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This research is motivated by the practical requirements in the sustainable

deployment of ocean moored buoy observing networks. Ocean moored buoys

play an important role in the global marine environment monitoring. Ocean buoy

station layout planning is a typical multiple-objective spatial optimization

problem that aims to reduce the spatial correlation of buoy stations and

improve their spatial monitoring efficiency. In this paper, we develop a multi-

objective mathematical model for allocating ocean buoy stations (MOLMofOBS)

based on Tobler’s first law of geography. A spatial neighborhood model based on

a Voronoi diagram is built to represent the spatial proximity of distributed buoy

stations and delimit the effective monitoring region of every station. Then, a

heuristic method based on a multiple-objective particles swarm optimization

(MOPSO) algorithm is developed to calculate the MOLMofOBS via a dynamic

inertia weight strategy. Meanwhile, a series of experiments is conducted to verify

the efficiency of the proposed model and algorithms in solving single- and

multiple-buoy station location problems. Finally, an interactive portal is

developed in the Cyberinfrastructure environment to provide decision-making

services for online real-time planning of the ocean buoy station locations. The

work reported in this paper will provide spatial decision-making support for the

sustainable development of ocean buoy observing networks.

KEYWORDS

multiple-objective location modeling, particles swarm optimization, Voronoi diagram,
decision-support system, ocean moored buoy
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2023.1134418/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1134418/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1134418/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1134418/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2023.1134418&domain=pdf&date_stamp=2023-04-28
mailto:mmsong@qlu.edu.cn
mailto:chensz@qlu.edu.cn
https://doi.org/10.3389/fmars.2023.1134418
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2023.1134418
https://www.frontiersin.org/journals/marine-science


Liu et al. 10.3389/fmars.2023.1134418
1 Introduction

Marine monitoring is an important foundation and prerequisite

for understanding, developing, and utilizing the ocean. As key

marine monitoring equipment, ocean moored buoys can be

equipped with various sensors according to the needs of various

monitoring purposes, providing a reliable observation platform to

collect and transmit real-time hydrological and meteorological data

with the characteristics of being systematic, long-term, continuous,

and stable on a daily basis. All over the world, several ocean buoy

networks have been established for monitoring and forecasting

ocean conditions and ocean–atmosphere interactions. In the

Aegean Sea, the POSEIDON buoy network (Nittis et al., 2002;

Nittis et al., 2006) consisting of 11 ocean buoys provides the

opportunity to measure wind, atmospheric pressure, conductivity,

ocean current speed, dissolved oxygen water temperature, and other

properties. The triangle Trans-Ocean Buoy Network (TRITION)

(Kashino et al., 2007; Hase et al., 2008) buoys were deployed in the

western equatorial Pacific by Japan Agency for Marine-Earth

Science and Technology (JAMSTEC) to observe El Niño/La Niña

Southern Oscillation (ENSO), and the Tropical Atmospheric Ocean

(TAO) (McPhaden et al., 1998), with more than 70 mooring buoys,

were deployed by the National Oceanic and Atmospheric

Administration (NOAA) of the United States. The Prediction and

Research Moored Array in the Tropical Atlantic (PIRATA)

(Bourles et al., 2008; Rouault et al., 2009) observation network

consists of 18 mooring buoys and 3 island-based observation sites to

observe climate and weather for prediction in the Tropical Atlantic.

Argos (Tang et al., 2015) is another famous international program,

which started in January 2000 and is devoted to deploying free-

drifting buoys to collect and transmit temperature and salinity

profile data in the upper 2000 meters of the global ocean. In the

Argos buoy system, there are a total of about 16,000 buoys deployed

around the world, of which about 3,900 are currently in operation.

The ocean buoy network in China is strong and growing quickly,

consisting of nearly 50 mooring buoys deployed by China Ministry

of Natural Resources, 30 deployed by China Meteorological Bureau,

and more than 30 others deployed by other institutes and

departments (Wang et al., 2016).

Ocean moored buoy networks in several countries belong to

different organizations in the fields of oceanography, meteorology,

transportation, environment, fishery, scientific research, and

industries. On one hand, different organizations make plans

independently. On the other hand, there is actually a lack of

effective methods to simulate and model the buoy spatial layout

to achieve optimal configuration and allocation in the long term.

These issues lead to insufficient integration of the existing buoy

monitoring resources and limit the possibility of planning the

scientific layout of future ocean monitoring activities. The

rationality of the ocean buoys layout in an explicit marine space

can be measured in terms of two aspects: 1) whether the density of

buoy stations in the ocean monitoring network is appropriate,

which significantly impacts the accuracy of the climate and

weather prediction and the precision of marine science analysis

such as globally meshing Argos data; and 2) whether the locations
Frontiers in Marine Science 02
of the buoy stations are sufficient and reasonable, which is directly

related to the correctness of revealing the inherent variability of

broad-scale and short-scale marine phenomena, such as water

masses, ocean currents, and ocean fronts.

In view of the urgent needs for planning ocean moored buoy

observing networks and addressing the key problems of buoy layout

optimization, this paper carries out a spatial analysis of ocean buoy

station locations to realize their location modeling for spatial

optimization and to find efficient methods to calculate new

potential positions for deploying additional ocean buoys. The

work reported in this paper is of great significance to supporting

decision-making for buoy layout planning as well as facilitating the

construction of high-density and multi-parameter marine

comprehensive observation networks.

