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The genus Sebastes is a morphologically and ecologically diverse genus of

rockfish characterized by high longevity, late-maturity and low natural

mortality. On the northwest Atlantic continental shelf, the Acadian redfish

(Sebastes fasciatus) is the most common rockfish species above 300 m depth.

This species has been widely exploited resulting in the depletion or collapse of

most of its stocks. Management of long-lived species with intricate life-history

characteristics is challenging and requires highly integrated biological and

oceanographic monitoring, which allow the identification of environmental

drivers and demographic and behavioral trends. The present study uses high-

temporal resolution imaging and environmental data, acquired with an

autonomous lander deployed for 10-months at the Sambro Bank Sponge

Conservation Area (Scotian Shelf) to elucidate S. fasciatus temporal dynamics

and behavioral trends in response to near-bed environmental conditions. S.

fasciatus, mostly displayed passive locomotion and static behaviors, in common

with other shelf-dwelling Sebastes species. Structural complexity provided by

sponges positively influenced S. fasciatus presence. Fish used sponges to avoid

being dragged by bottom currents. Hydrodynamics appear to act as a

synchronizing factor conditioning its swimming behavior. S. fasciatus total

counts exhibited a seasonal shift in rhythm’s phase likely reflecting changes in

lifestyle requirements. This study provides new insights on S. fasciatus dynamics

and behavior. Nonintrusive monitoring approaches, such as the one used in this

study, will be key to monitor this threatened species populations. Especially,

since it is expected that S. fasciatus will experience distribution shifts to higher

latitudes due to future climate stressors.
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1 Introduction

The genus Sebastes is a morphologically and ecologically diverse

genus of rockfish with a wide species diversity (i.e., 111 named

species) (Magnuson-Ford et al., 2009). Most Sebastes species are

found in the North Pacific, but few occur in the North Atlantic and

Southern Hemisphere (Hyde and Vetter, 2007). Sebastes species are

ovoviviparous, late maturing, with low natural mortality (Planque

et al., 2013) and long-lived (several decades), certain species can

easily reach 40 years and exceed 75 years of age, at which point they

can measure 42 cm (Senay et al., 2021). They have adapted to a wide

diversity of ecological niches but are frequently associated with

rocky benthic structures (boulders, outcrops, or reefs), and hence

also found in association with emergent sessile epibenthic fauna

(Love et al., 2002; Auster, 2005).

Along the northwest Atlantic margin, three different species

occur; deep-water redfish (Sebastes mentella) and Acadian redfish

(Sebastes fasciatus), are the most abundant, while the golden redfish

(Sebastes marinus) is found sporadically and can be easily

differentiated from the other two species (Sévigny et al., 2008).

Both S. mentella and S. fasciatus have very similar external

morphological features, which makes their identification difficult.

However, they are somewhat bathymetrically segregated; S.

mentella occurring primarily between 350 m and 700 m depth

and S. fasciatus is found primarily in shallower waters between 150

and 300 m depth (Brassard et al., 2017; Voronin et al., 2021). Their

geographic distribution also differs. S. mentella mainly occurs from

the Labrador Sea to the Gulf of St. Lawrence, while S. fasciatus is

mostly distributed from the southern Grand Banks to the Gulf of

Main (Valentin et al., 2006). Both species mostly overlay their

distributions in the Grand Banks, Cape Flemish, and the Laurentian

Channel, whereas on the Scotian shelf and Gulf of Main, S. fasciatus

is almost the only species present (Valentin et al., 2006; Campana

et al., 2016).

Both species are economically relevant in the northwest Atlantic

Ocean where they are marketed as ‘ocean perch’, and their stocks

have been commercially exploited since the second half of the 20th

century (Cadigan and Campana, 2017). Due to their spasmodic

recruitment behavior, which is characterized by irregular and

infrequent pulse events, both species are highly vulnerable to

fishing pressures and population fluctuations (Valentin et al.,

2015). For example, in the Gulf of St. Lawrence, recruitment of

redfish was consistently poor for 30 years with most stocks being

collapsed or depleted, and fisheries-independent surveys initiated in

1984 showing decline in the biomass index through to 1995 (Morin

et al., 1995). As a result, the redfish fishery in that region was put

under a moratorium in 1995 to protect the dwindling stocks. Based

on these demographics, S. fasciatus was classified as an endangered

species in 1996 by the International Union for Conservation Nature

– a status that has not been revisited and which requires updating

(IUCN, 2021). In 2010, the Canadian Committee on the Status of

Endangered Wildlife designated the population of S. fasciatus in the

area as ‘Threatened’, and S. mentella as ‘Endangered’ (Benestan

et al., 2021). However, demonstrative of the extreme nature of

population fluctuations in these species, unprecedently strong

recruitment of S. mentella, from very low population abundance,
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occurred in the Gulf of St. Lawrence from 2011-2013 (Burns et al.,

2021). Survivorship was high, resulting in massive population

increases and record-breaking biomass today.

