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While suspended particles play many important roles in the marine environment,

their concentrations are very small in the deep sea, making observation difficult

with existing methods: water sampling, optical sensors, and special imaging

systems. Methods are needed to fill the lack of environmental baseline data in the

deep sea, ones that are inexpensive, quick, and intuitive. In this study we applied

object detection using deep learning to evaluate the variability of suspended

particle abundance from images taken by a common stationary camera, “Edokko

Mark 1”. Images were taken in a deep-sea seamount in the Northwest Pacific

Ocean for approximately one month. Using the particles in images as training

data, an object detection algorithm YOLOv5 was used to construct a suspended

particle detection model. The resulting model successfully detected particles in

the image with high accuracy (AP50 > 85% and F1 Score > 82%). Similarly high

accuracy for a site not used for model training suggests that model detection

accuracy was not dependent on one specific shooting condition. During the

observation period, the world’s first cobalt-rich ferromanganese crusts

excavation test was conducted, providing an ideal situation to test this model’s

ability to measure changes in suspended particle concentrations in the deep sea.

The time series showed relatively little variability in particle counts under natural

conditions, but there were two turbidity events during/after the excavation, and

there was a significant difference in numbers of suspended particles before and

after the excavation. These results indicate that this method can be used to

examine temporal variations both in small amounts of naturally occurring

suspended particles and large abrupt changes such as mining impacts. A

notable advantage of this method is that it allows for the possible use of

existing imaging data and may be a new option for understanding temporal

changes of the deep-sea environment without requiring the time and expense of

acquiring new data from the deep sea.

KEYWORDS
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Introduction

Deep-sea environmental functions are influenced by suspended

particle concentrations while animals here depend on these

particles for survival, making the variability of these particles of

geochemical, oceanographic and biological importance. Much

of the suspended solids in the ocean exist as aggregate particles of

detritus, microorganisms, and clay minerals . Particle

concentrations decrease rapidly with depth as organisms feed on

and decompose particles in the settling process. Suspended particle

concentrations in the open ocean are very low (5-12 mg/L; Brewer
et al., 1976; Biscaye and Eittreim, 1977; Gardner et al., 1985) at

depths greater than 200 m, and most deep waters have low natural

concentrations even near the sea floor (Gardner et al., 2018). These

particles are responsible for much of the transport of elements to

the deep-sea, are a major energy source for deep-sea biota, and form

seafloor sediments (Lal, 1977; Alldredge and Silver, 1988).

Low concentrations make suspended particle abundance in the

deep sea difficult to observe. Water sampling can detect minute

quantities of suspended particles; however, it cannot be performed

frequently due to the difficulty of collecting physical samples in the

deep sea. Therefore, changes on fine time scales are difficult to

observe with this method. Optical sensors, such as turbidimeters,

can take continuous measurements to get better temporal

understanding but their accuracy is low when particle

concentrations are very low, such as in the deep sea, because the

signal is lost in electronic noise due to low scattering intensity

(Gardner et al., 1985; Omar and MatJafri, 2009). In fact, previous

studies that have used optical sensors to examine suspended

particles in the deep sea were focused on nepheloid layers which

by definition have elevated concentrations of particles compared to

the surrounding environment (Martıń et al., 2014; Gardner et al.,

2018; Haalboom et al., 2021). Special imaging systems that take

pictures of particles or plankton as they pass through a known

volume illuminated by a specific light source can both take

continuous measurements and provide good accuracy when

particle concentrations are very low. In-situ imaging systems

include Video Plankton Recorder II (VPR) (Davis et al., 2005)

and Underwater Vision Profiler 5 (UVP) (Picheral et al., 2010),

which are primarily used as profilers. However, these systems are

intended for small spatial sampling: the VPR uses approximately 1 –

350 ml of seawater while the UVP captures an approximate area 180

x 180 mm2 in front of the camera. These systems also require large

amounts of money, time, and expertise for installation and analysis.

A general problem with deep-sea surveys is that they are difficult to

access, expensive, and have limited space for equipment. An

observation method that compensates for these shortcomings is

needed because little data can be obtained in a single survey (Amon

et al., 2022).

This study proposes a method to evaluate variation in

suspended particle abundance by applying deep learning-based

object detection to images from a common stationary camera.