This paper is organized as follows. Section 2 details spatial

optimization problems and existing techniques by consulting the

existing literature. This is followed by the realization of the spatial

optimization modeling of ocean buoy stations, including

conducting buoy station location modeling in Section 3, building

the spatial neighborhood model of buoy sites, and designing an

efficient multi-objective particle swarm optimization (PSO)

algorithm for solving the location problem in Section 4. Then, a

series of experiments is undertaken to demonstrate the efficiency

and performance of the built spatial optimization model in Section

5, and an online application is established to provide planning

services for ocean buoy station locations in Section 6. Finally,

conclusions are provided in Section 7.
2 Related work

Optimizing the spatial layout of an ocean moored buoy

observing network aims to maximize the spatial coverage of

marine buoy monitoring stations by improving their scientific

and rational deployment. It is a multidisciplinary problem

involving spatial optimization, spatio-temporal analysis,

intelligent computing, and other fields. The essence of this

problem is to maximize or minimize one or more mathematical

functions to solve the allocation scheme of public facilities

resources, such as the locations of fire stations, hospitals, schools,

and environmental monitoring stations, as well as reserve site

selection (Church et al., 1996; Malcolma and Revelle, 2005;

Murray, 2010; Tong and Murray, 2012). Approaches for such

location modeling focus on the P-median location-allocation

model (Church and Wang, 2020; Zaferanieh et al., 2022), the

maximum minimization model (Wang and Zhang, 2012), the

maximum coverage location problem (MCLP) (Atta et al., 2021;

Taiwo, 2021), and continuous model of coverage problem (CMCP)

(Yang et al., 2020; Blanco and Gázquez, 2021). Based on the vertex

weights and correction costs as independent uncertain variables

(both side length and vertex weights are variable), Soltanpour et al.

(2020) proposed a model of an uncertain inverse P-median location

problem to deal with tail values at risk targets and proved that it is a

nondeterminism Polynomial(NP) problem; meanwhile, a hybrid

PSO algorithm was proposed to obtain the approximate optimal
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solution of the proposed model. Nguyen et al. (2021) solved the

connected P-median problem on fully multilayered graphs and

developed an algorithm for solving the P-median problem based on

the branch-and-bound principle. Arana-Jimenez et al (Arana-

Jiménez et al., 2020). extended the fuzzy mathematics field of the

maximum coverage location model, modeled from the fuzzy

perspective, and generated appropriate Pareto solutions; a

solution algorithm based on the augmented weighted Tchebycheff

method was proposed, which could ensure the optimal Pareto

solution. Casas-Ramirez et al (Casas-Ramıŕez et al., 2020). studied

the bi-level maximum coverage localization problem and proposed

a heuristic method based on a genetic algorithm with local search to

obtain the lower bound of the optimal solution. Wang et al (Wang

et al., 2016; Wang et al., 2020). adopted the MCPL model and took

the maximum area covered by the stations as the optimization

objective to solve the precipitation station location problem and

plan their optimal deployment. Song et al. (2021) set up a nonlinear

continuous maximum coverage positioning model (CMCP-Ocean)

to deploy a sustainable ocean buoy observation network and built a

heuristic framework based on a PSO algorithm to solve the CMCP-

Ocean model.

The ocean moored buoy location problem is regarded as an NP

problem because the volume of potential solutions will be so large as

to cause a combined explosion so that the problem is hardly solved

within the time of polynomial complexity as the number of ocean

buoys for deployment increases. Promising and practical heuristic

algorithms, including PSO (Shifa et al., 2011), ant colony, simulated

annealing, genetic, tabu search, greedy, and neural network

algorithms have all been well applied to solve spatial optimization

problems in fields such as regionalization (Liu et al., 2015), resource

allocation and scheduling (Chang and Wei, 2002), and urban

planning (Feng and Liu, 2013). Recently, hybrid heuristic

methods have been highlighted to solve large instances of

districting and regionalization problems (Duque et al., 2012; Kim

et al., 2016). (Li et al., 2014) constructed an extendable heuristic

framework by integrating a semi-greedy algorithm and improved

local search to generate p regions that are as compact as possible

from n atomic polygons, defined as the p-compact-regions problem,

which is a representative non-linear regionalization problem in

urban economic modeling. (Kim et al., 2016) proposed a hybrid

heuristic algorithm by combining the Automated Zoning Procedure

and a center interchange method, improving the efficiency and the

quality of solutions for large-size p-functional region problems.

(Kollat and Reed, 2007) built an efficient framework for long-term

groundwater monitoring planning using evolutionary multi-

objective optimization techniques.

Among them, the PSO and multiple-objective PSO (MOPSO)

algorithms show outstanding performance due to the organic

adhesion and bidirectional influences of the local search phrase

and the global search phrase by adjusting particles’ position and

speed while referring to the individual optimal solution and the

global optimal solution in each iteration. Additionally, PSO-based

algorithms have a strong advantage in solving the problem of multi-

station site selection because the position and flight velocity

dimensions of each particle only need to be expanded
Frontiers in Marine Science 03
horizontally as the number of stations to be calculated increases.

The addition in particle dimensions will not enlarge the complexity

of the optimization problem, nor the computational complexity,

which has been verified in some research (Shifa et al., 2011;

Masoomi et al., 2013; Xie and Xu, 2017). However, both

traditional PSO and MOPSO have two major disadvantages: 1)

the fixed or inappropriate inertia weight factor (w) leads to the

linear attenuation of particle velocity, which makes the flight

behavior of particles tend to homoplasy, resulting in local

convergence that causes the search for optimal solutions to

become entrapped in local areas from which it is unable to jump

out; and 2) the particle search behavior is random and lacks

diversity, which leads to the uneven distribution of particles in

the feasible solution space and possible failure to reach the region

where the best solution is located. These shortcomings become

more obvious and difficult to solve for multi-objective

optimization problems.