Calanus finmarchicus nauplii, have been identified as an

important dietary component of recently extruded Sebastes spp.

larvae in the Gulf of St. Lawrance (Burns et al., 2021). The

phenology of C. finmarchicus is primarily correlated with the

timing of spring warming, and to a lesser extent with the timing

of the spring bloom (Lehoux et al., 2022). Scientists have not yet

been able to identify the enabling conditions for the strong Sebastes

spp. recruitment pulse, however warming waters may have

promoted shifts in the larval prey fields mediated through

phenological changes in availability of naupliar prey resulting in

faster larval growth and ultimately contributing to higher

recruitment success (Burns et al, 2021). Small (< 20 cm) and

medium sized (20–30 cm) redfish also saw a dietary shift from

amphipods in the early 1990s to copepods in the 2010s (Brown-

Vuillemin et al., 2022).

Currently, fishery closures have been implemented in Canada’s

Atlantic waters, to promote the recovery of both species (Senay

et al., 2021), and fisheries management plans are being re-evaluated

given the unprecedented high biomass of S. mentella in the Gulf of

St. Lawrence. Clearly, management of long-lived species with such

complex life history characteristics poses a special challenge which

wi l l only be more di fficul t in the face of changing

environmental conditions.

Conservation strategies based on data obtained by highly

integrated multiparametric biological and oceanographic

monitoring approaches can help to improve estimates of

population abundance and biomass (Danovaro et al., 2017) and

to anticipate the effects of climate change. Specifically, consideration

of behavioral data has been shown to augment knowledge on

species’ traits such as swimming rhythms, that influence dispersal

and ultimately connectivity in some deep-sea species (Aguzzi et al.,

2010; Aguzzi et al., 2011). Behavior associated with other events

such as feeding or predation influence demographic processes, and

many behaviors are influenced by environmental factors (Merrick

and Koprowski, 2017). Fishers have long considered fish behavior as

a means to optimize their catches (Wardle, 1986), although data on

fish behavior is not commonly incorporated into management

plans, largely because it is poorly understood, particularly in

deep-sea species.

Behavioral data are typically obtained through direct

observation by snorkeling or diving, through surface observation

(e.g., through viewing windows or acoustic methods), or through

use of remotely-operated underwater vehicles (Thurow et al., 2012).

Each of these methods generates data over relatively short time

scales and introduces sampling gears into the environment that may

themselves evoke behavioral change. Video-imaging from fixed

autonomous platforms such as landers or land-connected cabled

observatories, allow in situ monitoring of deep-sea organisms over

long periods of time (i.e., frommonths to years) at a high-frequency

(i.e., from minutes to hours), allowing for sufficient time for the

species to adjust to the presence of the instrumentation. Such

devices extract new knowledge on the effects of behavioral

rhythms on species presence, populations abundance, and
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Grinyó et al. 10.3389/fmars.2023.1158283
estimated biodiversity (e.g., Matabos et al., 2014; Francescangeli

et al., 2022) which may ultimately be useful in guiding fisheries

management plans.

Few studies have addressed behavioral aspects of deep-sea

species such as S. fasciatus and there is still a wide knowledge gap

on how this species responds to changing oceanographic

conditions, due to its deep distribution (Auster, 2005). Burns

et al. (2021) identified changes in larval feeding behavior of

Sebastes sp. through examination of gut content and otolith

microstructure. However, the most well-known behavior of this

species is the diel vertical migration that occurs during feeding (e.g.,

Gauthier and Rose, 2005). Acoustic techniques applied from surface

vessels showed that Sebastes spp. were on or near the seabed by day

and migrated vertically to feed in the water column around sunset

in all seasons – returning to the seabed at dawn. They asserted that

acoustic measurements of Sebastes spp. abundance made at night

provide the most reliable and least variable density estimates and

suggested that acoustic surveys could be supported by research

trawling to determine species composition and size distribution.