Object detection is a technique related to computer vision that

detects the position and number of specific objects in images. In the

last decade, accuracy has improved dramatically as deep learning

techniques such as convolutional neural networks have been
Frontiers in Marine Science 02
incorporated (Zhao et al., 2019; Zou et al., 2023). In particular,

one-stage algorithms which perform object region estimation and

classification of each candidate region within a single network, such

as YOLO (Redmon et al., 2016), SSD (Liu et al., 2016), RetineNet

(Lin et al., 2020), and EfficientDet (Tan et al., 2020), enable fast

detection. In the marine field, studies have applied object detection

to organisms (Ditria et al., 2020; Salman et al., 2020; Bonofiglio

et al., 2022; Kandimalla et al., 2022; Knausgård et al., 2022) and

debris (Fulton et al., 2019; Xue et al., 2021), obtaining high detection

accuracy (e.g., >80% in F1 Score and Average Precision (AP50)

indices). In underwater images, suspended particles scatter light

from illumination and appear as circular white reflections. Image

processing research often views particles as noise sources and

remove them from images (Walther et al., 2004; Cyganek and

Gongola, 2018; Wang et al., 2021). On the other hand, when they

are targets for object detection, such characteristics may

facilitate detection.

Taking advantage of the fact that particles appear in high

luminosity, we hypothesized that applying object detection would

allow us to evaluate the variation in particle abundance. In this

study, fixed-point imaging was conducted for approximately one

month on a seamount summit located in the Northwest Pacific

Ocean. Using the particles in a subset of images as training data, a

particle detection model using the object detection algorithm

YOLOv5 was constructed to evaluate the variability in the

amounts of suspended particles. During several days of the

per iod , a smal l - sca le excavat ion test of coba l t - r ich

ferromanganese crusts (hereafter referred to as “crusts”), which is

a potential seafloor mineral resource (Hein, 2004), was also

conducted. This activity provided us a test case to assess rapid,

large changes in suspended particle abundance in the deep sea. Our

proposed approach is intended for use as a simple and auxiliary

monitoring tool for exploring temporal variations in the deep-sea

environment. There is an increasing need to collect baseline data in

the deep sea to assess environmental impacts of ever-expanding

human activities there (Ramirez-Llodra et al., 2011; Amon et al.,

2022). In particular, deep-sea mining can generate large amounts of

resuspended particles, or sediment plumes, which can impact

ecosystems (Washburn et al., 2019; Drazen et al., 2020).

Understanding the variability of suspended particles in their

natural state is essential for environmental impact assessments

(Glover and Smith, 2003; Tyler, 2003).
Materials and methods

Study site

The study site was the flat summit of Takuyo-Daigo Seamount

located in the northwestern Pacific Ocean (Figure 1A). The Takuyo-

Daigo Seamount rises to a depth of approximately 900-1200 m,

approximately 4500 m above the 5400 m deep-sea plain. The

summit area is approximately 2220 km². The basement rocks on

the summit are covered with crusts about 10 cm thick, and thin

sediments are distributed on top. Most of the sediments are sand

composed of planktonic and benthic foraminifera (Hino and Usui,
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2022; Ota et al., 2022). Suzuki et al. (in review) sampled water in this

area and reported a suspended solid concentration of about 20 mg/L.
Image collection

The deep-sea monitoring device “Edokko Mark 1 HSG type”

(Okamoto Glass Co., Ltd.) was installed at two locations in the

north and south of the study site (St. 3 and St. 7) to capture video

(Figures 1B, C). The two locations were selected close (~50 – 100 m)

to the excavation area to allow for comparison between sites and

represent different levels of sediment deposition. Based on

preliminary flow observations and sediment-plume modelling, the

plume from the excavation was expected to flow primarily towards

St.3 with relatively little towards St.7 (Suzuki et al, in review).
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The video recording period was from June 23 to July 30, 2020. The