To address these issues, two kinds of strategies are carried out in

relevant research. The first strategy type is to dynamically adjust the

search step in the search stage to achieve the effect of refining the

search granularity and increasing the diversity of particles. In this

scope, strategies based on inertia weight (IW), which is an

important parameter to balance the exploitation of individuals in

local search and evolution of generations in global search, are

created (Chen et al., 2006; Uma et al., 2012; Chauhan et al., 2013;

Amoshahy et al., 2016). For example, Amoshahy et al. (2016)

proposed another more superior IW called the Flexible

Exponential Inertia Weight (FEIW) strategy, which is also time-

varying-based and has the ability to adapt with each optimization

problem by selecting suitable parameters to make IW increase and

decrease. Chen et al (Li et al., 2014). created a natural exponential

IW strategy to dynamically vary IW according to the number of

iterations to accelerate the decrease of inertia weight, which hastens

convergence. The second strategy type comprises archival non-

inferior solution maintenance and the global optimal solution

selection strategy to provide the correct guidance for global

leaders to local search in the evolution stage. In this aspect,

exclusive and fuzzy Pareto dominance concepts (AlvarezBenitez

et al., 2005; Köppen and Veenhuis, 2006) are commonly adopted in

multi-objective problems to select global optimal solutions, and

marked effects with good convergence and widespread coverage are

obtained. Meanwhile, the Pareto archive evolution strategy

(Knowles and Corne, 1999; Zhao et al., 2012; Knowles and Corne,

2014) is employed to record and update non-dominated solutions,

so as to provide a repository from which calculating the distribution

density of non-inferior solutions, as well as selecting the global

optimal and deleting redundancy solutions, can be carried out. In

addition, the crowding distance sorting strategy (Raquel and Naval,

2005; Santana et al., 2009; Feng et al., 2010) has been proposed as a

promising method to best approximate the true Pareto front by

selecting the individual with the biggest crowding distance as the

global optimum to make the swarm evolve to the sparse objective

space, as well as by deleting the individual with the smallest

crowding distance in the external Pareto archive to reduce the

redundancy of non-dominant solutions.
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3 Location modeling of ocean moored
buoy station

3.1 Multi-objective location selection
modeling of ocean moored buoy stations

The ocean moored buoy location problem can be abstracted as

follows: in a given range of marine space, under the premise of not

changing the existing buoy stations’ positions, find suitable

positions to deploy a number of ocean buoys with the aims of

increasing the density of observation and avoiding duplicate

monitoring and monitoring gaps. Furthermore, two objectives are

required to be achieved for computation: the first objective is that

the distribution of buoy stations should be as dispersive as possible

to reduce the correlation of adjacent buoy stations, and the second

objective is that the area of each buoy’s effective monitoring region

(EMR) should be as similar as possible to achieve a uniform layout

of ocean buoy stations. Based on Tobler’s first law of geography

(Toblera, 1970; Klippel and Li, 2011) that near things are more

related to each other, we take advantage of the Euclidean distances

between the selected site and each site in its neighborhood to

measure the first objective. All distances are expected to be as

large as possible to match the goal. To address the second objective

mentioned above, standard deviation is employed as the indicator

to measure the uniformity of EMR. A smaller standard deviation of

EMR areas would indicate a more uniform distribution. Therefore,

the multi-objective location model of ocean buoy stations

(MOLMofOBS) is formulated as follows:

Maximize(F1) (1)

Minimize(F2) (2)

where,

F1 = min( di,jji = 1,…, n,  Pj ∈ Nb(Pi)
� �

) (3)
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F2 = max( STD( Svi, Svj(j = 1,…, n)jvj is the EMR of Pj,   ∀ Pj ∈ Nb(Pi)
� �� �

)ji = 1,…, n
� �

)

(4)

Subject to:

Depth(Pi) ≥ 5 (5)

Pi within S _ P (6)

Where, Pi represents the i-th buoy station with longitude and

latitude coordinates and Pj represents the j-th buoy station. di,j is the

Euclidean distance between the station Pi and the station Pj. Nb(Pi)

denotes the spatial neighborhood of Pi. The equation (3) indicates

to get the minimum of di,j. For i and j which are from 1 to n, if Pjin

the spatial neighborhood of Pi, di,j is calculated, otherwise, di,j is not

calculated. STD is the operational function of standard deviation. Svj
is the area of EMR of Pj which is in Nb(Pi). Depth(Pi) denotes the

water depth in the position of Pi. S_P denotes a specific solution

space in the form of polygon geometry.

In the MOLMofOBS above, two key elements need to be

calculated, namely, EMR and Nb(Pi). In practice, the buoy

monitoring stations are distributed discretely on the sea. A set of

isolated coordinate points cannot intuitively express the spatial

proximity between monitoring stations, nor can it record the

adjacent stations of each monitoring station in a quantitative way.

Actually, in addition, the boundary of each EMR cannot be

delineated effectively. To estimate EMR and Nb(Pi), a spatial

neighborhood model is built in the next section.
3.2 Building the spatial neighborhood
model of ocean moored buoys stations

In this section, a spatial neighborhood model (SNM) is

established to represent the neighborhood and delimit the EMR

of each station, shown in Figure 1. Firstly, the concept of a Voronoi

diagram (Dong, 2008; Okabe et al., 2008; Lee, 2010) is employed to
FIGURE 1

The Spatial Neighborhood Model (SNM) of ocean buoy stations.
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divide the sea space; all buoy stations are treated as parent points to

generate a Voronoi diagram, and each buoy station belongs to a

Voronoi polygon. Inevitably, each Voronoi polygon is adjacent to

other Voronoi polygons. If there is a common edge between the

Voronoi polygon of station Pi and the Voronoi polygon of station

Pj, Pi and Pj are adjacent. This kind of adjacent relationship is

named the first-order Voronoi vicinity (1-oVv), which is adopted to

measure the spatial proximity of ocean buoy stations and eliminate

the effect of space barriers caused by linear obstacles, such as

peninsulas or islands. Nb(Pi) denotes the 1-oVv neighborhood (1-

oVvN) of station Pi. A well-defined SNM is formed, as shown in

Figure 1, with three components including a list of buoy stations,

the EMR, and the 1-oVvN of every buoy station. The list of buoy

stations includes their longitude, latitude, and identification

information, such as buoy name, buoy number, and buoy type,

which are the original data for location computation. Voronoi

divides the entire study space and the distance between each

point in the Voronoi polygon and its internal buoy station is

closer than that between it and other buoy stations. Using

Voronoi polygons to estimate the EMR can not only ensure that

the spatial coverage of the buoy monitoring station is continuous in

the whole study area, but also meet the requirement of spatial

proximity. Therefore, the EMR of each buoy station is delimited by

its Voronoi polygon.
4 A customized heuristic approach
based on the MOPSO algorithm to
solve MOLMofOBS