Acoustic techniques are associated with a dead zone near the

bottom where fish cannot be accurately detected (Mello and Rose,

2009) and so little is known about their behavior during the day

when they are associated with the seafloor. The present study uses

high temporal resolution imaging and environmental data, acquired

with an Autonomous Lander for Biological Experiments (ALBEX)
Frontiers in Marine Science 03
designed by the Royal Netherlands Institute for Sea Research and

deployed for a 10-month period in the Sambro Bank Sponge

Conservation Area on the Scotian Shelf (Hanz et al., 2021). The

study area hosts globally unique, mono-specific glass sponge

aggregations of Vazella pourtalesii that provides important habitat

for benthic and pelagic fauna, including redfish (Beazley et al., 2013;

Hawkes et al., 2019). In this study lander data were used to

characterize the behavioral rhythms of S. fasciatus in relation to:

a) the near-bed hydrodynamic conditions; b) the temporal dynamic

of its local population; c) its behavior trends and its response to

changes in environmental conditions; and finally, d) its gregarious

behavior in the Sambro Bank sponge ground (Scotian Shelf,

northwestern Atlantic). Implications for the management of this

species are discussed.
2 Material and methods

2.1 Study area

The Sambro Bank Sponge Conservation Area located on the

Scotian Shelf (Figure 1) covers an area 62 km2 between 150 and 175

m depth. In 2013, Fisheries and Oceans Canada (DFO) closed this

area to bottom fishing activities as it hosts one of the densest

aggregations of the hexactinellid sponge Vazella pourtalesii, which
FIGURE 1

Location of the Sambro bank sponge conservation area on the Scotian Shelf. Bathymetric data was obtained from the European Commission,
Directorate-General for Maritime Affairs and Fisheries, “EMODnet Digital Bathymetry (DTM)”, 2018, http://data.europa.eu/88u/dataset/
EMODnet_bathymetry.
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provides habitat to a wide variety of species, including S. fasciatus

(Hawkes et al., 2019).

Two major ocean currents influence the Sambro Bank: the Gulf

Stream, and the equatorward flowing Labrador Current (Hannah

et al., 2001). The latter plays a major role for the benthic

communities on the Scotian Shelf. Seasonally, this current can

reach the bottom resulting in strong hydrodynamic events which

can displace benthic organisms and sediments (Hannah et al.,

2001). Currents on the Scotian Shelf are dominated by a semi-

diurnal tidal cycle (Chen et al., 2011; Hanz et al., 2021).

Additionally, it was recently observed that storm events can result

in benthic storms, producing extreme sediment resuspension events

and sponge displacements (Hanz et al., 2021).
2.2 Lander deployment

From the 6th of September 2017 until the 23rd of June 2018, the

ALBEX multiparametric video-lander (Duineveld et al., 2004) was

deployed at 154 m depth at the center of the Sambro Bank closure

zone (43.898 N, 63.052 E) (Figure 1). The lander was equipped with

a NIOZ custom-made HD video camera equipped with two white

LED lights. Every 4 h the camera recorded a video that had a

duration of 20 s. The 4 h video-recording frequency resulted in S.

fasciatus time series of counts structured in 6 sampling events

(00:00, 04:00, 08:00, 12:00, 16:00, 20:00).

The lander was also equipped with a CTD sensor (Sea-Bird

SBE37SM-RS232, sampling interval = 15 min, accuracy for

temperature of 0.002 °C, and conductivity of 0.003 mS cm-1) and

with an ARO-USB oxygen sensor (JFE Advantech TM, sampling

interval = 15 min, accuracy of nonlinearity 2% of full scale, at 1 atm

and 25 C°). A two-point calibration was carried out before

deployment to compensate for the time drift and ensure reliable

and accurate dissolved oxygen data. An Aquadopp2 MHz (Nortek

TM, sampling interval = 15 min) Acoustic Doppler Current Profiler

(ADCP) was attached to the lander 2 m above the bottom (mab).

