmental factors

and biomass are indicative of a causal connection, the time series

observations were analyzed using convergent cross mapping (CCM).

Results showed that for air temperature, river discharge, sea level,
Frontiers in Marine Science 06
drought index and river nutrient concentrations, the prediction skill

both increased with increasing library size and exceeded their linear cross

correlation (Figure 6). Thus, these variables were considered causal to

biomass. CCM for precipitation did not yield better prediction skill than

maximum lagged cross correlation (with up to 12months of lag) and the

use of longer time series did not steadily improve the predictive power.

This indicated the lack of a causal connection.

Tests with surrogate signals were performed to investigate if the

apparent causal connections were a result of the inherent seasonal

cycles in most of the variables. The results indicated that
A B

D

E F

G H

C

FIGURE 3

CWT of biomass (A), precipitation (B), temperature (C), river discharge (D), sea level (E), drought index (F), NOx (G) and PO4
3– (H). Coloring indicates

the power of the spectra, with warmer colors indicating greater power of the signal at that time and frequency. Thick black lines indicate time-
frequency regions that show significance (95% confidence level). White lines indicate the cone of influence; values in the shaded areas outside the
line are prone to edge effects (Grinsted et al., 2004).
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temperature, river discharge, and sea level data performed

significantly better than their seasonal surrogates (p-value <0.05).

Similarly, and unsurprising given their weak annual bands

(Figures 5E–G), the causal connections identified from the

drought index and nutrients (NOx and PO4
3–) to biomass were

not due to seasonality. CCM for precipitation did not exhibit

prediction skills significantly better than its surrogate, which

further supported the lack of causal connection between

precipitation and biomass.
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4 Discussion

Aboveground biomass data exhibited strong seasonality and a

general increase over time (Figure 2). The decomposition of the

timeseries using EEMD pointed to a long-term trend characterized

by a substantial increase prior to 2007, with a plateau or slight

decrease thereafter (Figure 4). Wavelet analysis also indicated

intermittent sub-annual as well as multi-year periodicities in the

above-ground biomass (Figure 3A).
FIGURE 4

Relative amplitude and characteristic timescales of empirical modes derived from time series data for biomass, total monthly precipitation,
temperature, river discharge, sea level, drought index and nutrients. Left column: frequency and amplitude of empirical modes. The radius of the
circles reflects the average (red) and maximum (green) amplitude in each of the modes. Thus, large differences in the size of red and green circles
indicate larger temporal variability of the signal strength in each mode, while for modes that exhibit a persistent signal over time, red and green
circles are of similar size. The approximate signal frequency that defines the horizontal position of each mode is estimated by counting the number
of maxima per observed period, which do not necessarily need to be equally spaced. Trends (right column) represent the residuals remaining after
the subtraction of all IMFs from the original signal.
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4.1 Patterns in environmental variables and
their coherence with biomass

To put these observations into context, the patterns in

environmental factors potentially affecting plant growth are

identified and discussed, and then analyzed regarding their

correlation in time-frequency space with that of aboveground

biomass using wavelet coherence.

Short-term precipitation signals observed in CWT and captured

in the first intrinsic mode reflect the episodic nature of precipitation
Frontiers in Marine Science 08
and fronts generated by storm events (Srock and Bosart, 2009). The

wavelet analysis did not reveal significant patterns at longer

timescales. However, previous studies have shown that southeastern

US precipitation depends on large-scale climate patterns such as the

North Atlantic Oscillation, Bermuda High Index, El Niño/Southern

Oscillation, and the Pacific Decadal Oscillation (Sheldon and Burd,

2014). Among these, the Bermuda High Index is most influential,

especially during drought events when it is negative, pointing to

westward migrating high pressure areas that block storm impact on

the east coast (Sheldon and Alber, 2013). However, important large-
A B

D

E F

G

C

FIGURE 5

Wavelet coherence for biomass with other variables: precipitation (A), temperature (B), discharge (C), sea level (D), PDSI (E), NOx (F) and PO4
3– (G).

Colors indicate the normalized wavelet coherence between two signals ranging from 1 (red, high correlation) to 0 (blue, low correlation) (Grinsted
et al., 2004). Phase differences are indicated by arrows and increase from arrows pointing right (in phase, no phase difference) to arrows pointing left
(anti-phase, completely out of phase). Arrows pointing down (up) mean that the environmental variable is leading biomass with one fourth (three
fourth) of the period (i.e., 3 months or 9 months in the annual band). Black lines outline time-frequency couples that show significance (95%
confidence level) and white lines indicate the cone of influence where values outside the line are prone to edge effects.
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scale oscillations often vary intermittently over longer periods and

variable periodicities (e.g., the North Atlantic Oscillation; Markovic

and Koch, 2005) and hence may not appear as a consistent pattern in

the wavelet scalograms (Figure 3B).