The MOLMofOBS in Section 3.1 is a typical multi-objective

optimization problem. A heuristic method based on the MOPSO

algorithm is designed to calculate near-optimization solutions of

MOLMofOBS by expanding the advantages of simulating the social

behavior of the population with the intelligence of the colony,

sharing information among individuals , and working

collaboratively. In the proposed MOPSO-based algorithm, the

particle is a basic unit to calculate F1 and F2 defined in equations

(3) and (4). It has two attributes of the position and the flight

velocity. The position of a particle is a coordinate sequence of all

buoy positions to be deployed. It is represented as (x1, y1, x2, y2, x3,

y3, …, xn, yn), where a pair of (x, y) stands for the position

coordinate of a buoy station. So, a particle position contains

positions of all buoys. The flight velocity of a particle is a

sequence of all changes in the position of buoys and represented

as (v1
x, v1

y, v2
x, v2

y, v3
x, v3

y, …, vn
x, vn

y). Each component of the

particle’s velocity is added to the corresponding component of its

position to obtain a new position of the particle. The new position of

a particle will be divided into the coordinates of n buoy stations to

calculate F1 and F2. A swarm of particles work to get new positions

like above simultaneously.

The proposed MOPSO-based algorithm has a strong advantage

in solving the problem of multi-station site selection because the

position and flight velocity dimensions of each particle only need to

be expanded horizontally, as the number of stations to be calculated
Frontiers in Marine Science 05
increases without enlarging the computational complexity.

Compared to the traditional MOPSO algorithm, the improvement

of the proposed MOPSO algorithm includes extending the formulas

of adjusting particles’ position and velocity to support multiple

buoy stations and creating a strategy of adaptively tuning IW to

diversify the particle individuals.
4.1 Adjustment formulas of particles
position and velocity to support multiple
buoy stations

Extending the adjustment formulas of particles position and

velocity to accommodate multiple buoy stations is the crucial step

for solving the MOLMofOBS in the MOPSO heuristics framework.

Commonly, the population of particles move in a two-dimensional

feasible solution space, and each individual particle is supposed to

be a potential optimal solution. As the coordinate of each buoy

station is composed of a longitude as the x-axis and a latitude as the

y-axis, in the case of the n (n>=1) buoy stations location problem,

the position of the ith particle containing coordinates of n buoy

stations is extended to a 2*n-dimensional vector which is denoted

using formulas (7):

(xi,1(t), yi,1(t), xi,2(t), yi,2(t),…, xi,n(t), yi,n(t)) (7)

Similarly, the ith particle velocity vector is expressed using

formulas (8):

(vxi,1(t), v
y
i,1(t), v

x
i,2(t), v

y
i,2(t),…, vxi,n(t), v

y
i,n(t))   (8)

According to the principles of basic particle swarm

optimization, the formulas (9) and (10) are designed to update

the position and velocity of the particle in the x component, and the

formulas (11) and (12) are used to update the position and velocity

of the particle in the y component.

v xi,j(t + 1) = wvxi,j(t) + c1r1(P
x
i,j − xi,j(t)) + c2r2(P

x
gj(t) − xi,j(t)) (9)

xi,j(t + 1) = xi,j(t) + vxi,j(t + 1) (10)

v yi,j(t + 1) = wvyi,j(t) + c1r1(P
y
i,j − xi,j(t)) + c2r2(P

y
gj(t) − xi,j(t)) (11)

yi,j(t + 1) = yi,j(t) + vyi,j(t + 1) (12)

In which, w is the inertia weight factor (IW) which is varying

between 0 and 1. c1 and c2 are the acceleration coefficients, usually

c1=c2 = 2. r1 and r2 are random numbers varying between 0 and 1. t

is the current iteration number. The position of buoy j is expressed

in the reference frame located at particle i. The index j used for

buoys extends from j=1 to n and the index i used for particles

extends from i=1 to m. n is the number of buoy stations andm is the

number of particles. Xi,j(t) is the x component of the coordinate of

the buoy station j reflected in the position of the particle i in the tth

iteration. v  xi,j (t + 1) is the velocity of xi,j in the (t+1)th iteration  Px
i,j

is the x component of the individual best solution of the particle i

for the buoy station j. Px
g,j is the x component of the global best
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solution of the buoy station j. yi,j(t) is the y component of the

position coordinate of the buoy station j embodied in the position of

the particle i in the tth iteration. v  yi,j (t + 1) is the velocity of yi,j the

(t+1)th iteration. Py
i,j is the y component of the individual best

solution of the particle i for the buoy station j. Py
gj is the y

component of the global best solution of the buoy station j.

Formulas (7) to (12) in this part have been partially used in the

paper wrote by song et al (Song et al., 2021), but without these

necessary formulas, this paper would be difficult to understand.