The ADCP measured acoustic backscatter and velocity in 50 cm

bins with an accuracy of 1% of the measured value (0.05 cm s-1).
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On the 5th of January 2018, 120 days after the lander was

deployed, strong hydrodynamic processes turned the lander,

shifting the video camera’s Field Of View (FOV; Figure 2) (Hanz

et al., 2021). The ADCP heading changed during the storm event by

6° from 265 to 259°. The lander remained in this position 168 days

until the end of the study. Both FOVs recorded mixed sandy and

muddy seabed areas, scattered with cobbles colonized by anemones

and V. pourtalesii sponges that occurred as isolated individuals or

formed small aggregations (two to three individuals). V. pourtalesii

abundances were higher in the first FOV (FOV1), where 13

individuals occurred. In the second FOV (FOV2) sponge

abundance fluctuated between three and four individuals, as

detached sponges were dragged with the current (see Figure 2).
2.3 Image analysis

Physical samples of the redfish observed in the images were not

available and species identification was inferred from the known

distribution that attributes redfish on the Scotian Shelf to S. fasciatus

(Ni, 1981; Valentin et al., 2006). Visual counts of putative S. fasciatus

were made for each 20 s video under the assumption that fluctuating

counts are a reliable proxy for averaged swimming activity into

populations (hence varying the overall chance of video-spotting;

Francescangeli et al., 2022). Time series of visual counts from fixed

video camera stations indicate a general level of activity into

monitored populations since counted specimens are proportional

to the overall population. When animals are present in higher

abundances or are more behaviorally active their counts increment

as the probability to enter the field of view is higher. Additionally,

each individual’s behavior was registered during the first 5 s of its

appearance in the FOV to avoid any potential disturbance generated

by the lander (e.g., illumination, noise; e.g., Doya et al., 2014).

Innovatively the behavioral activity of S. fasciatus was subdivided

into four categories:

i) descending: sinking almost static towards the seafloor

(Supplementary video 1);

ii) drifting: drifting with current few centimeters from the

seafloor (Supplementary video 2);
FIGURE 2

(A) FOV 1 with two static Sebastes fasciatus in contact with Vazella pourtalesii individuals. (B) FOV 2 with one Sebastes fasciatus sitting on the seafloor.
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iii) static: remaining still on the seafloor (Supplementary video

3); and finally,

iv) swimming: active natation sufficient to overcome currents

(Supplementary video 4).

Static individuals interacting with V. pourtalesii, by leaning

against it or sheltering from currents a few centimeters from it, were

also reported. Current direction was deduced from the movement

of suspended particles.
2.4 Data treatment

To obtain a global overview of S. fasciatus behavioral rhythms

and explore potential differences between the two FOVs, visual

count time series for the 10-month sampling period were plotted.

The occurrence of significant differences in S. fasciatus counts

between both FOVs was tested with a Wilcoxon test, as data did

not display a normal distribution. TheWilcoxon test was performed

using the R-language function “wilcox.test” (Oksanen et al., 2016).

To explore the relationship between S. fasciatus count rhythms and

bottom current velocity, monthly average waveforms were calculated

and plotted together for both factors (Doya et al., 2014). Firstly, to

obtain information on S. fasciatus activity rhythms, waveforms analysis

was conducted on 4-hour counts time series. Segments’ values were

averaged per each month at corresponding timings (00:00, 04:00, 08:00,

12:00, 16:00, 20:00). Resulting averages were then plotted along with

the standard error (SE) and a horizontal threshold line, the Midline

Estimated Statistic of Rhythm (MESOR, Francescangeli et al., 2022).

The MESOR were calculated by averaging monthly interval average

values. Values above the MESOR are considered as composing the

rhythm phase (i.e., peaks). Similarly, tidal patterns were studied by

waveform analysis of time series in bottom current velocity data.

ADCP readings 3 meters above the bottom (mab) were compiled

into one hour interval via values averaging at corresponding one hour

time intervals. Then, the monthly waveform curves and MESOR were

calculated by averaging those hourly data, which were plotted with

their SE.

The relationship S. fasciatus behavior and environmental factors

(temperature, salinity, oxygen concentration and current velocities and

directions registered between 3 and 4.5 mab) was explored by means of

a Canonical Correspondence Analysis (CANOCO) (Legendre and

Legendre., 1998). This analysis determined the relative contributions

of behavioral rhythms (as indicated by count fluctuations) and

environmental status (by multiparametric oceanographic monitoring)

in the same multidimensional space (Aguzzi et al., 2018). The

ordination axes are linear combinations of the cultivars. Both

matrices (species counts and environmental data) were standardized

using correlation matrices. The CANOCO was performed using the

free software PAST 2.17c (Hammer et al., 2001).

