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Trace element composition of
modern planktic foraminifera
from an oxygen minimum zone:
Potential proxies for an
enigmatic environment
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Jennifer Fehrenbacher2 and Karen Wishner3

1Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University,
Raleigh, NC, United States, 2College of Earth, Ocean, and Atmospheric Sciences, Oregon State
University, Corvallis, OR, United States, 3Graduate School of Oceanography, University of Rhode
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Oxygen limited marine environments, such as oxygen minimum zones, are of

profound importance for global nutrient cycling and vertical habitat availability.

While it is understood that the extent and intensity of oxygen minimum zones are

responsive to climate, the limited suite of viable proxies for low oxygen pelagic

environments continues to pose a real barrier for paleoclimate interpretations. Here

we investigate the proxy potential of an array of trace element (Mg, Mn, Zn, and Sr) to

Ca ratios from the shells of Globorotaloides hexagonus, a planktic foraminifer

endemic to tropical through temperate oxygen minimum zones. A species-specific

relationship between Mg/Ca and temperature is proposed for quantitative

reconstruction of oxygen minimum zone paleotemperatures. Both Mn/Ca and Zn/

Ca ratios vary with oxygen concentration and could be useful for reconstructing G.

hexagonus habitat where the primary signal can be d\istinguished from diagenetic

overprinting. Finally, a robust correlation between Sr/Ca ratios and dissolved oxygen

demonstrates a role for Sr as an indicator of oxygen minimum zone intensity,

potentially via foraminiferal growth rate. The analysis of these relatively conventional

traceelement ratios in theshellsofanoxygenminimumzonespecieshas tremendous

potential to facilitate multiproxy reconstructions from this enigmatic environment.

KEYWORDS

foraminifera, oxygen minimum zone (OMZ), oxygen proxy, trace element, calcite
Introduction

Marine deoxygenation is one consequence of ongoing global change and is likely to be

felt most acutely in the expansion of already low oxygen environments in the coastal and

open ocean (Keeling et al., 2009; Levin, 2018; Schmidtko et al., 2017; Breitburg et al., 2018).

Expansion of marine hypoxia and anoxia alter the global cycling of key nutrients and redox
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sensitive metals (Gruber, 2008; DeVries et al., 2012), and drive

ecological shifts in both benthic and pelagic communities (Levin,

2003; Stramma et al., 2010; Stramma et al., 2012; Horak et al., 2016).

Despite growing recognition of the importance of low oxygen

environments and the ramifications of their expansion, the short

duration (decades at most) of ocean oxygen timeseries

fundamentally limits the timescales at which oxygen and

associated environmental variability can be studied.

Oxygen minimum zones (OMZs) are subsurface (~100-2000 m

deep), generally open ocean features, where dissolved oxygen is low

enough to impact biological and chemical cycles. OMZs have

changed in step with global climate in the past, especially during

periods of rapid warming such as deglaciations (i.e., van Geen et al.,

2003; Nameroff et al., 2004; Martinez and Robinson, 2010; Moffitt

et al., 2015). However, models still fall short of reconstructing recent

deoxygenation, and a greater understanding of long-term drivers of

deoxygenation is required to improve future projections (Oschlies

et al., 2018). Moreover, while marine deoxygenation is ongoing in

the modern ocean (Schmidtko et al., 2017), some oxygen variability

may be attributable to decadal scale variability rather than long-term

climate change (Deutsch et al., 2014). With a better pre-modern

baseline, such cyclical versus secular trends would be easier to tease

apart. Thus, there is a particular need to develop and apply

additional environmental and oxygenation proxies within the OMZ.

Great strides have been made toward developing new paleo-

oxygenation proxies to constrain past OMZ dynamics. One notable

example is the refinement and application of the I/Ca proxy for

dissolved oxygen using shells of planktic foraminifera, a group of

calcifying protists (Zhou et al., 2014; Lu et al., 2016; Hoogakker

et al., 2018; Lu et al., 2020). Other trace element to calcium (TE/Ca)

ratios in the shells of benthic and planktic foraminifera also have

tremendous potential for recording the physical and chemical

environment of the OMZ. For example, Mn/Ca ratios in benthic

foraminifera are a promising proxy for bottom water hypoxia

(Groeneveld and Filipsson, 2013; McKay et al., 2015; Brinkmann

et al., 2021).

We explore the proxy potential of several conventional trace

elements within the shells of the planktic foraminifer

Globorotaloides hexagonus. This species has been widely

associated with low oxygen waters (Fairbanks et al., 1982; Ortiz

et al., 1995; Birch et al., 2013; Rippert et al., 2016), and was recently

recovered live from discrete depth plankton tows through the

Eastern Tropical North Pacific (ETNP) OMZ (Davis et al., 2021).