shooting time was set to 1 minute every 4 hours from June 23 to July

2 to extend battery life, and 1 minute every hour from July 3 to July

30 for detailed observation. The 2 seconds between when the lights

were turned on until the brightness of the lights stabilized was

removed from all videos before analysis. The camera was

approximately 1.2 m from the bottom, at an angle of

approximately 64° to the bottom, and with a horizontal angle of

view of approximately 110° (in air). The screen resolution was 1080

p/30 fps. Illumination was approximately 1.6 m above the bottom,

at an angle of approximately 30° to the bottom, and at a half

illumination angle of ±60° (in air). The total luminous flux was

approximately 4000 lumens (in air). An example of the acquired

images is shown in Figure 2. Suspended particles were white or

translucent and were around ten pixels in size.
A

B C

FIGURE 1

Study site (A, B) and the deep-sea bottom monitoring device “Edokko Mark 1 HSG type” (C). In (B), the red stars represent sites of image collection,
the area in orange represents the location of the excavator operation during the excavation test. For bathymetry of the study site which was at ~950
m, contour lines are for every 2 meters with blue being deeper.
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Suspended particles detection

Pre-processing of image
When analyzing underwater images, pre-processing is

performed to facilitate the identification of objects. In this study,

an edge-preserving smoothing filter was used as a processing

method to emphasize suspended particles. In water, light

absorption by water and scattering of light by suspended particles

and plankton cause image degradation such as color distortion,

contrast reduction, and blurring. In previous studies, underwater

image preprocessing methods by pixel values correction, physical

modeling (Ancuti et al., 2018; Dai et al., 2020; Li et al., 2020; Zhang

et al., 2022), and deep learning (Islam et al., 2019; Wang Y. et al.,

2019; Anwar and Li, 2020; Li et al., 2020; Jian et al., 2022) were

proposed. The goal of these methods is to make the target, such as

seafloor or organisms, more visible by restoring color and removing

haze. However, suspended particles are considered as noise that

should be removed, making existing pre-processing methods for

underwater images likely counterproductive in this study. The edge-

preserving smoothing filter is a process that preserves the contour

lines of the object while smoothing the rest of the image as noise.

Therefore, it can be useful in both enhancing the contours of

suspended particles and removing blurring. Typical examples

include median filter and bilateral filter (Tomasi and Manduchi,

1998; Zhu et al., 2019; Chen et al., 2020). In this study, we used the

domain transform filter by Gastal and Oliveira (2011), which is

based on a transform that defines an isometry between curves on

the 2D image manifold in 5D and the real line. This filter is

implemented as a “detail enhancement” function in OpenCV

(Intel), a Python library for computer vision, for easy and quick

processing. Figure 2 shows the original and processed images and
Frontiers in Marine Science 04
their brightness histograms. The filter processing enhanced the light

and dark parts of the images and made the particles sharper.

Model training and validation
An object detection algorithm YOLOv5 (Ultralytics, https://

github.com/ultralytics/yolov5) was used to create the suspended

particle detection model. YOLOv5 is the fifth generation of You

Only Look Once (YOLO) (Redmon et al., 2016), released in June

2020. YOLO performs one-stage object detection using

convolutional neural networks. YOLOv5 has four training models

(s, m, l, x) with different computational load and detection accuracy.

In this study, YOLOv5x, which has the highest computational load

and detection accuracy, was selected since the particles targeted

have few features and are likely difficult to detect. The training and

validation data were images captured every 1 second on July 3, 7, 11,

14, and 20 at St. 3. These days were selected because they contained

a relatively large number of particles, with the goal of increasing the

number and variation of data. The training data consisted of 1028

images containing a total of 3484 particles, and the validation data

consisted of 255 images containing a total of 958 particles. The ratio

of training data to validation data was distributed approximately 8:2

for both the number of images and the number of classes. St. 7 was

not used as training data, only for accuracy verification using the

validation data. This allows us to examine whether the detection

model works accurately when the location (background of the

image) is changed. As with St. 3, the validation data for St. 7

consisted of images captured on July 3, 7, 11, 14, and 20. There was

a total of 255 images, containing 575 particles. The hyperparameters

were the default settings of YOLOv5. The number of epochs,

indicating the number of training iterations, was set to 100, and

the batch size was set to 4. The input image size was 1280 × 720
A B

DC

FIGURE 2

Examples of images at St. 3 which are original (A) and pre-processed with edge-preserving smoothing filter (B). (C, D) are histograms of the HSB
color model with pixel brightness (range 0-255) on the horizontal axis, (C) for the original image and (D) for the processed image. The objects in the
upper center of the screen are instruments that are not relevant to this study.
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pixels. The loss function was the bounding box regression loss with

mean squared error. The loss function is a measure of the

magnitude of the discrepancy between the correct value

(validation data) and the predicted value (detection result), which

is used to optimize the model.