Therefore, in order to make this paper more readable and

convenient for readers, these formulas are listed and illustrated

here again.
4.2 Design of a dynamic inertia
weight strategy

A dynamic inertia weight strategy (DIWS) is designed to adapt

spatial proximity and improve the convergence and solution

accuracy of optimization. The proposed DIWS focuses on

adaptively adjusting the value of IW (w) according to the

variation rate of the objective values to eliminate the potential

iteration stagnation brought by velocity linear attenuation and

increase the diversity of particles searching behavior. The specific

working mechanism of the DIWS is detailed as follows: on the one

hand, when the variation rate of objective values is high, the IW is

decreased to make the search step of the particles smaller so that

they fly at a lower velocity. As the particles fly at a lower velocity, the

number of particles in sparse regions will be increased to make the

distribution of particles denser. So, a smaller IW can intensify a

local search. On the other hand, when the variation rate of objective

values is low, the IW is increased to make the flight step of the

particles larger so that they fly at a higher velocity. As the particles

fly at a higher speed, it is much more possible for them to jump out

of the local search area and avoid search stagnation, so as to find

new near-optimal solutions. So, a larger IW can promote a

global search.

To realize the above principles, while comprehensively

analyzing the characteristics of the variation rate of objective

values, and comparing the variation characteristics of the classical

mathematical functions (e.g., exponential, logarithmic, and power

functions), we propose an empirical formula to adjust the value of

IW based on the exponential function of the natural constant (e).

The formula is shown as follows:

wt+1
j =

e∂ −1,   0 < ∂ < 1

e(
1

∂= )−1,   ∂ ≥ 1

(
(13)

∂ = ratetj
ratet−1j

.
(14)

ratetj = (15)

0:367 ≤ wt+1 ≤ 1 (14)
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where  w t+1
j is the IW factor of particle j in the (t+1)th run; e is

the natural constant; t is the current iteration number; k is the

number of the objective functions ;  fi((x
j
1, y

j
1,…)t) is the value of the

objective function fi of particle j in the tth iteration; ratetj is the

difference of all objective function values between two adjacent

iterations; wi is the preference weight, which is used to adjust

different objective values to make their magnitude the same; and ∂

is the variation rate of the objective values. The variation curve of

the IW value with the change rate of the objective values is shown

in Figure 2.
4.3 The workflow to solve the multi-
objective location problem of ocean
buoy station using the MOPSO
algorithm with DIWS

A workflow using the MOPSO algorithm with DIWS, named

DIWS-MOPSO, is designed in a heuristic framework to ensure the

MOLMofOBS can be solved more efficiently and reliably. The

workflow is illustrated in Figure 3 and the detailed steps are

described as follows.

Step 1. Prepare spatial data.
FIGURE 2

Variation curve of the inertia weight factor (w) according to the
change rate of the objective values ( ∂). It can be observed from

Figure 2 that w t+1
j increases with the increase of .. then 0 ≤ ∂ < 1. The

large ∂ indicates that the objective values calculated by two
adjacent iterations are close, and the diversity of particles is
decreased. Increasing w expands the local search to a much broader
space. When ∂ approaches 0, w is near 0.367. When ∂ ≥ 1. w
decreases with the increase of ∂. A bigger ∂ indicates a bigger
difference between the objective values calculated by two adjacent
iterations. Decreasing w increases the search intensity of particles.
When ∂ approaches either 0 and infinity, w is near 0.367. Therefore,
in theory, such a DIWS has the potential to increase the diversity of
particles and avoid local convergence.
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The spatial data required for the multi-objective location

calculation of ocean buoy stations described in this paper includes

the following:

◼ A list of existing buoy stations, in the format of

point geometry.

◼ A target sea polygon, denoted as S_Polygon_1, providing

basic marine geographic information such as coastline, peninsula,

islands, and isobar of 100 meters depth.

◼ A spatial constraint polygon, denoted as S_Polygon_2, taken

as the feasible solution space to limit the position of particles to

prevent them from crossing the boundary.

◼ ETOPO1 water depth data (Amante and Eakins, 2009) with a

spatial resolution of 1 arc minute, used to provide the water depth of

any point in the feasible solution space.

Step 2. Initialize the position and velocity of particles.

Firstly, the minimum velocity and the maximum velocity are set

as -0.05 and -0.05. For each particle, the absolute value of the

difference between the maximum velocity and the minimum

velocity is multiplied by a random number between 0 and 1, and

added to the minimum speed to produce a final computational

result, which is set as the initial velocity of a particle. Then, the

positions of all individuals are initialized in the particle swarm by

utilizing the center point of S_Polygon_2 as the reference point to

radiate around at random distances that are not out of

S_Polygon_2. Finally, the initial value of IW is set as 1.

Step 3. Check the position of the particle swarm.
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For each particle, we check whether the position of each point is

outside of S_Polygon_2. If it is, it is moved to a position with

specific offsets of the center point on both the x- and y-axes, where

the x or y offset is set to 2/5 of the x or y distance between the point

that is on the boundary of S_Polygon_2 and closest to the out-of-

boundary point in the particle’s position, and the center point of

S_Polygon_2. If the water depth at the station point is less than 5

meters, a point with a water depth of more than 5 meters and 1

nautical mile away will be searched as a substitute.

Step 4. Calculate the fitness values.

For each particle, the coordinates of n buoy sites are parsed

from the position vector of each particle and combined with the

existing buoy sites to form a complete set of buoy sites. A Voronio

diagram of all buoy stations is generated by the algorithms

described in Section 3.2, and the 1-oVvN of each station is

calculated. For all station sites with a 1-oVv neighborhood

relationship, the fitness values are calculated using equations (3)

and (4). The calculated fitness value is a two-tuple group, denoted as

(f1,f2).

Step 5. Update the individual optimal solution.

For each particle, according to the Pareto dominance concepts,

we update its individual optimal solution as follows. If f1 and f2 in

the new solution are both superior to those in the old solution, that

is, the new solution dominates the old solution, the new solution is

set as the individual optimal solution. If the new solution is

dominated by the old one, the new solution is discarded. If there

is no dominant relationship between the new solution and the old

one, then any solution is randomly selected as the individual

optimal solution.

