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The concentrations of 222Rn and dissolved inorganic nutrients in river water at a

fixed station of the Nakdong River estuary which has an artificial barrage were

continuously measured from October 2014 to May 2015. Monthly benthic 222Rn

flux from the river bottom was estimated using a simple mass balance model,

taking into account 222Rn sources and sinks. The estimated benthic 222Rn flux

shows a significant correlation with groundwater level, suggesting that

groundwater level can be used as a representative of the groundwater input.

Based on correlation analyses, the concentration of dissolved inorganic nitrogen

(DIN) was found to be dependent primarily on river water input. In contrast, the

concentrations of dissolved inorganic phosphorus (DIP) and dissolved inorganic

silicate (DSi) were predominantly controlled by groundwater input. Our results

suggest that groundwater input may be an important source of DIP, especially

under P-limited condition, which can affect marine primary production and

ecological problems such as eutrophication and algal blooms in the

coastal zones.

KEYWORDS

estuaries, groundwater, nutrients, Rn-222, benthic flux, Nakdong River
1 Introduction

Estuaries are important pathways for transporting terrestrial materials (e.g. nutrients,

trace metals, and carbon) to the oceans (Meybeck, 1982; Brunskill et al., 2003; Smith et al.,

2003; Swarzenski et al., 2004; Colbert and McManus, 2005; Paerl, 2006). In estuaries, the

physical properties and chemical composition of river water are significantly altered. This is
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due to the mixing of freshwater and seawater, which causes various

biogeochemical processes, including adsorption/desorption,

precipitation/dissolution, sedimentation, and complexation

(Turekian, 1977; Bryan and Langston, 1992; Charette et al., 2005).

In addition, estuarine zones are characterized by high biodiversity

and primary productivity due to a range of different habitats and

heavy nutrient loadings (Day et al., 1989; Lirman et al., 2008). Over

the past decades, the amount of river-derived dissolved inorganic

nitrogen (DIN) and dissolved inorganic phosphorus (DIP)

transported into the oceans has increased considerably. For

example, between the 1970s and the 1990s, river-derived DIN and

DIP fluxes to the oceans had increased three folds, due to a rapid

increase in the use of artificial fertilizers (Smith et al., 2003). This

increases in anthropogenic nutrient flux has caused serious

environmental problems in estuarine environments, including

eutrophication, subsurface acidification, and deoxygenation

(Moncheva et al., 2001; Ruhl and Rybicki, 2010; Cai et al., 2011;

Sunda and Cai, 2012).

During the last century, dams and barrages have been

constructed across many estuaries throughout the world to

preserve reservoir capacity and prevent seawater intrusion into

swamps, wetlands, and coastal aquifers. These constructions have

significantly altered the biogeochemical, hydrological, ecological,

and oceanographic conditions of estuarine environments (Talley,

2000; Kim et al., 2005; Jang and Kim, 2006). For example, declines

in river water and sediment discharges were observed following the

construction of a large dam across the Yangtze River, China (Yang

et al., 2015). In addition, reservoirs upstream of river and

hydroelectric dams have been recognized as significant sources of

greenhouse gases (CO2 and CH4) because these gases can be

produced by the decomposition of organic matter in reservoirs’

water (St. Louis et al., 2000). Dam and barrage construction also

affects the changes in nutrient fluxes (Duan et al., 2007).

Fluvial runoff is considered, in general, to be the most important

transport pathway for nutrients into coastal waters. However,

groundwater has also been recognized recently as an important

source of nutrients in coastal zones (Burnett et al., 2003; Slomp and

Van Cappellen, 2004; Moore, 2006). On the other hand, nutrients

derived from submarine groundwater discharge (SGD) play a

significant role in primary production (Lapointe, 1997; Hwang

et al., 2005a; Lee and Kim, 2007; Kim et al., 2011) and benthic

production (Hwang et al., 2005b; Waska and Kim, 2010) in coastal

areas because nutrient concentrations in groundwater are often

higher than those in coastal waters (Slomp and Van Cappellen,

2004; Moore et al., 2006; Kim et al., 2008).