The detection accuracy of the model was evaluated based on

intersection over union (IOU), a measure of the overlap of the area

of the rectangles of the annotations of the correct and predicted

values. Assuming that the validation data are ground truth, the

rectangle of the validation data is Rv, and the rectangle of the

detection results is Rd, IOU is defined as follows.

IOU =  
area(Rd ∩ Rv)
area(Rd ∪ Rv)

The IOU was compared to the threshold value t. When IOU ≥ t,

the detection result was considered correct. In this study, the

commonly used value t = 50% was used.

Precision (P), which indicates the percentage of detected

rectangles that are correct, and recall (R), which indicates the

percentage of detected rectangles that should be detected, are

defined as follows.

P =  
True   Positive

True   Positive + False   Positive

R =  
True   Positive

True   Positive + False  Negative

Then, the average precision (AP), a measure of the model’s

detection accuracy, is defined as follows.

AP =  
Z 1

0
P(R)dR

In this study, AP50, which means the threshold for IOUs is

50%, was used. AP50 is one of the most common performance

indicators for object detection accuracy (Padilla et al., 2020). In

addition, the F1 Score, an index that shows the balance between

precision and recall, was used to confirm model’s performance:

F1 =  
2

P−1 +  R−1

For both AP50 and F1 Score, the closer to 100 on the percentage

scale, the better the model’s accuracy.

Suspended particles detection
Particle detection was performed on captured images at 5-

second intervals for each video. Only the upper 40% of the image

was used to assess the temporal changes of the particles. The upper

40% of the viewing area was chosen because this was the portion of

the image that did not overlap with the seafloor, and similarities in

properties between the seafloor and suspended particles hindered

detection. The complexity of the seafloor also appeared to cause

some areas of false positives in particle detection at the location not

used to train the model (see “Results” chapter for details). The

average number of particles for each video (particle numbers

counted every 5 seconds averaged over 1 minute) was defined as

N40, and was used to evaluate time-series changes. N40 was square-
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root transformed before statistical analysis (2-way ANOVA and

Tukey’s HSD test). To focus on rapid increases in suspended

particles (described below), we defined a “turbidity event” as a

period when N40 was observed to be more than 10x the pre-

excavation average. The time required to detect a single image was

about 1.5 seconds when a CPU (Intel Core i9-10850K, 3.6 GHz) was

used, which was roughly the same whether there were zero or more

than 200 particles.
Excavation test

During image collection, the world’s first small-scale excavation

test of crusts was conducted (Japan Oil, Gas and Metals National

Corporation, 2020). The test period was July 9-16, 2020, and a total

of seven dredging excavations were conducted. The total excavation

distance was 129 m, the excavation width was 0.5 m, and the total

dredging time was 109 minutes (Figure 1B). The excavation area

was located on top of a 5-7 m high hill, surrounded by a seafloor at a

depth of ~950 m. The excavator moved along the seafloor with a

crawler, excavated the crusts with a cutterhead, and collected the

excavated material by a dredge hose to supplement the cyclone tank.

For further details please see Suzuki et al. (in review).
Result

Detection accuracy

The highest AP50 in the learning process was 85.8%, which

occurred at 96 epochs (Figure 3A; Table 1). Therefore, the model

trained up to 96 epochs was used in this study. The loss function

trend (Figure 3B) showed that the error decreased as the model was

trained, and no overlearning occurred. The values converged after

approximately 30 epochs, indicating that the number of training

iterations was sufficient. For St. 7, which was not used to train the

model, the validation results showed an accuracy of AP50 = 87.9%

(Table 1). The F1 Scores were >80% for both St. 3 (82.1%) and St. 7

(86.1%) (Table 1).

Examples of model detection results are shown in Figures 4, 5.

The sizes of the particles detected ranged from approximately 5 to

20 pixels (Figure S1). Particles were mainly detected in the upper

40% of image where the background was blackish water; in St. 3, the

percentage of particles located in the upper 40% was 99%, and in St.