Step 6. Update the external Pareto elite archive.

An external elite archive is established to store Pareto non-

inferior solutions. The external Pareto elite archive is updated as

follows: first, the Pareto boundary of the current particle swarm is

calculated, and the Pareto boundary and its corresponding particles

are added to the elite archives. Second, an additional filter in the

elite archive is applied according to the dominant relationship to

remove all the dominated particles. Third, we determine whether

the elite archive set exceeds the specified size. If it does, we use the

crowding measurement method (Moubayed et al., 2014) to remove

those particles with low crowding distance.

Step 7. Update the global optimal solution.

According to the crowding distance method, the particle and its

fitness with the lowest crowding density is selected as the global

best solution.

Step 8. Update the speed and position of particles.

For each particle, if the current run number is more than 4, the

dynamic IW is calculated according to the formulas in Section 4.2.

Otherwise, the IW value is fixed. The formulas in Section 4.1 are

used to update the position and velocity before running to the

next iteration.

Step 9. Check if the procedure reaches the last run.

If the last run has been reached, the algorithm outputs the

Pareto elite archive for storage and visualization, and the iteration is

quit. Otherwise, the algorithm goes to the step 3.

The differences between the calculation process in the DIWS-

MOPSO heuristic framework and the traditional MOPSO include
FIGURE 3

The workflow of the customized heuristic approach based on the
MOPSO algorithm to solve MOLMofOBS.
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the following: a) In step 2, the particle swarm initialization

assignment method with the spatial center point as the reference

point is used. b) Polygon geometric elements consisting of

coastlines, isobaths, and islands are used as feasible solution

spaces to constrain particles to prevent them crossing the spatial

boundary in step 3. c) The IW is dynamically calculated in Step 10.

All these measures effectively ensure that the proposed heuristic

framework has good convergence, and that the obtained non-

inferior solutions have good accuracy.
5 Experiments

A series of experiments is conducted to verify the effectiveness

of the MOLMofOBS and the performance of the DIWS-MOPSO.

Meanwhile, the convergence of the algorithm and the diversity of

the non-inferior solutions are compared. Bohai Bay of China is

selected as the study area, and the region delineated by the red

polygon in Figure 4 is set as the feasible solution space. Although

the two objectives F1 and F2 belong to different dimensions, they

are compared separately without cross comparison, so no

normalization processing is needed in the following experiments.
5.1 Performance analysis of DIWS-MOPSO
for single buoy station location problem

In this section, a set of experiments is conducted by computing

the single buoy station location problem using both the MOPSO

algorithm with the fixed IW (IW-MOPSO) and the DIWS-MOPSO

algorithm to prove the correctness and efficiency of these two

heuristic algorithms and compare their performance. The

performance evaluation indexes adopted in this paper include

the following:

(1) Convergence evaluation index

Generation Distance (GD) (Menchaca-Mendez and Coello,

2015), representing the distance between the obtained Pareto
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non-inferior solutions and the real Pareto frontier, is used to

measure convergence, where a smaller GD value indicates that

the calculation result is closer to the real Pareto frontier. The

formula used to calculate GD value is as follows:

GD =
1
n
(on

i=1d
p
i )

1
p= , (16)

where n is the number of Pareto non-inferior solutions, p is the

number of objectives, and di is the Euclidean distance between the

ith Pareto non-inferior solution and the nearest solution of the real

Pareto frontier in the objective space.

(2) Distribution uniformity evaluation index

The distribution uniformity of Pareto non-inferior solutions on

the real Pareto frontier is measured by space metric (SD), where a

smaller SD indicates a more uniform distribution of Pareto non-

inferior solutions. The formula used to calculate SD is as follows:

SD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n − 1o
n
i (�d − di)

2

r
(17)

where di = min
i
(jf i1(x) − f j1(x)j + jf i2(x) − f j2(x)j) (i, j=1,2,…, n,

i≠j). n is the number of Pareto non-inferior solutions; and �d is

the mean of di.

In these experiments, the particle size is set to 100, the archive

set size is set to 200, the initial search step is 0.05, and the number of

iterations varies in terms of 100, 200, 400, 600, 800, and 1000.

Experiment results are shown in Figures 5–7. Figure 5 shows a

comparison of the real Pareto frontier obtained and Pareto non-

inferior solutions calculated by IW-MOPSO and DIWS-MOPSO

with 1000 iterations. It can be observed from Figure 5 that most of

the Pareto non-inferior solutions (green triangles in Figure 5)

obtained by both IW-MOPSO and DIWS-MOPSO are within the

objective space formed by the real Pareto frontier (red diamonds in

Figure 5), which indicates that the Pareto non-inferior solutions are

all efficient solutions. In another aspect, the principal space of

solutions obtained by IW-MOPSO is [16694, 52525] in the F1 term

and [8.39E+09, 9.02E+09] in the F2 term, as shown in the lower-left

area of Figure 5A, and the principal space of solutions obtained by

DIWS-MOPSO is [13863, 54909] for F1 and [8.37E+09, 9.12E+09]

for F2, as shown in the lower-left area of Figure 5B. These results

indicate that the solutions space of DIWS-MOPSO is much wider

than that of IW-MOPSO, which means the evolution of particle

swarm in the DIWS-MOPSO algorithm is more diverse than that in

the IW-MOPSO algorithm.

Figure 6 shows a convergence comparison between IW-

MOPSO and DIWS-MOPSO using GD values, where the GD

value of the DIWS-MOPSO algorithm is smaller than that of IW-

MOPSO for each group of data with the same number of iterations.