Furthermore, G. hexagonus has a rich fossil history, with shells

occurring in sediments dating back 14 Mya (Kennett and

Srinivasan, 1983), making it an ideal candidate for reconstructing

paleo-OMZs. We explore potential controls on Mg/Ca, Mn/Ca, Zn/

Ca, and Sr/Ca ratios, which are routinely measured in calcite and

are resolvable in foraminifera shells with the use of standard

Inductively Couple Plasma Mass Spectrometry (ICP-MS), and in

some cases even Inductively Coupled Plasma Optical Emission

Spectrometry, after the use of defined cleaning protocols (Barker

et al., 2003; Marr et al., 2013a; Fritz-Endres and Fehrenbacher,

2021). As a result, these analyses are accessible to a wide range of
Frontiers in Marine Science 02
researchers and could prove especially valuable for reconstructing

past OMZ environments. Moreover, as TE/Ca in calcite may reflect

diverse drivers ranging from temperature to oxygenation to source

water (see Katz et al., 2010 for a review) and can be analyzed

simultaneously, investigating multiple TE/Ca ratios could make

multiproxy and multivariate records more accessible. Here we use

Laser Ablation ICP-MS for two reasons. The first is that G.

hexagonus shells are both rare and light in many sediments

(Davis et al., 2021, Davis et al., 2023), such that obtaining a

sufficient sample for solution measurements may not always be

possible. The second is anticipation of the potential need to use

high-resolution intra-shell analyses to analytically distinguish

between primary and altered calcite.
Methods

Plankton tows and hydrography

All foraminiferal shells used in this study were collected by an

opening-closing zooplankton net system, the MOCNESS (Multiple

Opening/Closing Net and Environmental Sensing System; Wiebe

et al., 1985), taken onboard the R/V Sikuliaq in January-February of

2017 in the ETNP (21° N, 117° W). Net tows consisted of both

depth-stratified vertical profiles from the surface to 1000 m depth in

25-100 m intervals, as well as horizontal sequences of tows through

low oxygen features (8 or 9 nets per tow, 222µm mesh) (Wishner

et al., 2018, Wishner et al., 2020, Wishner et al., 2021). A suite of

environmental data was collected by MOCNESS sensors during

each tow, including depth, temperature, salinity, dissolved oxygen,

in situ fluorescence, and volume filtered through each net

(Figure 1). Each net encompassed a range of environmental data,

since an individual net was open for about 10 – 20 minutes and

sampled a depth stratum (in the case of vertical tows) from 25 to

100 m thick. Since it is unknown exactly where within the sampled

stratum a foraminifer was collected, the environmental data range

for the specific net from which an individual was analyzed is shown

by the horizontal lines in the following figures. Samples from each

net were preserved shipboard in 4% sodium-borate buffered

formalin and seawater and then stored in the lab until

foraminifera were removed in 2017-2018. All foraminifera were

picked from tow material as described by Davis et al. (2021). The

shells of live collected (with cytoplasm present) G. hexagonus were

isolated from tow material. Because planktic foraminifera are not

believed to be highly mobile, it was assumed that much or all of the

adult whorl, calcified within the depth and environmental range

sampled by the net in which it was captured. We stress that the use

of the final or “F” chamber here is not completely analogous to its

use in fossil material. In living foraminifera, the final chamber refers

to the most recently calcified chamber at the time of capture, and

not necessarily the final chamber to calcify prior to reproduction

and death. As the relatively large mesh size (222 mm) used excludes

juveniles (measured foraminifera ranged from 297 to 631 mm in

length), all individuals are inferred to be adults.
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Trace metal analyses

Preparation for trace elemental analyses involved an oxidative

cleaning step to remove residual organic matter from shells,

following that described by (Barker et al., 2003) with some

modification. Briefly, shells were bathed individually in a 1:1

mixture of NaOH and H2O2 for 10 minutes at 60°C and then

triple rinsed in deionized water to remove reagent. While

foraminiferal trace element cleaning frequently includes

sonication, this step was excluded due to the fragility of G.

hexagonus shells and because removal of clays and other infilling

from tow collected specimens is unnecessary. Shells were kept

whole to facilitate laser ablation ICP-MS and because recent

findings demonstrate that fragmentation may artificially decrease

some trace element ratios in shells (Fritz-Endres and Fehrenbacher,

2021). Shells were mounted on carbon conductive tape on a

glass slide.