7, it was 97% (Figure 6). On the lower 60% of the image field, where

whitish sandy seafloor was the primary background, similar whitish

particles were difficult to identify and were rarely detected.

Suspended particles that appeared blurred and elliptical due to

the fast flow were not detected. The reason for these non-detections

was that particles with indistinct contours were not included in the

training data in order to avoid false positives for the seafloor and

organisms. In the lower part of St. 7, there were two areas of false

positives, which corresponded to whitish sediment patches

(Figures 6B, C). Other factors that could contribute to false

detections include the appearance of organisms such as shrimp

and fish, or the slight swaying of the camera system itself due to the
frontiersin.org
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current, but manual visual inspection of the images confirmed that

these were not an issue with our dataset (Figure S2).
Fluctuation in suspended particle
abundance

The 2-way ANOVA found statistically significant differences for

the number of particles detected in the upper 40% of images, N40,

between St. 3 and St. 7 (F1, 1390 = 106.44, p< 0.001) and among times

(i.e., before, during and after the excavation) (F2, 1390 = 7.51, p<

0.001), while the interaction term for station and time was not

significant (F2, 1390 = 0.01, p = 0.988). Spectral analysis including the

entire duration of the study revealed no tidal (diurnal or half-

diurnal) variation in the time series of N40 (Figure S4).

Natural conditions
Under natural conditions (before the excavation test), N40 had

mean values of 3.6 and 2.3 with maximum values of 18.5 and 15.8
Frontiers in Marine Science 06
for St. 3 and 7, respectively (Table 2, Figure S3). There was a

significant difference between St. 3 and St. 7 (Tukey’s HSD test, p<

0.001). Standard deviation was half of the mean for each station

before excavation (Table 2).

Conditions during and after the excavation test
During the excavation test N40 had mean values of 4.7 and 2.3

with maximum values of 248.0 and 4.0 for St. 3 and 7, respectively.

After the test,  N40 had mean values of 4.8 and 2.9 with maximum

values of 88.7 and 46.7 for St. 3 and 7, respectively (Table 2, Figure

S3). There was a significant difference between St. 3 and St. 7 both

during (p< 0.001) and after (p< 0.001) the excavation. During

excavation standard deviation was ~4 times the mean for St. 3, but

only 22% of the mean for St. 7. After excavation standard deviation

was roughly the mean at both stations (Table 2).

At St. 3, therewas no significant difference between before, during,

and after excavation (p > 0.1); however, at St. 7, the number of particles

after excavation was significantly larger than the number of particles

both before (p< 0.01) and during (p< 0.01) excavation.
TABLE 1 Accuracy validation of the detection model.

Model training Precision (%) Recall (%) AP50 (%) F1 (%)

St. 3 Used 85.6 78.8 85.8 82.1

St. 7 Unused 87.4 84.8 87.9 86.1
front
The results for St. 3 and St. 7 are described. “Model raining” means whether the image of the stations was used for model training. AP50 means average precision (AP) with 50% thresholds for
correct detection, and F1 means F1 Score. The closer to 100 for both AP50 and F1 Score, the better the model’s performance.
A B

FIGURE 3

Model training transition. (A) average precision (AP) with 50% thresholds for correct detection, AP50, and (B) box regression loss. The blue line in
(B) shows transition of training while the orange line shows transition of validation.
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Turbidity events
The N40 showed 3 turbidity events during the observation

period, two at St. 3 and one at St. 7, which all occurred either during

or after the excavation (Figure 7). For St. 3, the first event was on

July 11 at 10:00 during excavation (maximum N40 = 248.0) and was

observed at only this time. The second event occurred four days

after the end of the excavation test on July 20 and was observed

from 13:00 to 20:00 (maximum N40 = 88.7). For St. 7, the turbidity

event occurred on July 20 and was observed from 14:00 to 19:00

(maximum N40 = 46.7). For both St. 3 and St. 7, the maximum N40

after the excavation test occurred at 16:00 on July 20 (Figure 7).
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Discussion