To study the gregarious behavior of S. fasciatus, defined as

individuals shoaling (loosely organized group of fish) (Larsson, 2012)

or remaining static in small groups on the seafloor, videos were ranked

based on the number of individuals occurring simultaneously in the

same field of view. Posteriorly the frequency of groups of individuals
Frontiers in Marine Science 05
was represented with a histogram plot. Differences in gregariousness

frequency between sampling events (00:00, 04:00, 08:00, 12:00, 16:00,

20:00) and seasons, (defined by the winter solstice and spring and

autumn equinox) were determined bymeans of an Adonis multivariate

analysis and subsequent pairwise test using the R-language function

“adonis” (Oksanen et al., 2016). Summer was excluded from this

analysis as it was underrepresented (16 days) compared to the other

seasons. Demersal fish can aggregate over wide areas (Williams et al.,

2021) to discard potential spatial constraints intrinsic to the lander field

view, gregarious data was also assessed in six photo-transects recorded

with the ROV Ropos, equipped with a Pacific-Zeux HD Camera with a

96-pixel resolution, that covered several hundreds of meters.
3 Results

3.1 Environmental setting
The water temperature at the seafloor ranged between 8.8 and

12°C and salinity was between 34.1 and 35.3 psu from summer 2017

to 2018 (Figure 3). Currents at 3 mab were on average 0.11 m s-1

with peaks of 0.38 m s-1 during late autumn (November) and early

spring (March) storm events (see Figure 3).Current direction

oscillated between a NW and SE direction with a semi-diurnal

cycle. In January and especially March average current direction

changed in a more westward direction (Hanz et al., 2021).
3.2 S. fasciatus counts

A total of 1740 videos were obtained (six daily sampling events

for 290 days), although due to intense turbid conditions, 10 videos

could not be analyzed. S. fasciatus were present in 852 videos (49.2%

of all analyzed). A total of 2504 individuals were counted, 47.48% of

which in FOV1 and 52.52% in FOV2. In both FOVs, individuals

mainly displayed descending and static behaviors, jointly

accounting for 81.4% and 73.4% in FOV1 and FOV2, respectively

(Figure 4). Conversely, swimming was the scarcest behavior pattern

displayed by 7.2% and 5.2% of all observed individuals, respectively

in FOV1 and FOV2 (Figure 4).

S. fasciatus was unevenly distributed in both FOVs, with most

count peaks registered in FOV1 (Figure 5). In this regard, average

count values were higher in FOV1 than in FOV2 (Table 1), and

when comparing behaviors, significant differences were only found

for descending fish counts.
3.3 Wave form analysis

Waveform analyses showed that S. fasciatus averaged counts

exhibited a temporal shift in peak timing (i.e., values above the

MESOR defining the phase of the count rhythm) (Figure 6). In
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FIGURE 3

Near-seabed environmental conditions, recorded from September 2017 to June 2018. Current velocity and direction time series is only for the
ADCP bin of 3 mab. In the current direction panel, grey lines represent current direction values obtained every 15 minutes and the black line
represents daily current direction average values. The gray vertical line represents the shift from FOV1 to FOV2.
BA

FIGURE 4

Sebastes fasciatus behavior display in (A) FOV1 and (B) FOV2.
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autumn (September – October) peaks occurred from 12:00 to 20:00,

shifting towards 00:00 to 04:00 in early winter (November – January),

and from 08:00 to 16:00 in late winter and spring (February – June).

Waveform analysis for current velocity (i.e., the bin at 3 mab) showed

a bimodal peak profile in most months as a proxy for a semidiurnal

tidal regime (see Figure 6). For several months (September, October,

December, and June) S. fasciatus total counts peaked simultaneously

with peaks of highest bottom current velocity (see Figure 6).

Additionally, the waveform analysis for counted fishes within

the 4 different behavioral categories (Supplementary figure 1)
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generally displayed a similar pattern to the one of total counts.

All behaviors were similarly affected by the tidal regime.
3.4 Influence of environmental variables on
S. fasciatus behavior

In the CANOCO the first two axis accounted for 83.9% and 9.2%

of the behavioral categories-environment relation variance (Figure 7).