Furthermore, as the number of iterations increases, the GD value of

IW-MOPSO fluctuates greatly. However, with the increase of the

number of iterations, the GD value of DIWS-MOPSO gradually

decreases, showing a stable trend on the 200th iteration, and finally

becomes stable between 2.6E+06 and 3.2E+06. These results

indicate that the stability of the DIWS-MOPSO algorithm is

better, and the corresponding solutions are more concentrated.

On the other hand, it can be observed from Figure 7 that the SD

value of DIWS-MOPSO is smaller than that of IW-MOPSO as the
FIGURE 4

Study area and feasible solution space (red triangles are the existing
buoy stations and the red polygon area is the feasible solution space).
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number of iterations varies. Therefore, the distribution of Pareto

non-inferior solutions obtained by DIWS-MOPSO is more uniform

in the objectives space than that obtained by IW-MOPSO.

Based on the above results, MOPSO-based heuristic algorithms

are effective in solving the single buoy station location problem, and

the obtained Pareto non-inferior solutions can approximate the real

Pareto frontier. Furthermore, the proposed DIWS-MOPSO

algorithm has better stability and convergence than the IW-

MOPSO algorithm, and the non-inferior solutions obtained by

DIWS-MOPSO are more diverse and more evenly distributed

than that obtained by IW-MOPSO in objective spaces.
5.2 Experiments solving multiple buoy
stations location problem

Experiments are conducted on the location problem for 2, 3, 4,

5, and 6 buoy stations. To more closely observe the convergence

effect of the algorithms, the particle size is set to 10, the number of

iterations is set to 10, 20, 40, 60, 80, 100, 200, 400, or 600, the initial

search step (i.e., particle velocity) is set to 0.05 arc-degrees, and the

speed range is [−0.05, 0.05]. In fact, it is impossible to calculate the

real Pareto frontier of the multiple buoy station location problem in

a limited time as it is an NP problem, and, as such, it can rarely

determine the optimal GD values. Instead, the layout pattern, which
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is referred to as a description of the spatial features distribution in

terms of being random, clustered, and dispersed, is adopted to

measure the convergence of the algorithms in the performance

comparison. In our application, the pattern that is more dispersed,

more uniform in spatial distribution, and more balanced in distance

between buoy stations is considered to be an acceptable and good

pattern, which is used as a standard to evaluate the advantages and

disadvantages of the algorithm calculation results. Here, we visually

judge the patterns qualitatively.

The results of the experiments are given in Table 1, including

good patterns obtained by the IW-MOPSO algorithm and the

DIWS-MOPSO algorithm as the number of buoy station changes

and the number of iterations required to obtain an acceptable and

good pattern. An acceptable and good pattern is a spatial layout in

which the value of F1 is biggest and the value of F2 is as smallest in a

specific scenarios of buoy deployments. It can be observed that as

the number of buoy stations (denoted by n) increase, the number of

iterations required to obtain a good pattern increases continuously.

When n=2, only 10 iterations are needed to generate a good pattern.

However, when n=6, several hundred iterations are needed for a

good pattern. When n≥4, as the number of buoys increases, the

number of iterations required for DIWS-MOPSO to converge to a

good pattern becomes much less than that of IW-MOPSO.

Moreover, the gap between these two algorithm also increases as

n increases. For example, when n=5, the number of iterations differs

by only 20 between the two methods, whereas when n=6, the IW-

MOPSO method converges to a fine pattern after 600 iterations, but

the DIWS-MOPSO method requires only 200 iterations (a

difference of 400 iterations). The number of iterations represents

the convergence of the algorithm, where the fewer the number of

iterations, the faster the convergence. Therefore, it is proved by the

above experiments that the convergence of the DIWS-MOPSO

algorithm is better than that of the IW-MOPSO algorithm, and

this advantage becomes more obvious as n increases in the situation

of multiple buoy stations location selection. In addition, with the

same number of iterations, the non-inferior solution set obtained by

DIWS-MOPSO is more diverse than that of IW-MOPSO.

Therefore, after involving the DIWS in the MOPSO algorithm, it

becomes much easier to obtain the new Pareto non-inferior

solutions, and the diversity of the particle swarm is greatly

improved as well.
A B

FIGURE 5

The scatter diagrams of Pareto non-inferior solutions obtained by IW-MOPSO and DIWS-MOPSO with 1000 runs for single buoy station location
selection. (A) Pareto non-inferior solutions of IW-MOPSO (B) Pareto non-inferior solutions of DIWS-MOPSO.
FIGURE 6

Convergence comparison of IW-MOPSO and DIWS-MOPSO
algorithms by GD values.
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From the experiments of the multi-buoy station location

problem, we deduce that the optimal solution selection method

based on the spatial pattern has important practical value. An

MOPSO algorithm based on the swarm intelligence mechanism has

the trait of searching for the extremum of the objective functions.

However, if the extreme value of the objective function is pursued

blindly, it is easy for the search to fall into the extreme region. For

example, in the minimum value area of F2, the value of F1 is too

large, and in the minimum value area of F1, the value of F2 is too

large—both of which show solutions with a poor spatial pattern,

which is reflected in the fact that some stations are far away from

each other, and some stations are especially close and not scattered

enough. In practice, neither of these results is what the decision-

makers want. Therefore, the pattern-preferred approach provides

an effective method for decision-makers to filter non-

inferior solutions.
6 An ocean buoy location real-time
planning portal

By integrating the ocean buoy location model, the SNM, and

two kinds of MOPSO algorithms (i.e., IW-MOPSO and DIWS-

MOPSO) , an interac t ive porta l i s deve loped in the

Cyberinfrastructure (CI) framework, which is a promise solution

to enable spatial computing modules in web (Li et al., 2015;

Miaomiao et al., 2016; Li et al., 2016a; Li et al., 2016b), to provide

decision-making services for online ocean buoy station location

real-time planning. The Architecture of the CI portal includes the

data layer, the computing layer, and the presentation layer from

bottom to top. The coordinates of buoy stations, electronic

navigation charts and water depth data are stored using the

PostgreSQL database in the data layer. The ocean buoy location

model, the SNM, and the MOPSO-based algorithms including IW-

MOPSO and DIWS-MOPSO are integrated in the computing layer

using Python programming platform. Finally, the target sea area,

Voronoi polygons and position points of buoy stations are

visualized in the presentation layer using web programming

technologies. This portal presents a unique Web-based spatial
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from other existing portals.