Shells were analyzed by a laser ablation system (Photon

Machines 193 nm ArF laser with an ANU HelEx dual-volume

laser ablation cell) coupled to an iCAP quadrupole ICP-MS in

the College of Earth, Ocean, and Atmospheric Sciences at Oregon

State University following previously established protocols

(Fehrenbacher et al., 2015). Shells were ablated using a 65 mm
spot size, a 4 Hz rep rate, and a fluence of 0.85 J cm-2. Analytes

presented here include 25Mg, 44Ca, 55Mn, 66Zn, and 88Sr, with

ablations of NIST 610 and NIST 612 run between every ~10

samples. Profiles include the data from 1 s after the start of

ablation to when the laser broke through the chamber wall. Data

from laser ablation analyses were processed using the LATools
Frontiers in Marine Science 03
Software (Branson et al., 2019), and are presented as mean TE/Ca

ratios either for a chamber (averaged if more than one ablation was

possible within a chamber), or for a shell (presented as an average of

every chamber ablated) (Supplementary Data). Ablation times

ranged from 3 to 79 seconds, and ablation profiles less than 5

seconds (8 profiles) were excluded from these analyses.

Reproducibility was assessed by the mean difference in duplicate

ablations through the same chambers. The mean difference between

ablations was 0.27 mmol/mol for Mg/Ca, 0.03 mmol/mol for Sr/Ca,

5.15 mmol/mol for Mn/Ca, and 90.86 mmol/mol for Zn/Ca.
Statistics

All statistics were carried out in R. In the case of regression

analyses, non-linear least squares regressions were used and are

reported here along with standard error. All correlations were

carried out using a Pearson method, with a Holm’s correction for

multiple hypothesis testing and both correlation coefficient and

p-value reported here.
Results

Laser ablation ICP-MS profiles were resolved from 184

individual foraminifera shells spanning 20 different nets over a

range of depth, oxygen, and temperature conditions within the

ETNP OMZ (Figure 1).
Mg/Ca vs. oxygen and temperature

The average Mg/Ca in individual G. hexagonus shells ranged

from 1.02 to 5.85 mmol/mol. Mg/Ca ratios are positively correlated

with both the average values of dissolved oxygen (corr = 0.31,

p< 0.001) and temperature (corr = 0.31, p< 0.001) recorded in the

corresponding nets (Figure S1). The latter ranged from 6.1 to 22.0°

C. Due to the bias in vertical distribution ofG. hexagonus, with most

individuals living well below the thermocline (Davis et al., 2021),

only three shells were analyzed from the warmest temperature.

Moreover, because this net integrated across the thermocline, it is

possible that individuals collected were living preferentially at the

low end of that temperature range (deeper), rather than the mean.

Despite this potential bias, the mean temperature, is < 2°C greater

than the minimum in this sample, and thus is unlikely to be a major

source of uncertainty in developing a quantitative relationship.

Regressing individual G. hexagonus shell data against the mean

temperature associated with each net and adopting an exponential fit,

as has been found most suitable in other species (Lea et al., 1999;

Mashiotta et al., 1999; Elderfield and Ganssen, 2000; Dekens et al.,

2002; Anand et al., 2003; McConnell and Thunell, 2005; Cléroux et al.,

2008; Sadekov et al., 2009; Livsey et al., 2020), results in a relationship

between temperature and Mg/Ca that can be described as:

Mg=Ca = 1:44( ± 0:1) ∗ e(0:04±0:01)(T)
FIGURE 1

Temperature, salinity, and dissolved oxygen relative to depth of all
samples from which G. hexagonus was picked. Points represent the
mean, and horizontal bars extend to the minimum and maximum
value measured in each net since it is not known where within a
particular net an individual foraminiferan was collected. Data
represent results from nine tows. Thus hydrographic variables taken
together represent an aggregate rather than an instantaneous profile
of conditions within the water column.
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(Equation 1.; Figure 2)

with T as temperature in degrees Celsius, reported with

standard error.