Our analyses indicate an alignment of annual peaks in

precipitation and biomass (Figure 5A). This might reflect that

precipitation can be beneficial for biomass as it freshens the

marsh environment. Additionally, analysis of precipitation and

CO2 fluxes in a salt marsh (Chu et al., 2021) showed high wavelet

coherence in the annual band and revealed the importance of early

growing season precipitation. However, precipitation can also act as
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a stressor. For example, Hanson et al. (2016) have demonstrated the

effect of precipitation patterns by showing that S. alterniflora

biomass under ambient daily precipitation exceeded that

subjected to biweekly storms (with similar amount of total rain)

or drought conditions. This indicates that the nature of

precipitation events is more important than total amount of

precipitation and therefore extreme events might weaken the

seasonal precipitation/biomass coherence.

The temperature signal was strongly and consistently seasonal

(Figure 3C) and EEMD showed an increase of approximately 2°C

over 35 years (Figure 4, right). This is consistent with long-term
FIGURE 6

Convergent cross mapping results: real (red) and one instance of surrogate (blue) for each environmental variable (precipitation (A), temperature (B),
discharge (C), sea level (D), PDSI (E), NOx (F) and PO4

3– (G)) vs biomass. Horizontal dashed black lines show the maximum cross correlation between
the (time-shifted) environmental variable and biomass. Library size represents the length of the time series used in CCM. The prediction skill
measures the strength of the connection between environmental variables and biomass. Zero or negative prediction skill indicates the lack of
information about the dynamics of the environmental variable embedded in biomass (Sun et al., 2021). Boxes and whiskers show the range of
prediction skill for surrogate data, interquartile range, median and outliers (significance tests comparing surrogate and observed data were run with
full library size).
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warming in the state of Georgia of approximately 3°F since the late

1970s and an overall trend of the Georgia coast warming faster than

the state as a whole (Frankson et al., 2022; U.S. EPA, 2022).

Biomass peaks aligned with the temperature peaks, reflecting

both of their seasonal cycles. Both biomass and temperature also

exhibited an increase over the study period, which suggests a

positive relationship between temperature and plant growth.

However, the long-term trend in the biomass data indicated a

maximum around 2008 while temperatures continue to rise

(Figure 4). This points to a potential decoupling between these

two variables, which can also be seen in the lower power of the

wavelet coherence in the annual band after 2015 (Figure 5B). A

positive relationship between temperature and plant aboveground

biomass may not persist if temperatures increase to levels that

decrease plant productivity (35°C, Giurgevich and Dunn, 1979).

Such negative impacts are more likely to occur in more productive

southern salt marshes studied here, which are closer to their

optimum temperatures than northern Atlantic coast marshes

(Kirwan et al., 2009).

Discharge showed both annual and longer-term patterns. The

annual patterns reflected the historical spring maximum (Alber and

Sheldon, 1999). Over longer time scales, there was a drop in

discharge between 2000 and 2012 (Figure 4, right). This may

reflect the potential combined impact of climatic and

anthropogenic changes (Takagi et al., 2017). We observed higher

power in lower frequency signals for river discharge compared to

precipitation (Figures 3B–D). This is likely due to the fact that river

discharge captures and integrates local effects across the entire

watershed, whereas our precipitation data was from a single

station on the coast of Georgia. Furthermore, seasonality in

evapotranspiration rates may decouple precipitation and

discharge on sub-annual timescales.

Coherence of biomass and river discharge shows that with some

lag, an increase in discharge leads to an increase in biomass. This

can be explained by the effect of discharge on estuarine mixing and

the salinity and chemical composition of water that floods the

intertidal marshes. The salinity of this water is mainly controlled by

the Altamaha River which causes freshening of this estuarine system

when discharge is increased (Di Iorio and Castelao, 2013).

Consequently, it also affects the porewater salinity, which is an

important driver of S. alterniflora production (Odum, 1988; Więski

and Pennings, 2014; Miklesh and Meile, 2018). This aligns well with

the observed stronger coherence of biomass with discharge than

with precipitation.