The results of this study suggest that object detection with deep

learning may serve as a valuable tool for assessing suspended

particle abundance in the deep sea using image datasets. The

detection model could detect particles in images with high

accuracy at locations used for both model training and those not

used (Table 1; Figures 4, 5). The model enabled us to assess

temporal changes of particles, including natural small-scale

variability and rapid increases possibly caused by anthropogenic

disturbance (i.e., small-scale crusts excavation test) (Figure 7).
A B

D

E F

G

C

FIGURE 4

Examples of original images (left column) and particle detection results (right column) in St. 3. Detected particles are surrounded by red rectangles.
The number in the upper right corner of the detected image represents the number of particles. The green lines crossing the images show the
upper 40%. The images in the right column were pre-processed to enhance light and dark areas. Images were taken at (A, B) 15:00 on July 3 (before
excavation test), (C, D) 10:00 on July 11 (turbidity event during excavation test), and (E, F) 16:00 on July 20 (turbidity event after excavation test).
(G) examples of detected particles. The objects in the upper center of the screen are instruments that are not relevant to this study.
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The detection model’s wide measurement range combined with

the ease of eliminating artifacts and possibility of examining both

short and long time scales suggest that our method for examining

deep-sea suspended particle concentrations can compensate for

many shortcomings of existing methods. The detection model was

able to measure from zero to hundreds of particles in an image,

which may help overcome the detection limits of optical sensors

(Gardner et al., 1985; Omar and MatJafri, 2009). To measure low

concentrations by optical sensors, it is useful to narrow the

measurement range to a higher sensitivity. However, Baeye et al.

(2022) measured seafloor disturbance tests with turbidimeters and

found that low range turbidimeters are often saturated. Also,

measuring low turbidity with optical sensors can often produce

electronic noise (Omar and MatJafri, 2009). A detection model that

can easily visually identify whether noise is artificial or not (see

Figure 6) may be useful as a reference for optical sensors. The fine

time scale measurements of the detection model can also

complement the sparseness of the measurements generally

associated with water sampling. In our study, the measurement

interval was 1 – 4 hours, but it can be further fine-tuned according

to the interval of image capture. Because detection models can cover

a large area, they may be better suited as a monitoring tool than

specialized camera systems which generally examine trace amounts

of seawater, such as VPR (Davis et al., 2005) or UVP (Picheral et al.,
Frontiers in Marine Science 08
2010). Since one of the objectives of special camera systems is to

observe the morphology of plankton and particles, there is a tradeoff

between the delicacy of image quality and the narrowness of the

measurement space (Lombard et al., 2019). The basic principle of

the method in this study is the same as that of the special camera

system in the sense that it measures particles in the image. However,

the general stationary camera used in this study captured reflected

light over a wider area, allowing it to measure sparsely distributed

particles, as shown in Figures 4B, 5B. As a bonus, general stationary

cameras are much cheaper and user-friendly than specialized

camera systems and are commonly used in various deep-sea studies.

Our study is the first that we know of to attempt to use deep

learning to quantify suspended particle abundance. While other

computational methods exist besides deep learning which may

serve useful in quantifying suspended particles, such as binary

processing and motion detection, these methods have inherent

characteristics that may lead to false measurements. Binary

processing, which separates images into background and target

objects, may be able to measure particles that stand out against a

black background, but if objects other than particles, such as

organisms, are captured in the image, they too will be separated

from the background and subject to measurement. Motion

detection, which detects moving objects against a fixed

background, may also be an option for observation of flowing
A B

D

E

C

FIGURE 5

Examples of original images (left column) and suspended particle detection results (right column) at St. 7. Images were taken at (A, B) 15:00 on July
3 (before excavation test) and (C, D) 16:00 on July 20 (turbidity event after excavation test). (E) examples of detected particles.
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particles (Neri et al., 1998); however, in our study, the video

(images) included mobile shrimp and fish while motion was also

created by the slight swaying of the camera system itself caused by

the current. The use of motion detection would also prevent the use

of the vast amounts of video data collected during ROV dives. In

general, using deep learning to train a system with target examples

is much easier than manually programming the process to predict

and avoid all possible false positive targets as described above

(Jordan and Mitchell, 2015), greatly reducing the need for manual
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visual confirmation and additional processing. One remaining

challenge is that false positives occurred in certain areas of the

seafloor at the station not used for model training (Figure 6), but

this can be addressed by increasing the diversity of the dataset used for

training (e.g., variations in the environment and shooting conditions).