The same analysis can be run using Mg/Ca averages from each

net, producing a regression within error of Equation 1 (Mg/Ca =

1.40 (+- 0.1) * e(0.04 +- 0.01)(T)). Given the paucity of datapoints at the

warmest temperature, we also regressed individual shell Mg/Ca

against temperature with results from the warmest net removed,

resulting in an equation again within error of Equation 1 ((Mg/Ca =

1.78 (+- 0.3) * e(0.02 +- 0.02)(T))) and virtually indistinguishable at

lower temperatures (Figure 2). We note that over a small

temperature range the relationship could be equally well

described by a linear relationship. Given the similarity between

the three approaches, we selected the first, which is significant

despite very high inter-individual variability, considers all available

data, and retains an exponential relationship as has been found for

other species.
Mn/Ca, Zn/Ca, and Sr/Ca

Ratios of Mn/Ca ranged between 3.79 and 125.75 mmol/mol and

Zn/Ca ranged between 32 and 1708.32 mmol/mol across dissolved

oxygen values of 0.03 to 4.71 ml/L. The range of Sr/Ca values in

individual shells was 1.04-1.47 mmol/mol. All three TE/Ca ratios

were found to have highly significant correlations with in situ

temperature and the dissolved oxygen levels at which they were

recovered despite a large degree of inter-individual variability.

Negative correlations are present for Mn/Ca (-0.33, p-value< 0.001)

and Zn/Ca (-0.21, p-value = 0.005) (Figures 3, S2, S3). A correlation

coefficient of 0.50 was found for individual shell Sr/Ca values and

dissolved oxygen (p-value< 0.001). Removal of the highest oxygen

value does not meaningfully impact these correlations (-0.31, -0.13,
Frontiers in Marine Science 04
and 0.47, respectively) suggesting that these trends are robust to

potential bias in the shallowest sample (Figure S2).

Despite, high interindividual variability, the relationship between

Mn/Ca andO2 can be described by either a linear regression (r
2 = 0.10,

p-value< 0.001) or an exponential curve (r2 = 0.12, p-value< 0.001).

Similar regressions for Zn/Ca are significant (p-values 0f 0.004 and

0.002 respectively), but with very low r2 values (0.04 and 0.05). In

contrast the relationship between Sr/Ca and O2 can be described by

either a linear regression (r2 = 0.24, p-value< 0.001) or a logarithmic

curve (r2 = 0.46, p-value< 0.001) (Figure 3).
Ontogenetic trends

The use of laser ablation to analyze individual chambers allows

for a comparison of chamber-to-chamber differences in TE/Ca, or

trends in trace element incorporation through ontogeny. A

Kruskal-Wallis test demonstrates that each of the targeted

elemental ratios change through ontogeny (p<0.001 in all cases).

Significantly lower Mn/Ca, Zn/Ca, and Mg/Ca ratios are observed

in younger relative to older chambers. By contrast, higher Sr/Ca and

ratios are observed in younger chambers (Figure 4).
Discussion

Calibration of the Mg/Ca
paleothermometer for G. hexagonus

The variables of interest (temperature, oxygenation, depth) are

highly colinear in this dataset, with all TE/Ca displaying robust

correlations with multiple environmental drivers (Figure S1).

Therefore, the following discussion will center around
FIGURE 2

Mg/Ca values of individual shells (open black points), and net means (closed gray/red points) relative to in situ temperature at collection. Points are
plotted against the mean temperature from the net in which the foraminifers were collected, and horizontal bars show the minimum to maximum
temperature measured in that net. Exponential fit based on individual shell data is shown as a bright blue line, and in black for net means;
exponential fit exclusive of the highest temperature is shown in turquise. The mean difference between duplicate ablations of the same chamber is
show as a bar in the bottom right.
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connections between environmental parameters and elemental

ratios as supported by previous work rather than attempt to

statistically deconvolve potential drivers. Given the rich literature

on species-specific sensitivity of foraminiferal shells to calcification

temperature (e.g., Nürnberg et al., 1996; Lea et al., 1999; Mashiotta

et al., 1999; Elderfield and Ganssen, 2000; Lea et al., 2002; Anand

et al., 2003), we present Mg/Ca results in the context of calcification

temperature. However, in at least some species, salinity (Lea et al.,

1999; Kısakürek et al., 2008; Dueñas-Bohórquez et al., 2009;

Mathien-Blard and Bassinot, 2009; Hönisch et al., 2013; Gray

et al., 2018), and carbonate chemistry (Lea et al., 1999; Russell

et al., 2004; Gray et al., 2018; Gray and Evans, 2019) have secondary

influences on shell Mg/Ca. Here, salinity can be disregarded as a

driver due to the narrow range of salinity across these samples

(34.0-34.6), but the same assumption cannot be made about

carbonate chemistry. While direct measurements of carbonate

chemistry are not available, we would expect pH to be highly

correlated with dissolved oxygen (Paulmier et al., 2011; Figure S2)

and therefore with temperature (Figure 1). Based on work in other

planktic species, Mg/Ca would be expected to increase as pH or

carbonate ion ([CO3
2-]) availability decreases (Russell et al., 2004;