Radon (222Rn; half-life 3.8 days) has been used as a natural

radioactive tracer to estimate groundwater inflow rate or water flow

through SGD because it is often higher in groundwater than surface

water (e.g., lake water, seawater, river water). In previous research,

groundwater discharge was estimated based on a 222Rn mass

balance model, which considers sources and sinks of 222Rn in

aquatic systems such as rivers, lagoons, and coastal zones

(Peterson et al., 2010; Cartwright and Gilfedder, 2015; Sadat-

Noori et al., 2015).

The aim of this study is to examine the role of river versus

groundwater input in the fluxes of nutrients into the Nakdong River
Frontiers in Marine Science 02
estuary, downstream of a barrage. In order to achieve this goal

under a dynamic estuarine condition, 222Rn (a tracer of

groundwater input) and the concentrations of nutrients were

continuously measured at a fixed station in the estuary.
2 Materials and methods

2.1 Study area

The Nakdong River is the longest (535 km) and the second

largest catchment area (total area 24,000 km2) in Korea (Figure 1).

Mean annual precipitation is 1,150 mm over the last 30 years with

heavy rain in summer (Jeong et al., 2007). Mean annual

temperature is 12–16°C in this region. The river estuary is micro-

tidal, with semi-monthly and semi-diurnal tidal variations ranging

from 0.5 m at neap tide and ~2 m at spring tide. The deltaic

environment of this river estuary changed to barrier islands after the

construction of the Nakdong River barrage, and the bedrock

consists of granite, andesite, and rhyolite. The sediments of the

estuary are composed of clay, sand, and gravel to a depth of 60–90

m (Chung et al., 2016).

Multi-purpose dams and river barrage were constructed across

the Nakdong River. These barriers control the water flow and level

to supply industrial and agricultural water and prevent seawater

intrusion. The Nakdong River barrage is located approximately

7 km away from open ocean, and is equipped with four regulating

gates and six main gates (550 m long). All the gates can discharge

river water using underflow and overflow. The barrage also has a

closed section (1,720 m long) with a navigation lock and a fish

ladder (Ji et al., 2011). After construction of the barrage built in

1987, water quality and various ecosystems within the Nakdong

River estuary have changed. For example, the estuary has

experienced blooms of cyanobacteria and diatoms due to river-

derived anthropogenic input of nutrients (Kim et al., 1998; Ha

et al., 1999).
FIGURE 1

Locations of the 222Rn and nutrient monitoring site (square) in the
Nakdong River estuary and the groundwater level monitoring station
(star). A schematic diagram of the measurement system, which uses
a radon monitor (RAD7) and air-water exchanger, is also shown.
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The monitoring station was ~600 m away from the Nakdong

River barrage, and the sampling intake was located ~1 m below the

water surface. The monitoring systems were maintained by

Ministry of Oceans and Fisheries and Korea Marine Environment

Management Corporation (KOEM).
2.2 Water properties and environmental
parameters

Temperature, salinity, wind speed, and nutrient concentrations

data in the river water were obtained from Marine Environment

Information System (MEIS, https://www.meis.go.kr). Auto nutrient

analyzers (RoboChem S-NH4, NO2, NO3, PO4, SiO2, Centennial

Technology) recorded the concentrations of inorganic nutrients

every five minutes. DIN is defined as the sum of NH+
4 , NO

−
3 , and

NO−
2 , DIP as PO3−

4 , and DSi as Si(OH)4. The detection limits of the

analyzers for DIN, DIP, and DSi were 0.2 mM, 0.03 mM, and 0.1 mM,

respectively. The instruments were checked every week to validate

the monitoring results. Data could not be obtained when there was a

loss of power or during problems with water pumping.

Korea Hydrographic and Oceanographic Administration

(KHOA) provided sea level data at Pusan tidal station, located

approximately 8 km away from the monitoring station. Data on the

level of groundwater of a well located 5 km away from the

monitoring site (Figure 1) were obtained from National

Groundwater Information Center (www.gims.go.kr). Information

on the level of river water upstream of the barrage and river water

discharge was obtained from K-water.
2.3 Continuous 222Rn monitoring

At the monitoring station, the water flow rate to the radon

monitoring system was maintained constantly at 1–2 L min–1.

Activity of 222Rn in the water was continuously measured using

an automated radon-in-air monitor (RAD7; Durridge Co.) (Burnett

et al., 2001). RAD7 can record radon activity in the air within the

closed loop of an air-water exchanger (Burnett et al., 2001; Lane-

Smith et al., 2002). To maintain low internal humidity (< 10%),

RAD7 was coupled with a desiccant and a moisture exchanger

(PASSIVE DRYSTIK, 12 model, Durridge Co.) (Oh and Kim, 2011).