Our model results suggest that similar evaluations using this

method can be made for image data from various locations and also

areas where no trained data are used. Most of the particles detected

were in the portion of the image where the background was blackish
A B

C

FIGURE 6

Positions of the detected particles. The vertical and horizontal axes represent the x and y coordinates on the image, normalized from 0 to 1,
respectively. (A) St. 3 and (B) St. 7. (C) example of an area of false positives caused by whitish sediment in St. 7.
TABLE 2 The values for the number of particles detected in the upper 40% of images, N40, for the entire observation period divided into before,
during, and after the excavation.

Excavation test Count Mean Std Mdn Min Max

St. 3

Before 203 3.6 1.7 3.1 0.0 18.5

During 168 4.7 18.9 3.0 0.0 248.0

After 327 4.8 6.6 4.0 0.0 88.7

St. 7

Before 203 2.3 1.1 2.3 0.0 15.8

During 168 2.3 0.5 2.3 0.0 4.0

After 327 2.9 2.9 2.4 0.0 46.7
frontier
Count represents the number of 60-second observations (i.e., samples), Std represents standard division, Mdn represents the median, Min represents the minimum value, and Max represents the
maximum value.
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water, and by extracting only the detection results from that part,

the possibilities of false positives were greatly reduced. In deep

water, where no sunlight reaches, the background is always black

water at any location unless the seafloor is captured, and turbidity is

generally low, so the environmental conditions affecting the images

are fairly similar regardless of specific habitat. Therefore, the model

may be similarly accurate for any deep-sea image data set. However,

it should be noted that the image dataset used in this study is for

only two sites, and could be insufficient in terms of quantity and

diversity. It is still necessary to test the model’s performance using

data sets with a greater variety of shooting and environmental

conditions. Much of the work on underwater object detection has

been done on fish (Ditria et al., 2020; Salman et al., 2020; Bonofiglio

et al., 2022; Kandimalla et al., 2022; Knausgård et al., 2022), which,

although they look and behave differently from suspended particles,

could be a useful reference for dataset collection. Ditria et al. (2020),

which targeted one type of fish for detection, tested the model’s

performance accuracy on images from the same estuarine region as

the training data and on images from a different estuarine region,

and found similarly high accuracy (> 92% for F1 Score and AP50).

Salman et al. (2020), which proposed a method to detect moving

fish, demonstrated that the approach is robust to image variability

using a large underwater video repository containing diverse

environments and fish species (> 80% for F1 Score).

Future work required to improve our particle-detection method

includes extending the diversity of image datasets used for accuracy
Frontiers in Marine Science 10
validation and identifying the limits of applicability of the model.

Examples of future datasets to explore include images from habitats

with a wide range of environmental conditions including particle

size, suspended particle concentration, and flow velocity (how fast

flowing blurry particles can be detected). In terms of imaging

conditions, particular attention may need to be paid to lighting,

which affects the visibility of suspended particles (Walther et al.,

2004; Cyganek andGongola, 2018). The detection results also need to

be calibrated with physical collections of suspended particles to

convert what is essentially qualitative data into actual quantitative

data. Otherwise, they cannot be compared with observations from

other studies (e.g., Biscaye and Eittreim, 1977; Gardner et al., 2018).

Laboratory dilution methods that convert turbidimeter readings

(formazin turbidity units, FTU) to concentrations (mg/L) may be a

reference for calibration. For example, Spearman et al. (2020) diluted

sediment samples with seawater from the field to create suspensions

of known concentrations. Optical sensors were then immersed in

these suspensions and their FTU readings were recorded, and this

process was repeated over a range of concentrations. For future work,

a similar calibration may be possible by replacing the optical sensor

with a camera and using a water tank. Furthermore, even if abrupt

changes due to anthropogenic impacts are measured, it is still

remains largely unknown what thresholds of suspended particles

will be ecologically relevant (Washburn et al., 2019; Drazen et al.,

2020), although this work is not directly related specifically to

our methods.
A

B

FIGURE 7

Temporal changes of the number of detected particles in the upper 40% of images, N40 for (A) St. 3 and (B) St. 7. The orange vertical lines indicate
the times of excavation.
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Our model may provide new insights into temporal changes of

suspended particles. The extremely low N40 values before the

excavation highlight the difficulties of measurement by previous

methods. But the fact that these particles constitute the primary

food source of organisms in the deep sea (Lal, 1977; Alldredge and

Silver, 1988) suggest that changes in observed particles from, for

example, N40 = 1 to N40 = 10 would constitute a possible 900%

increase in food supply. Thus, even “small” temporal variability may

be of large importance in the deep sea, and our detection model may

be able detect these miniscule changes.