Allen et al., 2016; Evans et al., 2016; Gray and Evans, 2019). A

potential pH/[CO3
2-] effect would then act counter to temperature,

increasing Mg incorporation at depth. Thus, it is possible that the

sensitivity of Mg/Ca to temperature alone in G. hexagonus is higher

than predicted by the empirical relationship derived here. This

would need to be tested through future work in additional locations

or laboratory culture. One further caveat is the degree of

interindividual variability observed. Interindividual variability has
Frontiers in Marine Science 05
been observed in culture (Davis et al., 2017), natural living

populations (Davis et al., 2020; Livsey et al., 2020; Jonkers et al.,

2022), and fossil assemblages (e.g., Groeneveld et al., 2019; Schmitt

et al., 2019) of other species of planktic foraminifera. Thus,

temperature is an important but not sole driver of Mg/Ca, and

single shell Mg/Ca may not produce reliable temperature

reconstructions. This is not an issue confined to G. hexagonus.

While population-level Mg/Ca bears a clear relationship with

temperature, the data presented here highlights uncertainties

around the use of individual foraminiferal analysis Mg/Ca as a

direct corollary to calcification temperature.

The temperature predicted by a given Mg/Ca value in Equation

1 is within the range of what would be predicted by other species-

specific equations. (Supplemental Table 1). The high preexponential

constant (1.44 ± 0.1) and low exponential constant (0.04 ± 0.01)

indicate a more linear sensitivity to temperature than most other

equations. Importantly, the relationship of G. hexagonus shell Mg/

Ca to temperature is significantly different (outside standard error)

from previously published equations, implying a species-specific

calibration is necessary.

Equation 1 should be suitable for deriving calcification

temperature from G. hexagonus shells from marine sediments and

quantitatively reconstructing temperatures 6-22°C within the

overlying OMZ with two caveats. First, temperatures should be

interpreted only from populations of fossil G. hexagonus shells

rather than individuals. Second, [CO3
2-] may have a contributing

influence. Neither is a limitation specific to G. hexagonus, but likely

applies more broadly to other species and settings. Despite these

caveats, the relationship presented here raises several possibilities
A

B

C

FIGURE 3

(A) Mn/Ca, (B) Zn/Ca, and (C) Sr/Ca values of individual shells (open black points), and net means (closed gray/red points) relative to in situ oxygen at
collection. Points are plotted against the mean oxygen within the net from which the foraminifers were collected, and horizontal bars show the
minimum to maximum values of oxygen measured within each net. Significant linear correlations are shown as blue lines. Exponential fits are shown in
green in panels (A, C). The mean difference between duplicate ablations of the same chamber is show as a bar in the bottom right of each panel.
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for paleoceanography. For example, G. hexagonus shells could be

used to constrain temperature of pelagic intermediate water masses

and enable quantitative assessments of oxygen solubility (largely a

function of temperature) as a long-term driver of sub-

surface oxygenation.
Oxygen and carbonate system controls on
Mn and Zn

The robust relationships found between Mn/Ca and Zn/Ca in

the shells of G. hexagonus and in situ dissolved oxygen point to a

potential environmental control. There is an existing theoretical

framework for such a relationship in Mn/Ca. As Mn is readily

oxidized to MnO2, Mn2+, the cation assumed to substitute for Ca2+

in the calcite lattice, should be more available in low oxygen water

masses. Thus, Mn2+ substitutions for Ca2+ should occur more

frequently and Mn/Ca should increase in shells formed at lower

oxygen conditions (Barras et al., 2018; van Dijk et al., 2020). While

there are other controls on Mn and Mn2+ availability in natural

systems, in the ETNP dissolved Mn shows a distinct peak

specifically associated with low dissolved oxygen (Bolster et al.,
Frontiers in Marine Science 06
2022; Figure 5). There is also evidence for an oxygenation control

on the incorporation of Mn/Ca into benthic foraminiferal calcite

(Munsel et al., 2010; Groeneveld and Filipsson, 2013; Koho et al.,

2015; McKay et al., 2015; Nı ́ Fhlaithearta et al., 2018; van Dijk et al.,

2020). However, increased shell Mn/Ca has also been related to

oxygenation or advection of water across the oxycline in live-caught

planktic foraminfiera (Steinhardt et al., 2014; Davis et al., 2020). The

directionality of the relationship found here is consistent with a

dissolved oxygen control on Mn/Ca incorporation into G.

hexagonus calcite (Figure 3A).