The desiccant was replaced every month. 222Rn data collected

during periods of high relative humidity (> 10%) or when water

was not flowing were discarded.

To avoid potentially underestimating 222Rn activity, the

activities of 222Rn were corrected for humidity effects using

Capture software (Durridge Co.). Without this correction, the

activities of 222Rn could be about 5% underestimated. The

corrected 222Rn activity was then converted to activity in water

using the water/air partition coefficient of radon. This is calculated

from the relationships between water temperature, salinity, and the

Bunsen coefficient (Schubert et al., 2012). Since generally salinity

changes sharply in estuaries, the activities should be carefully

corrected for the salinity effects.
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3 Results

3.1 Environmental parameters

During the entire measurement period, sea level ranged from -0.1

to 1.5 m with semi-diurnal and semi-monthly fluctuations

(Figure 2A). Sea level was slightly lower during the dry season

(December 2014–February 2015) than the wet seasons (October

and November 2014, March–May 2015). Daily average wind speed

varied between 1.7 and 6.4 m s–1, with slightly higher values during

the day and during periods of significant rainfall (Figure 2A). The

water level upstream of the barrage was slightly lower during the wet

seasons than the dry season, ranging from 0.5 to 0.9 m (Figure 2B).

The relative groundwater level, which is obtained by subtracting an

average (105.2 m) of all groundwater level data, varied between -1.4

and 1.9 m (Figure 2B). This is a much larger range than change in the

water level upstream of barrage. Relative groundwater level was

highest during October 2014 due to significant rainfall events

during the summer months of 2014. River water discharge ranged

from 30 to 1,690 m3 s–1, showing higher discharge, due to large

rainfall, during the wet seasons (average: 312 ± 57 m3 s–1) than the

dry season (average: 78 ± 11 m3 s–1).
3.2 Salinity, 222Rn, and nutrients

Salinity ranged from 0 to 27, showing diurnal and seasonal

variations. Salinities were lower during the wet seasons than the dry

season (Figure 2C). During the dry season, salinity showed a clear

semi-diurnal variation. Daily average 222Rn activity ranged from 3

to 69 Bq m–3 (Figure 2D), with slightly higher activities during the

dry season (32 ± 11 Bq m–3) than the wet seasons (26 ± 15 Bq m–3).

Daily average concentrations of DIN, DIP, and DSi were in the

range of 32–186 mM, 0.3–2.3 mM, and 26–327 mM, respectively

(Figures 2E, F). The daily average N:P ratio ranged from 33 to 226

over the entire monitoring period (data not shown).
4 Discussion

4.1 Effect of salinity, wind speed, and tides
on nutrient levels

Data measured every five minutes for nutrient concentrations

and every two hours for 222Rn activity were averaged per day to

minimize the effect of hourly variation in wind speed and tides. The

daily average salinity showed a significant correlation (r = -0.87, p

<0.001) with the river water discharge (Figure 3A), except for two

days in November 2014 when the river water discharge was very high

due to significant rainfall (1,690 m3 s–1 and 1,310 m3 s–1) (Figure 2C).

This suggests that changes in salinity reflect variation in the river

water discharge in this estuary. As expected, salinity decreased to <1

during the wet seasons when the river water discharge was high, but

increased to >25 during the dry season when the discharge was

much lower.
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The concentration of DIN showed a significant correlation (r =

0.72, p <0.001) against the river water discharge, indicating that the

river-derived DIN is a main source of DIN in this estuary, and that

DIN is quite conservative in this river water-seawater mixing zone

(Figure 3B). The average DIN concentration in the fresh river water

(salinity <2) during large rainfall periods was approximately 130
Frontiers in Marine Science 04
mM. This is four to five times higher than concentrations in open

ocean water (~25 mM). These results suggest that the DIN input

from the river significantly influence on DIN budget in this mixing

zone. However, DIP and DSi showed weak or no correlations

against the river water discharge (r = 0.23, p <0.001 for DIP and

r = 0.08, p = 0.205 for DSi) (Figures 3C, D), indicating that the
B

C

D

E

F

A

FIGURE 2

Time series measurement results of the daily averages for (A) wind speed and sea level, (B) relative groundwater level and river water level,
(C) salinity and river water discharge rate, (D) 222Rn activity, (E) DIN (closed circle) and DIP (open circle) concentrations, and (F) DSi concentration
from October 2014 to May 2015.
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concentrations of DIP and DSi may be significantly influenced by

other environmental factors such as wind speed, river water level,

tides, or groundwater input. However, open ocean sources for DIP

and DSi seem to be insignificant as DIP and DSi concentrations

were low in the high salinity (25–27) water.