The observations following the excavation test also have

interesting implications on future impacts of deep-sea mining.

The cause of differences in average N40 among time periods and

the rapid increases of particles, or turbidity events, may be a

sediment plume of broken crust particles, a large amount of

resuspended sediment generated by disturbance, or resuspension

of natural sediment or sediment deposited from the plume after

excavation (Sharma et al., 2001; Aleynik et al., 2017). The fact that

for N40 at St. 7, there was no difference before and during the

excavation test, but there were differences before and after and

during and after may suggest that once deposited, the particles from

excavation increased the amount of suspended particles in the

surrounding area over time due to resuspension (Sharma et al.,

2001; Aleynik et al., 2017). However, human disturbance is often

associated with increased variability, and the extremely large

standard deviation during the excavation at St. 3 compared to

other times suggests that there may have been alterations in

suspended particle concentrations during the test as well

(Table 2). Much remains unexplored about dynamics of sediment

plumes (Washburn et al., 2019; Drazen et al., 2020) and

resuspension in deep-sea seamounts (Turnewitsch et al., 2013).

These likely causes are not discussed in detail because they are

beyond the scope of this paper which is focused on methodology.

For further details please see Suzuki et al. (in review). If turbidity

events were indeed caused by the excavation test, one would expect

there to be plumes generated during each of the 7 excavations. A

likely reason why only one event was observed during excavation is

that the excavation time was too short to be captured by the one-

minute-per-hour video recording. Due to the limitations in our

dataset, we chose to use the excavation test as an example of high

particle concentrations for our model rather than attempt to focus

on and define the extent of impacts from excavation itself. This

highlights the importance of carefully considering sampling

intervals to ensure the ability to examine particular hypotheses.

A notable advantage of our detection model is that it can be

adapted to observational data acquired for other purposes, even

opening up the possibility of providing new insights from the

thousands of hours of data collected in the past. The detection

model is likely to be applicable to any deep-sea region and camera

system, as long as the entire image does not show the seafloor.

Monitoring deep-sea environments with imagery is a common

research topic (Bicknell et al., 2016); therefore, there is already an

abundance of image data to which the detection model could

potentially be applied. A fundamental challenge for ocean
Frontiers in Marine Science 11
observations is to reduce costs (Wang Z. A. et al., 2019). This

challenge is particularly acute in deep-sea surveys where access to

the field is difficult (Amon et al., 2022). Leveraging existing imaging

data may reduce the need for new surveys and the need for

familiarization and installation of specialized equipment, and may

allow for rapid data collection at a lower cost. Detection models can

be a new option to make better use of existing data and improve our

understanding of suspended particles in the deep sea.
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SUPPLEMENTARY FIGURE 1

Size of the detected particles. The vertical and horizontal axes indicate the
size in pixels along the x- and y-axes, respectively. Note that many points are

plotted overlapping each other.
Frontiers in Marine Science 12
SUPPLEMENTARY FIGURE 2

Example of images showing possible false positive targets. Shrimp, fish,
and a rope used to secure the camera system were captured. (A, B)
are from St. 3 and (C, D) are from St. 7. The number in the upper right

corner of the images represents the number of particles detected by
the model.

SUPPLEMENTARY FIGURE 3

Box-and-whisker plots of suspended particle counts detected in the upper
40% of images (N40). Plotted separately before, during, and after excavation

test at St. 3 and St. 7.

SUPPLEMENTARY FIGURE 4

Results of spectral analysis on the number of suspended particles
detected in the upper 40% of images (N40). (A) St. 3 and (B) St. 7. The
data used were taken from July 3, 2020, when the image taking interval was
1 hour.
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