As multiple parameters covary with depth in this dataset, it is

necessary to consider alternate drivers responsible for the higher

Mn/Ca ratios, especially the carbonate system (Figures 1, S1, S2).

Laboratory culture of the planktic species Orbulina universa

demonstrated a negative correlation between shell Mn/Ca and

[CO3
2-] (Allen et al., 2016) and a positive correlation with DIC

(Holland et al., 2017). Similarly, cultures of the benthic hyaline

species Amphistigina gibbosa as well as the phylogenetically distant

porcelaneous Sorites marginalis show increasing shell Mn/Ca values

with increasing DIC (van Dijk et al., 2020). These results are

consistent with the expectation that increasing DIC (decreasing

[CO3
2-]) would co-occur with decreasing oxygenation in the OMZ
A B

DC

FIGURE 4

Comparison of (A) Mg/Ca, (B) Zn/Ca, (C) Mn/Ca, and (D) Sr/Ca found in the youngest 6 chambers of G. hexagonus. In each plot, F refers to the
youngest or “final” chamber, with older chambers progressing sequentially from this point. Chambers values which were significantly different (p< 0.05)
from the subsequent chamber are shown in blue; those that were not significantly different are shown in grey. The boxes denote the 1st and 3rd

quartiles and the center bar the median.
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(Paulmier et al., 2011). Thus, the carbonate system and dissolved

oxygen could act independently or in concert to drive higher Mn/Ca

values in nets collected closer to the core of the OMZ. While more

work in modern samples will be required to tease apart these

drivers, results indicate that shell Mn/Ca may record the intensity

of the OMZ and the co-occurring carbon maximum within the

habitat of G. hexagonus.

We find lower Zn/Ca ratios are in shells from nets with higher

oxygen (Figure 3B) and higher temperature. No previous work has

directly compared Zn/Ca in foraminiferal shells to oxygenation,

while temperature has a negligible effect on the Zn/Ca of benthic

foraminifera (Marchitto et al., 2000; Titelboim et al., 2021). The

carbonate system, however, has been widely implicated as a driver of

Zn/Ca ratios (Marchitto et al., 2000; van Dijk et al., 2017; van Dijk

et al., 2017), and Zn/Ca increases with increasing DIC (decreasing

[CO3
2-]) in multiple species of cultured benthic foraminifera (van

Dijk et al., 2016; van Dijk et al., 2017). This has been attributed to pH

dependent speciation of Zn, and incorporation into foraminiferal

calcite of Zn2+ (van Dijk et al., 2017). Zn also displays a nutrient-like

profile, increasing with depth through the OMZ (Conway and John,

2015; Janssen and Cullen, 2015) (Figure 5). Thus, both increased

availability of Zn and Zn2+ may act in conjunction to increase Zn/Ca

ratios with increasing depth and OMZ intensity.

Results suggest that Zn/Ca and Mn/Ca in G. hexagonus can be

related to macroenvironmental drivers, via concentrations of

dissolved ions in ambient seawater. This is further supported by

observations of an increase in dissolved Mn and Zn at OMZ depths

in the ETNP, where Mn/Ca and Zn/Ca also increase in
Frontiers in Marine Science 07
foraminiferal calcite (Bolster et al., 2022; Figure 5). The variability

in Zn/Ca andMn/Ca ratios of G. hexagonus shells and dissolved Mn

and Zn are also all higher at OMZ depths (Figure 5;

Supplemental Table 2).

Other non-spinose foraminifera such as Neogloboquadrina

dutertrei and Globorotalia truncatulanoides, may calcify within

an organic aggregate microhabitat, as identified in part by high

Ba/Ca values (Fehrenbacher et al., 2018; Richey et al., 2022).