Sea level showed annual and sub-annual signals as well as longer-

term trends. Much of the annual and sub-annual signals in sea level

can be attributed to tides (e.g., perigean spring tides), which can be

seen by comparing the analyses of sea level with/without removal of

the projected tides (Figures S3, 3E). However, discontinuities in

significance levels in these bands indicate cases where discrete

weather events overwhelmed tidal effects. For example, Andres

et al. (2013) have shown that local forcings such as along-shelf

wind stress caused interannual variability in sea level along the US

east coast. These types of local forcings are highly variable; therefore,

they manifest themselves as intermittent pulses and disturbances in

the time series, but do not generate persistent signals in the
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scalograms. The long-term increase in sea level indicated by the

EEMD residual was 0.15 m over the last 3 decades (Figure 4; i.e., 5

mm/year) which was comparable to the increase of 3.3mm/year from

1983 to 2001 reported by Sweet et al. (2022) and showed acceleration

in the last 2 decades.

Sea level had considerable seasonal, close to in-phase coherence

with biomass, indicating that biomass increases with increased sea

level. This positive impact of sea level was reported in previous

studies (Więski and Pennings, 2014; O’Donnell and Schalles, 2016);

however, this effect was shown to be sensitive to depth and duration

of the flooding and can reverse in the long run with certain

thresholds exceeded (Morris et al., 2013). This implication was

also similar to the findings of Wei et al. (2020), who have shown

lagged seasonal and multi-day coherence of tide height and CO2

fluxes in a salt marsh, and Souza et al. (2022) who documented both

in and out of phase coherence between water level and CO2 fluxes

on semi-diurnal (in phase) and multi-day (out of phase) timescales.

Our analysis also revealed long period coherences of biomass with

temperature (~ 8 years) and sea level (~3-4 years), with lags on the

order of >6 years for temperature and approximately 2 years for sea

level (Figure 5). These lags are long compared to the Spartina

growth cycle and therefore may not reflect biological interactions

with biomass.

Periodicities in the drought index shifted from shorter (8-20

months) to longer (5 yr) around 2000. This may reflect recurring

extended drought periods, which decreased the impact of seasonality

in the PDSI signal (Figure 3; Figure 4, IMFs 4,5). Long-term patterns

in drought and river discharge were similar, highlighting their

regional and integrative nature (Figure 3). The correlation between

biomass and PDSI as reflected in their wavelet coherence points to the

potential impact of droughts. Droughts are known to be associated

with large-scale dieback (Alber et al., 2008), and there have been

several such events on the GA coast since 2000. Such effects may not

be immediate but propagate through feedbacks between above- and

below-ground biomass which are tightly connected (Schubauer and

Hopkinson, 1984; O’Connell et al., 2021). Note that size-class

partitioning of central Georgia Spartina alterniflora (O’Donnell and

Schalles, 2016; Zinnert et al., 2021) showed that high-marsh, short

form Spartina (canopy < 50 cm) and mid-marsh medium form

(canopy 50 – 100 cm) had less resistance to drought-induced biomass

declines than low-marsh tall form (canopy > 100 cm) during the 5-yr

severe drought event centered around 2000. The shorter forms of

Spartina live in naturally stressed, higher pore water salinity areas of

the elevation-graded marsh platforms and have lower average above-

and below-ground biomass.

Nutrient concentrations in the Altamaha River are affected by

increasing anthropogenic inputs resulting from agriculture,

livestock, and changes in population density modulated by in-

stream processes (i.e., biological/benthic uptake/release, ad-/de-

sorption, precipitation/dissolution, dilution) (Schaefer and Alber,

2007; Takagi et al., 2017). Nutrient concentrations were not highly

sensitive to discharge (NO3
–: non-significant, DIP: slightly negative

significant relationship between discharge and concentration)

(Takagi et al., 2017). This could explain the weaker annual band

in nutrients compared to discharge (Figure 3). Under drought

conditions, short-term nutrient pulses can occur when storms/
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heavy rains cause flushing of retained nutrients from the terrestrial

environment before it is diluted by a high flow event afterwards

(Figure 4, left, IMFs 1 and 2; Whitehead et al., 2009).

Nutrients showed intermittent coherence patterns with biomass

mostly similar to coherence patterns of PDSI and discharge.

However, differences in phase lags point to differences in

underlying processes (Figure 5).
4.2 Causality

The causal relationships identified in this study generally align

well with observed coherences between environmental variables

and saltmarsh biomass described above. Analyses showed that

temperature, sea level, discharge, drought, and nutrients were

causal to biomass while local precipitation was not.