Descending and static individuals interacting with sponges were
FIGURE 5

Ten-month time series of Sebastes fasciatus visual counts. In the Static plot, the gray time series represents individuals interacting (leaning or
remaining static few cm from sponges) with Vazella pourtalesii (VPI) while orange time series those which do not. Dashed vertical red line separates
FOV1 from FOV2. (n= number of individuals).
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negatively associated with temperature, oxygen concentration, and

current direction (Figure 7). Contrariwise, drifting individuals were

positively associated with current velocities between 3.5 and 4.5 mab

and higher oxygen concentrations (see Figure 7). Static individuals
Frontiers in Marine Science 08
which did not interact with sponges were positively associated with

current velocities 3 mab and current directions (3 to 4.5 mab). Finally,

swimming individuals were associated with salinity, temperature, and

current direction (see Figure 7).
TABLE 1 Sebastes fasciatus averaged counts (AV± SE) abundances and Pairwise test (Wilcoxon test) analysis for differences between FOV (p value).

FOV1 FOV2 p value

Abundance categories N AV± SE N AV± SE

Total 1189 3.681 ± 0.193 1315 2.577 ± 0.110 1.009e-09

Descending 571 3.964 ± 0.266 436 2.505 ± 0.222 1.241e-06

Static 247 1.927 ± 0.072 309 1.675 ± 0.201 0.1336

Static V. pourtalesii interaction 152 1.245 ± 0.731 69 1.254 ± 0.062 0.7877

Drifting 134 2.126 ± 0.189 277 2.000 ± 0.108 0.3342

Swimming 85 2.073 ± 0.252 224 1.882 ± 0.937 0.812
fron
FIGURE 6

Waveform analysis of hourly means of Sebastes fasciatus counts and bottom current velocity for each month. Red horizontal dashed red lines
represent the MESOR. Error bars indicate the SE.
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3.5 S. fasciatus gregarious behavior

Mostly, S. fasciatus was observed as isolated individuals or in pairs

generally occurring close to one another (Figure 2), representing 42%

and 20% of all observations, respectively (Figure 8). Gregarious

behavior was mainly displayed while fish were descending or drifting

(36.6% and 40%, respectively). Aggregations of three to six individuals

jointly accounted for 29% of observations while aggregations between

seven to 23 individuals represented 8% of all observations (Figure 8).

Adonis permutation multivariate analysis of variance revealed that

there were no significant differences (p value: 0.1639) in gregarious

occurrence among daily sampling events (00:00, 04:00, 08:00, 12:00,

16:00, 20:00). Yet, in terms of seasonality, autumn (23 of September to

22 of December) presented significantly higher (p value< 0.001)

aggregation occurrence than the other seasons.
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4 Discussion

4.1 S. fasciatus behavioral assessment

In this study, we describe the temporal count dynamics of the

Acadian redfish, S. fasciatus on a V. pourtalesii aggregation on the

Scotian continental shelf and identify the main environmental

processes influencing their occurrence and behavior while on or near

the seabed in the acoustic dead zone. Most individuals displayed sitting

or passively displacing (descending or drifting) behaviors (94.8% and

92.8% in FOV1 and FOV2, respectively; see Figure 3). Northwest

Atlantic Sebastes species exhibit a semi-pelagic shoaling behavior

vertically migrating to shallow depth on a diurnal bases to feed

(Cadigan et al., 2022). The stomach content of S. fasciatus are

mainly pelagic organisms (i.e., up to a 90% of total stomach volume)
FIGURE 7

CANOCO bi-plot showing the ordination of behavioral categories, observation made during the videos (points) and the roles of the significant
environmental variables (red vectors), whose length is proportional to their significance in explaining the distribution of biological data as response
variables. Dir3m: current direction 3 mab, Dir3.5m: current direction 3.5 mab, Dir4m: current direction 4 mab, Dir4.5m: current direction 4.5 mab.
V3m: current velocity 3 mab, V3.5m: current velocity 3.5 mab, V4m: current velocity 4 mab, V4.5m: current velocity 4.5 mab.
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only occasionally feeding on benthic organisms (Moran et al., 1996). Of

the 2504 individuals here detected, only one was observed feeding on a

swimming crustacean. Thus, the low abundance of prey in benthic

environments may explain the predominance of passive and static

behaviors as fish do not require to engage in active behaviors such as

the pursue of pelagic prey.