Shell Ba/Ca is also high in G. hexagonus (mean 39 mmol/mol

across all ablation profiles) and therefore, G. hexagonus may be

additionally influenced by the redox conditions inside particle

microenvironments. Particle microenvironments can support

anaerobic respiration in a low oxygen water column when oxygen

is further drawn down by respiration inside the particle (Alldredge

and Cohen, 1987; Alldredge and Silver, 1988; Shanks and Reeder,

1993; Bianchi et al., 2018). This oxygen depletion should result in

higher Mn2+. These same particulate microenvironments might

have a complex and non-linear influence on Zn. When reduced

sulfate is available in particulate microenvironments, Zn2+

precipitates into ZnS which can have implications for Zn cycling

in the OMZ (Janssen and Cullen, 2015). While respiration within a

particulate microenvironment could further decrease pH,

increasing Zn2+, sulfate reduction at sufficiently low oxygen levels

could decrease the availability of [Zn2+]. Such sulfate-reducing

metabolisms may occur within particles in the ETNP OMZ

(Carolan et al., 2015), and could be partly responsible for the

large range and variance of Zn/Ca ratios found at the lowest

oxygen levels (Figure 5; Table S2).
A B

FIGURE 5

(A) Dissolved Mn with depth in the ETNP (solid orange points) from Moffett (2020) and John et al. (2022). Individual foraminiferal shell Mn/Ca (open
blue points) at the mean depth from the net in which they were collected. (B) Dissolved Zn with depth in the ETNP (solid green points) from John
and Moffett (2021). Individual foraminiferal shell Zn/Ca (open pink points) at the mean depth from the net in which they were collected.
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Related controls on Sr/Ca

The strongest correlation of any analyte with oxygen was found

for Sr/Ca (Figure 3C). As foraminiferal Sr/Ca ratios have not yet

been evaluated with respect to oxygenation, we will first consider

alternative controls. From relatively early in the history of

foraminiferal trace element analyses, the Sr/Ca of planktic

foraminifera shells has been linked to salinity and temperature

(Lea et al., 1999; Elderfield et al., 2002; Cléroux et al., 2008;

Kısakürek et al., 2008). Salinity differences are minimal in this

dataset and therefore an unlikely driver of shell Sr/Ca. Previous

studies demonstrate only a weak (Lea et al., 1999) or insignificant

(Russell et al., 2004; Kısakürek et al., 2008) relationship between Sr/

Ca and temperature in planktic foraminifera. However, a strong

correlation between temperature and dissolved oxygen (corr = 0.92;

Figure S1) make the two parameters nearly impossible to

disentangle, and temperature cannot be discounted as an

important influence on G. hexagonus Sr/Ca ratios. Given this

uncertainly, other drivers need be considered.

The Sr/Ca ratios of calcareous foraminifera have also been

linked to carbonate chemistry, similar to Mn/Ca and Zn/Ca

ratios. However, findings are inconsistent. Multiple species of

planktic foraminifera show an increase in shell Sr/Ca ratios with

an increase in pH and/or [CO3
2-] (decreasing DIC) (Lea et al., 1999;

Russell et al., 2004; Dueñas-Bohórquez et al., 2009; Holland et al.,

2017). By contrast, some benthic foraminifera show a decrease in

Sr/Ca with decreasing DIC (increasing pH and/or [CO3
2-]) (Keul

et al., 2017; van Dijk et al., 2017). Still other benthic (Dissard et al.,

2010; Raitzsch et al., 2010) and planktic species (Lea et al., 1999;

Russell et al., 2004; Kısakürek et al., 2008) are apparently insensitive

to the carbonate system as a Sr/Ca driver.

One related consideration for the incorporation of Sr into

foraminiferal calcite is growth rate. Higher growth rate has been

widely associated with increased foraminiferal Sr/Ca ratios

especially in planktic species (Elderfield et al., 2002; Kısakürek

et al., 2008; Holland et al., 2017; Geerken et al., 2022), and

explicitly linked with an apparent influence of temperature and

carbonate chemistry (Lea et al., 1999; Russell et al., 2004). The shell

mass of cultured planktic foraminifera tends to increase with

temperature (Lombard et al., 2009), [CO3
2-],pH (Spero et al.,

1997; Lea et al., 1999; Bijma et al., 2002; Russell et al., 2004;

Lombard et al., 2010; Manno et al., 2012), and O2 (Kuroyanagi

et al., 2013), which suggests all three parameters could increase

growth. Further support for growth rate as a driver of Sr/Ca

incorporation in G. hexagonus comes from individual shells.

Assuming initial calcification of each chamber takes a similar

amount of time, a larger chamber would calcify faster than a

smaller chamber and therefore might have higher Sr/Ca. This is

supported by chamber-specific ablations which demonstrate that

younger, larger chambers have higher Sr/Ca compared to older,

smaller chambers (Figure 4). We note that significant decreases in

Sr/Ca in younger chambers are not confined to the final chamber

alone, indicating that the presence of this trend is unlikely to be

driven entirely by incomplete calcification of the youngest chamber.
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While we cannot disentangle the potential impacts of

temperature, pH, and oxygen on Sr/Ca from this dataset, all three

variables would be expected to result in slower shell growth rates

within the low-oxygen, low-pH, and low-temperature core of the

OMZ. As a result, Sr/Ca presents itself as a potentially useful proxy;