Regression analyses from previous studies are consistent

with our findings. Więski and Pennings (2014), working with

annual data between 2000 and 2011, showed that river discharge

and sea level best predict salt marsh productivity in salt marshes

around the Altamaha River estuary. This is likely due to their

impacts on porewater salinity and plant stress, which can be the

potential mechanism for the causal connection that we observed

in CCM for river discharge and sea level. In this analysis

precipitation had only limited correlation with production.

O’Donnell and Schalles (2016) came to similar conclusions

based on an analysis of Landsat 5 data between 1984 and 2011.

They found that river discharge, total precipitation, minimum

temperature, and mean sea level were important predictors of

aboveground Spartina alterniflora on the Central Georgia Coast.

This generally agrees with our finding except for precipitation.

Although we observed a temporary seasonal coherence with

biomass, a causal relationship was not supported by our

analysis. Additionally, PDSI was reported as a predictor in

combination with other variables only during limited time

periods; our results suggest that drought index is indeed causal

to biomass. It has been suggested that the effect of drought on

biomass can be through biogeochemical factors (salinity, pH,

Alber et al., 2008) and can also intensify ecological controls (e.g.,

grazing pressure, Silliman et al., 2005). We note that the

coherence between the biomass and drought is only strong

during the second half of the observational period when

drought conditions lasted longer, potentially suggesting that

there is a minimum duration required to impact the

marsh vegetation.

Spartina alterniflora has been shown to be sensitive to N supply

(Morris et al., 2013). Although N is the main limiting nutrient in

salt marsh ecosystems, P can also be limiting, as low PO4
3–

availability can restrict nutrient replenishment by microbial

organisms, in turn impacting carbon fixation in marsh plants

(Sundareshwar et al., 2003; Rolando et al., 2022). Supporting

these findings, our analysis showed that both nutrients are causal

to salt marsh biomass. However, nutrient concentrations on the

marsh will differ from those measured at the monitoring station in

the freshwater reaches of the Altamaha due to mixing with oceanic

water, in-stream processing of nutrients, and local sources and sinks
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such as those due to nitrogen fixation, nitrogen uptake and

denitrification. Considering dilution of riverine nutrients resulted

in different causal strength values but still shows the causal

connections of nutrients to the marsh biomass (Figure S10).

Additionally, the causality of the nutrients was sensitive to the

gap-filling procedure for the biomass data (Figure S11). These

findings emphasize the need for more detailed experimental

studies of the causal relationship between nutrients and biomass

beyond the analysis of time series.
5 Conclusion

Our work aimed to characterize complex time series from an

estuarine environment where seasonal patterns and non linearity

are key characteristics. It differed from autoregressive models and

neural networks (e.g., Lim and Zohren, 2021) in that it focused on

pattern identification and causal inferences; and from linear

correlation and regression methods (e.g., Wu et al., 2015) in that

our approach accounted for the nonlinear and state-dependent

nature of causal relationships (Papagiannopoulou et al., 2017). We

successfully used kriging to fill gaps in time series with seasonality.

Using time series analysis methods only, we showed dominant

seasonal forcings and short- and long- frequency patterns

embedded in salt marsh aboveground biomass and relevant

abiotic variables; identified temporal lags between these patterns;

and identified variables that are causal to salt marsh biomass.

Longer-term trends revealed that increases in temperature and

sea level were accompanied by an increase in aboveground

biomass from 1984 through 2008.

Our results indicated that salt marsh biomass is coherent with

seasonal patterns in temperature and sea level with small- or no-

time lags but with longer lagged river discharge, reflecting the

natural annual rhythm of plant dynamics and hydrology. Some

environmental characteristics such as temperature and sea level also

showed coherence with biomass at long periods with multi-year

lags. Although such patterns could be spurious, they may well

reflect complex interactions, such as those between marsh

inundation, productivity, and biomass, with feedback between sea

level rise, marsh production, accretion, and mineral and organic

matter accumulation (e.g., Morris et al., 2013; Więski and

Pennings, 2014).

The causal relationships identified in this study support previous

findings and align with observed coherences between aboveground

biomass and environmental variables (temperature, sea level, river

discharge, drought, and nutrients). We showed that causal

connections were not due to seasonality. Our work exemplifies the

use of long time series to discover known and new ecological

interactions in complex and highly seasonal natural systems.
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