In the CI portal, the target sea area is selected by drawing a

polygon on the online map, and the operation parameters (e.g., the

particle size, buoy station count, the number of iterations, and the

initial search step) can be tuned on demand and adjusted in real

time. The arbitrary shape of the sea area is supported as the

calculation area, and the calculation results are displayed in real

time and are able to be operated interactively. Furthermore, both of

the algorithms (IW-MOPSO and DIWS-MOPSO) are provided for

online calculation, and the computational results can be compared

visually for the selection of the optimal planning references. In

addition, the portal also provides auxiliary tools for measuring

distance and calculating area. Figure 7 shows the interface of the CI

portal and demonstrates the calculation results of the three buoy

stations. The red polygon is the target area drawn interactively, the

small blue icons are the existing buoy stations, the green dots stand

for the calculated buoy placement positions, and the blue lines are

the boundaries of the Voronoi polygons. In Figure 8, four sets of

calculation results were obtained and listed in the tree control on

the left side of the interface. Ten particles were used to iterate 10

times and 100 times by the IW-MOPSO and DIWS-MOPSO

algorithms, respectively. Each result set also contains several

solutions, which can be visualized on the map to show a spatial

pattern. Through this interactive and visualized portal, decision-

makers can grasp the buoy distribution from a global perspective

and select a layout scheme with a fine pattern according to

actual needs.
7 Conclusion

This research reports the procedures and techniques for spatial

optimization modeling of multi-objective locations of ocean buoy

stations. Structuring the issue of ocean buoy station location

selection as an explicit spatial optimization problem, as well as

building an efficient heuristic algorithm to solve the problem and

present computational results, effectively supports decision-making

in ocean buoy observation network layout planning. In this paper,

the MOLMofOBS is established by clear mathematical formulas

based on Tobler’s first law of geography. A Voronoi diagram is

adopted to realize the spatial division of the target sea area for buoy

observing, and an SNM is established to implement the spatial

proximity estimation by measuring the 1-oVvN, ensuring the

computability of the buoy station location model in practical

applications. On the basis of sufficient investigation, comparative

analysis, and testing, the traditional multi-objective PSO algorithm

is improved by introducing a dynamic IW factor, and a new

heuristic algorithm named DIWS-MOPSO is established.

In the DIWS-MOPSO algorithm, the dynamic formula of IW

factor is designed, and the IW factor of each particle is calculated in

real time according to the change rate of objective values in each

run. The experimental results have proved that the DIWS-MOPSO

algorithm has a great improvement in performance over IW-
FIGURE 7

SD values comparison of IW-MOPSO and DIWS-MOPSO.
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TABLE 1 Comparison of selection results of multi-buoy stations location.

Number of buoy
stations

IW-MOPSO DIWS-MOPSO

a fine pattern T1 a fine pattern T1

2 10 10

3 20 20

4 60 20

5 80 60

6 600 200
F
rontiers in Marine
 Science 11
 fro
1. T is the number of iterations required for a fine pattern.
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MOPSO. When calculating the buoy placement position, the

DIWS-MOPSO algorithm not only effectively avoids local search

stagnation, but also improves the diversity of non-inferior solutions.

A spatial pattern is introduced to filter non-inferior solutions, and

qualitatively judging the dispersion and aggregation of the ocean

buoy layout pattern provides supplementary reference for decision-

makers. Finally, we successfully integrated the proposed models and

algorithms into an online analysis portal in the CI environment for

real-time ocean buoy location planning. This portal provides a

gateway and testbed where the general public, decision-makers, and

researchers can select a target sea area by drawing a polygon directly

on the map, change parameters on demand, and view

computational buoy station locations immediately. To the best of

our knowledge, this is the first time such spatial optimization

modeling techniques have been developed and integrated into an

interactive portal for ocean buoy location planning. This work has

important significance for the sustainable development of marine

buoy monitoring networks.

In the future, we will extend and deepen our research in the

following aspects: first, we will further refine the site selection

model. The influence of the spatial distribution of large-,

medium-, and small-scale ocean phenomena such as water mass,

cold/warm current, and ocean peak on the position of ocean buoy

placement will be taken into account to restrict the spatial influence

sphere of the buoy station in its corresponding Voronoi polygon,

and a finer buoy spatial sphere model will be designed. Second, we

will investigate the method of generating distance attenuation

coefficients to calculate the effective monitoring coverage area of

ocean buoy stations, aiming to accurately evaluate the ocean buoy

monitoring density. Third, we will explore the potential of other

heuristic algorithms (e.g., genetic algorithm, simulated annealing

algorithm, and tabu algorithm) in solving the location problem of

ocean buoy stations, as well as study the hybrid heuristic algorithm

framework to improve the accuracy and spatial-temporal efficiency

of calculation. Lastly, we will plan to promote the use of the multi-

objective location modeling techniques of ocean buoy stations
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planning in government departments and further improve it

according to feedback provided. Spatial optimization modeling of

multi-objective location of ocean buoy stations is a complex model,

and will take much efforts for others to develop it to design buoy

monitoring strategies. It’s also our plan to open source the modeling

code to benefit to the broad research communities and GeoAI (Hsu

et al., 2021) technologies will be explored to speedup the

computation of location selection of buoy deployments.
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