a decrease in growth rate, and therefore lower Sr/Ca, may be

associated with more intensive OMZ conditions rather than an

isolated environmental driver. The use of Sr/Ca as a proxy for OMZ

intensity would allow for an assessment of habitat within the OMZ,

and therefore the depth habitat of an individual; a shell with higher

Sr/Ca likely calcified farther from the core of the OMZ than one

with lower Sr/Ca. At the population level, changes in Sr/Ca could

point to changing strength of the OMZ, with lower Sr/Ca values

indicative of more intense OMZ habitat being available to

G. hexagonus.
Diagenesis as a potential complication

One undeniable challenge in the reconstruction of OMZ

environments from foraminiferal shell TE/Ca is preservation. It is

well known that trace elemental ratios such as Mg/Ca can be altered

by either calcite overgrowths and recrystallization (Boyle, 1983;

Pena et al., 2005; Pena et al., 2008) or dissolution (Lorens et al.,

1977; Dekens et al., 2002; Fehrenbacher et al., 2006; Johnstone et al.,

2011; Regenberg et al., 2014; Branson et al., 2015). The use of

elements such as Mn and Zn as proxies is especially complicated by

postmortem modification of shell chemistry, with Mn alteration

frequently noted (Boyle, 1983; Pena et al., 2005; Pena et al., 2008). A

combination of chemical and mechanical cleaning may remove

postmortem contaminants but can also remove the primary signal

of elements including Mn and Zn (Fritz-Endres and Fehrenbacher,

2021). Distinguishing between primary and diagenetic signals via

high resolution analytical technics, such as Secondary Ion Mass

Spectrometry (SIMS) or Laser Ablation ICP-MS is one possibility

(Bice et al., 2005; Marr et al., 2013b). In fact, our rationale for

employing Laser Ablation ICP-MS here was partly in recognition

that future analyses may need to employ this high-resolution

technique to exclude altered shell regions. However, the delicacy

of thin and porous G. hexagonus shells present distinct challenges

for differentiation of primary and diagenetic signals by

microanalytical techniques. For example, altered calcite might be

more commonly found on exposed surfaces like the inner and outer

shell surface and within pores. This means that mixing of altered

and relatively pristine regions would occur in any ablation pit that

included a pore. To some extent, this would always be an issue in

using LA-ICP-MS to identify altered zones, but would be amplified

in a species with relatively large pores and thin walls. These

challenges may be partially overcome by future characterization

of the natural TE/Ca heterogeneity within G. hexagonus shells in

addition to continued evaluation of cleaning protocols and careful

site selection.

Although diagenesis may complicate some applications of Mn/

Ca and Zn/Ca as proxies in G. hexagonus shells, the immediate
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outlook for other proxies is brighter. While Mg/Ca diagenesis

requires careful consideration, a substantial body of research has

already been amassed on cleaning and sample selection with an eye

specifically to Mg/Ca preservation in foraminifera (e.g., Barker et al.,

2003; Marr et al., 2013a; Fritz-Endres and Fehrenbacher, 2021). The

upside is that temperature interpretations from Mg/Ca should be

feasible at all but the most altered sites. Moreover, Sr/Ca is not highly

susceptible to post-depositional alteration (Lorens et al., 1977),

although ratios may decrease if shells experience dissolution

(McCorkle et al., 1995; Edgar et al., 2015). Thus, Mg/Ca and Sr/Ca

ratios ofG. hexagonus shells from sediments showparticular promise

for reconstructing past OMZs. It is our hope that these conventional

trace elements in planktic foraminifera, along with other archives of

pelagic calcite such as fish otoliths (Limburg et al., 2015; Limburg and

Casini, 2018; Altenritter andWalther, 2019; Cavole et al., 2023) may

be used to improve the spatial and temporal resolution of records

from low oxygen pelagic environments.
Conclusions

Trace metal analysis of individual G. hexagonus shells

demonstrates several ways in which the species could be useful for

reconstructing OMZ environments beyond the observational record.

As in other species of planktic foraminifera, Mg/Ca ratios of G.

hexagonus shells can serve as a proxy for temperature once a species-

specific equation is applied. Ratios of Mn/Ca and Zn/Ca both

increase with decreasing dissolved oxygen, as would be expected if

carbonate chemistry and/or oxygen were dominant controls. An

especially strong correlation is observed between low Sr/Ca ratios and

more intense OMZ environments. We propose that this effect could

be linked to growth rate and that Sr/Ca is a potential proxy for OMZ

intensity, especially given relative robustness of Sr/Ca ratios to

diagenesis. Thus Sr/Ca, and more tentatively Mn/Ca and Zn/Ca,

could be useful in reconstructing OMZ intensity.
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