In this sense, Sebastes species occurring in benthic environments

have frequently been described to display a sluggish behavior hovering

over the seafloor, drifting with currents, or resting near benthic

structures or sessile organisms based on short period observations

(Brodeur, 2001; Auster et al., 2003; Johnson et al., 2003; Stierhoff et al.,

2013). Boulders or epibenthic organisms (e.g., sponges, gorgonians,

cerianhtids) have been described to positively influence Sebastes species

occurrence at a local scale (Tissot et al., 2006; Parker et al., 2008) and of

S. fasciatus specifically (Hawkes et al., 2019). The highly resolved

temporal data collected from the lander shows that these observations

are typical. Higher S. fasciatus counts registered in FOV1 may result

from a higher number of V. pourtalesii individuals that provide greater

structural complexity (Figures 2, 4; Table 1), as difference in the density

of V. pourtalesii was the main difference between the two sampling

FOVs. This is consistent with other image-based studies, where S.

fasciatus and other shelf dwelling Sebsates species, were more abundant

in areas hosting sponge and anthozoan aggregations than in

surrounding areas (Auster, 2005; Stone, 2006). Anthozoans and

sponges, contribute to vertical relief enhancing microhabitat

availability from which ichthyofauna may benefit (Tissot et al., 2006).

Indeed, other deep-living Sebastes species have been reported to use

sessile organisms, as nursery (Wilborn et al., 2022), shelter, and feeding

grounds (Krieger and Wing, 2002; Wilborn et al., 2022).

It was also observed that S. fasciatus used V. pourtalesii to

shelter from currents. Most static individuals interacting with

sponges (67%) were observed during relatively high current

events ranging between 0.12 and 0.32 m s-1. Under these

circumstances, interacting individuals would lean or shelter
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behind sponges while, individuals that did not interact with

sponges would face current to reduce water resistance (Figure 9).

These behaviors are consistent with previous observations made on

several demersal fish species, occurring on continental shelves and

canyons that have been observed to use sessile fauna to shelter from

current (Button et al., 2021; Chatzievangelou et al., 2022).

Current velocity and direction appeared to be the main forcing

mechanisms behind S. fasciatus passive movement behaviors

(descending and drifting) (Figure 7). In this study, most

descending and drifting individuals (57% and 72%, respectively)

were associated with currents below 0.12 m s-1. S. fasciatus may use

these low currents to disperse across the shelf investing little energy,

which is a common strategy used by deep-sea demersal fish species

(Uiblein et al., 2003). A variable relationship between species counts

fluctuations and tidal cycles has been found, depending on the

species movement life habit (i.e., stronger in swimmers as fishes,

intermediate in crustacean decapods as walkers, and weaker in

gastropod as crawling movers; Aguzzi et al., 2010). Here, actively

swimming individuals were mostly influenced by temperature,

salinity, and current direction (Figure 7). In the study area

fluctuations in water temperature, and salinity have been

associated with variations in the main water masses entering the

Scotian Shelf and with storm events (Urrego-Blanco and Sheng,

2014; Hanz et al., 2021). This might indicate that swimming

behavior is associated with variations in hydrodynamic conditions

triggered by changes in water mass and benthic storm events.
4.2 S. fasciatus population
temporal dynamics

In the present study, bottom currents displayed a bimodal

velocity peak. During several months, S. fasciatus abundance

peaks simultaneously occurred with the highest current velocity
FIGURE 8

Relative percentages of videos with different counts of Sebastes fasciatus as an indication of their level of aggregation.
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peak (see Figure 6). Bottom currents can also affect demersal fish

species abundances (Doya et al., 2016) influencing species

biological clocks and synchronizing swimming activity (Doya

et al., 2014; Chatzievangelou et al., 2016). In this scenario, the

data indicate that under high current velocity S. fasciatus remains

on the seafloor likely to avoid being displaced by tidal flows. This

behavior has been proposed as a mechanism that deep-sea

demersal organisms display to keep seabed positioning,

simultaneously decreasing energy consumption (Aguzzi et al.,

2010). As the species is associated with the seabed following an

extended (dusk to dawn) feeding period (Gauthier and Rose,

2005), it is possible that this phase is critical to digestion and

energy conversion. Furthermore, S. fasciatus total counts

exhibited a seasonal shift (abundance peaks shifted from 12:00

to 20:00 in autumn, to 00:00 to 04:00 in early winter and 08:00 to

16:00 in late winter and spring) in timing of rhythm’s phase as

indicated by monthly waveform analysis (see Figure 6). This

seasonal shift in abundance may reflect changes in the lifestyle

requirement associated to this species. For example, S. fasciatus

has been reported to change their distribution between summer

and winter locations (Campana et al., 2007). Also, in the
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northwest Atlantic, Sebastes spp. are suspected to mate on mid-

waters from late summer to early winter and larvae are speculated

to be released in deeper waters below the intermediate cold layer

during spring months (Cadigan et al., 2022).
4.3 S. fasciatus gregarious behavior