The daily averages of nutrient concentrations did not correlate

significantly with wind speed (r < 0.01, p <0.979 for DIN, r <0.01,

p = 0.976 for DIP, and r = -0.1, p = 0.181 for DSi) during the entire

measurement period (Supplementary Figure 1). This suggests that

vertical water mixing at the monitoring station does not

significantly affect the nutrient concentrations. In addition,

nutrient concentrations did not show a similar trend with tidal

fluctuations (Figure 2). To remove the effects of large discharge

events on the correlation analyses, we selected a period of low river

water discharge (16 December 2014–10 March 2015, <150 m3 s–1).

During this period, no significant correlation was found between

DIP and DSi, and salinity, similar to the entire measurement period

(Supplementary Figures 2A–C). In addition, the wind speeds also

showed no significant correlations with the nutrient concentrations

(Supplementary Figures 2D–F). Therefore, these relationships

demonstrate that while DIN is mainly controlled by the river

water discharge as mentioned above, DIP and DSi may be more
Frontiers in Marine Science 05
influenced by other processes, such as groundwater input, rather

than by the river water discharge, wind speed, and tidal fluctuation.
4.2 Effect of groundwater on
nutrient levels

Since groundwater has been recognized as an important source

of nutrients in rivers and estuaries (Moore, 2010; Kim et al., 2011),

we attempt to link groundwater and nutrients (DIP and DSi) in

estuarine water using correlation analyses. We obtained two

independent groundwater parameters, groundwater level and

benthic 222Rn flux. The seasonal trend in groundwater level at the

monitoring well was found to be similar to that of another well

located ~12 km away from the monitoring station (r = 0.92 for

October 2014–March 2015 and r = 0.91 for April–May 2015, data

not shown). This suggests that the groundwater level at the

monitoring well seems to represent the regional trend of

groundwater level. Therefore, groundwater level was utilized in

this study as a hydraulic gradient index for the estuary. Compared

with the variation in groundwater level (maximum: 3.5 m), the

change in river water level upstream of the barrage (maximum:
B

C D

A

FIGURE 3

Plots of the daily averaged river water discharge versus (A) salinity, (B) DIN, (C) DIP, and (D) DSi during the entire measurement period except for two
days in November 2014. The solid lines represent the regression lines.
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0.4 m) was much smaller, indicating that the hydraulic gradient

driven by the river water level is relatively insignificant in

this region.

On the other hand, in this study, the groundwater inputs of

nutrients are traced by 222Rn monitoring results. Benthic 222Rn flux

reflects groundwater input because: (1) the level of 222Rn in

groundwater is 1–2 orders of magnitude higher than that in

seawater, (2) 222Rn is conservative in water, (3) the time scale of
222Rn decay is suitable for tracing groundwater in coastal waters,

which have a few days of residence time generally, and (4) the

diffusive fluxes of 222Rn from bottom sediments are often negligible

compared with groundwater input (Tait et al., 2013).

In this study, 222Rn data is integrated for each month to

minimize the effect of episodic variations in the daily averaged

data which are influenced by many environmental parameters such

as the tide, wind speed, river water discharge, and groundwater

input in the estuary. The assumptions made for this calculation are,

that: (1) the sources of 222Rn are groundwater and ingrowth from
226Ra, and the sinks are evasion to the atmosphere and radioactive

decay, and (2) the water was vertically homogeneous throughout

the entire water column at the monitoring station (average depth:

5 m). At a steady-state condition, 222Rn mass balance can be

expressed as follows:

Fben-Feva-Fdec+Fing = 0 (1)

where Fben is the
222Rn flux from the river bottom, Feva is the

222Rn

evasion flux to the atmosphere, Fdec is the
222Rn decay flux, and Fing

is the radioactive ingrowth flux from 226Ra. The unit of the flux is

Bq m–2 month–1. Feva is calculated for the daily averaged data and

then combined into a month. We used the equations presented by

Macintyre et al. (1995) and Turner et al. (1996) to estimate Feva
using the wind speed, gas transfer coefficient, and daily averaged

radon activity. The activity of 222Rn in the atmosphere is assumed to

be 10 Bq m–3. Fdec is calculated by multiplying the daily averaged
222Rn activity by the decay constant (0.182 day–1) and water volume

(5 m3). Fing is calculated using the 222Rn decay constant and water

volume. The activity of 226Ra is assumed to be 1.3 Bq m–3 from a

previous study (Yang et al., 2002).

The calculated evasion and decay fluxes ranged from 240 to

560 Bq m–2 month–1 and 550 to 1,100 Bq m–2 month–1, respectively

(Figure 4). The input flux from 226Ra decay was approximately

36 Bq m–2 month–1, which is much lower (<5% of the total loss)
Frontiers in Marine Science 06
than the other terms. Using Eq. (1), the benthic 222Rn fluxes ranged

from 760 to 1,500 Bq m–2 month–1, with an average of 1,100 ±

270 Bq m–2 month–1. The benthic fluxes were relatively lower in the

spring season (March, April, and May) compared with the other

seasons. The diffusion flux (50 Bq m–2 month–1) was negligible

(<10% of the minimum benthic flux), even when the maximum
222Rn diffusion rate (1.6 Bq m–2 d–1) is assumed (Hwang, 2005c).

The monthly-integrated benthic 222Rn flux showed a significant

relationship (r = 0.78, p = .023) with the monthly average relative

groundwater level (Figure 5A), suggesting that groundwater level

can be used as a representative of the groundwater input (high

hydraulic gradient leads to an increase in groundwater input) in this

estuary. Furthermore, groundwater seeping zone cannot be

differentiated using correlation analyses. Therefore, the benthic

flux of 222Rn may trace groundwater-driven nutrient fluxes from

any areas, including upstream rivers, estuarine zones, and open

ocean waters (Burnett and Dulaiova, 2003; Kim et al., 2011; Santos

et al., 2015). In addition, we cannot quantify groundwater flux or

groundwater-borne nutrient fluxes since the endmember values of
222Rn and dissolved nutrients in groundwater are unknown.

In order to investigate the link between groundwater input and

the concentrations of DSi and DIP, we have to remove the data for

significant river water discharge period. During the period of low

river water discharge, the relative groundwater level showed no

significant correlation against DIN concentration (r = -0.05, p =

.496, data not shown), as expected from a significant correlation

between DIN and salinity. However, the change in relative

groundwater level showed significant correlations against the

change in the concentration of DIP (r = 0.65, p <0.001) and DSi

(r = 0.90, p <0.001) (Figures 5B, C). We excluded some DSi data for

anomalously high and low concentrations, perhaps due to biological

processes, in this plot. These results indicate that groundwater input

does not significantly influence DIN concentration, however, DIP

and DSi concentrations are controlled by groundwater input at least

during low river water discharge period in this estuary. Also, the

observed N:P ratios (33 to 226), which were higher than Redfield

ratio (16), indicated that the river water was under P-limited

condition and showed a significant correlation (r = -0.41, p

<0.001) with the relative groundwater level (Figure 5D).

Therefore, our results suggest that groundwater input may be an

important source of an ecologically limiting nutrient (DIP) which

controls biological productivity in this estuary.
FIGURE 4

Histogram showing monthly-integrated 222Rn fluxes through evasion and decay.
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5 Conclusions

High resolution time series observations of nutrients and 222Rn

were conducted over eight months to examine the factors

controlling DIN, DIP, and DSi in the Nakdong River estuary. On

the basis of the correlations between the daily average nutrient

concentrations and environmental parameters such as salinity, river

water discharge, wind speeds, tide, river water level, and

groundwater level (benthic flux), the main source of DIN is found

to be river water but the main source of DIP and DSi is

groundwater. Our results suggest that groundwater driven DIP,

which is a limiting nutrient in this estuary, may control the

biological production of this estuary. Thus, more extensive studies

are necessary to quantify the input of groundwater-borne nutrients

into estuaries over the world.
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