Finally, S. fasciatus mainly occurred as isolated or pairs of

individuals (see Figure 8). Gregariousness was most common while

individuals were in the water column generally forming shoals. This

grouping behavior agrees with sonar observations in which Sebastes

spp. appear to form densely packed aggregations in the water column

close to the seafloor and appear more scattered while on the seafloor

(Gauthier and Rose, 2005). Additionally, the fact that there were no

significant differences between sampling events contrasts with

previous observations on shallow water visual predatory fish which

mainly grouped during daytime (Francescangeli et al., 2022). Finally,

aggregation occurrences were significantly higher during autumn.

This seasonal trend could be related to the fact northwest Atlantic

Sebastes species mate from September to December (Gascon, 2003).
FIGURE 9

Static Sebastes fasciatus facing current (white arrowhead), leaning (black arrowhead) and standing behind (blue arrowhead) Vazella pourtalesii. This
image’s associated current velocity reached 0.17 m s-1, current direction in relation to S. fasciatus position was determined by observing suspended
particle movement.
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Nevertheless, it should also be considered that during autumn, the

lander was oriented towards FOV1, which as it has been previously

explained presented a higher structural complexity that likely favored

higher S. fasciatus occurrence. Therefore, it is unclear if this seasonal

trend responds to S. fasciatus biology or its ecological requirements.

To address this matter future image-based nonintrusive monitoring

studies should be enforced with the following specifications: over

complete and consecutive 24-h cycles; estimates should be derived at

count peak timing as indicated by waveform analysis and completed

over at least two consecutive years to provide valuable data on the

effects that behavior, reproduction, and growth may exert on

perceived demographic estimates of this threatened species.
4.4 Considerations on future scenarios
and management

Species distribution models indicate that under future climate

scenarios, suitable thermal habitat of S. fasciatus will shift to higher

latitudes (Kleisner et al., 2017). However, it is unclear how this species

will respond to variations in other factors such as oxygen

concentration, acidification, primary and secondary production or

change in benthic habitat. Recently, trait-based approaches indicate

that under future climate stressors (ocean warming, deoxygenation,

acidification, decrease in food supply) long-lived demersal fish species,

with slow growth and maturation rates, such as S. fasciatus, will

experience high hazard levels that will challenge their long-term

survival (Cheung et al., 2022). However, this contrasts with the

increased biomass of the Deepwater redfish in the Gulf of St.

Lawrence which has been attributed to phenological changes in prey

cycles favoring Sebastes larval growth and survivorship (Burns et al.,

2021). If the close association with the seabed during the daylight hours

is necessary for digestion, then environmental changes occurring there

also have the potential to disrupt the energy budgets and ultimately

growth rates. Under this scenario, monitoring activities in relation to

fishery independent assessment procedures will be highly relevant

specially when dealing with threatened species (Aguzzi et al., 2022).

Implications of these results for fisheries management lay in the

observed passive behavior of the fish on the seabed during daylight

hours. This provides further evidence for the higher catchability

during the day hours as reported by Atkinson (1989) and should be

factored into data analyses for both fishery-dependent and fishery-

independent trawl catches. Although dense aggregations were not

observed, neither are they found during pelagic feeding at night

when redfish are dispersed through the upper water layers

(Gauthier and Rose, 2005).
5 Conclusions

Like most shelf dwelling Sebastes species, S. fasciatus, mostly

displayed passive locomotion and static behaviors when near the

seabed. The structural complexity provided by V. pourtalesii
Frontiers in Marine Science
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appeared to positively influence S. fasciatus presence. It was observed

that S. fasciatus used this sponge to shelter from current drag.

Hydrodynamics likely act as a synchronizing cue for its swimming

behavior. S. fasciatus total counts exhibited a seasonal shift in peak

phase contrasting with the fact that this species performs dial

migrations, remain close to the bottom during the day and

redistribute into the water column at night. Shoaling behavior was

mostly observed while fishes where above the seafloor mainly while

descending or drifting. Conversely, static individuals remained solitary.
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