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High-resolution salinity information is of great significance for understanding the

marine environment. We here propose a deep learning model denoted the

“Attention U-net network” to reconstruct the daily salinity fields on a 1/4° grid in

the interior of the South China Sea (SCS) from satellite observations of surface

variables including sea surface salinity, sea surface temperature, sea level

anomaly, and sea surface wind field. The vertical salinity profiles from the

GLORYS2V4 reanalysis product provided by Copernicus Marine Environment

Monitoring Service were used for training and evaluating the network. Results

suggest that the Attention U-net model performs quite well in reconstructing the

three-dimensional (3D) salinity field in the upper 1000 m of the SCS, with an

average root mean square error (RMSE) of 0.051 psu and an overall correlation

coefficient of 0.998. The topography mask of the SCS in the loss function can

significantly improve the performance of the model. Compared with the results

derived from the model using Huber loss function, there is a significant reduction

of RMSE in all vertical layers. Using sea surface salinity as model inputs also helps

to yield more accurate subsurface salinity, with an average RMSE near the sea

surface being reduced by 16.4%. The good performance of the Attention U-net

model is also validated by in situmooring measurements, and case studies show

that the reconstructed high-resolution 3D salinity field can effectively capture

the evolution of underwater signals of mesoscale eddies in the SCS. The

resolution and accuracy of sea surface variables observed by satellites will

continue to improve in the future, and with these improvements, more precise

3D salinity field reconstructions will be possible, which will bring new insights

about the multi-scale dynamics research in the SCS.
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1 Introduction
Ocean salinity is essential for the study of global hydrological

cycle and ocean circulation, and its variation plays an important

role in the ocean stratification, climate change and ecosystem

(Lagerloef, 2002; Held and Soden, 2006; Schmitt, 2008; Ren and

Riser, 2010; Schmidtko et al., 2017). However, changes in salinity

within the ocean, especially within the marginal seas, have not been

well captured and understood yet due to the lack of sufficient high-

resolution three-dimensional (3D) data. In situmeasurements from

underwater moorings or profiling floats such as the global array for

real-time geostrophic oceanography (Argo) are traditionally used

for studying the salinity characteristics of the interior ocean.

However, field observations are still sparse, discontinuous, and

limited in coverage, which obscure the details of mesoscale and

smaller-scale processes. Satellite remote sensing has provided long-

term and high-resolution data of various sea surface variables

worldwide. However, the sensors cannot directly see the deep

ocean where the thermohaline structure shows significant

variations due to complex dynamic processes such as mesoscale

eddies and internal waves (Henning and Vallis, 2004; Huang et al.,

2016; Keppler et al., 2018). By retrieving the 3D salinity field from a

large set of satellite data (Klemas and Yan, 2014), it is possible to

improve the skill of surface observations to deeper layers and thus

be t t e r unde r s t and mar ine phenomena a t d i ff e r en t

spatiotemporal scales.

Several methods have been applied to estimate salinity profiles

from satellite observations. Before the operational application of

salinity satellites such as Aquarius, Soil Moisture and Ocean Salinity

(SMOS) and Soil Moisture Active and Passive (SMAP) missions, sea

surface salinity (SSS) data were very sparse and very rarely used as

model inputs (Carnes et al., 1994; Agarwal et al., 2007; Guinehut

et al., 2012). For example, Guinehut et al. (2012) tried to estimate

the 3D salinity anomaly field of the global ocean by establishing a

linear relationship between monthly Argo salinity profiles on a 1°

grid and 7-d sea level anomaly (SLA) with spatial resolution of 1/3°.

They concluded that altimeter observed SLA could only reconstruct

approximately 20% to 30% of the salinity signal, implying that it is

necessary to consider more surface variables for accurate estimation

of the vertical structure of salinity. Some studies used field

observations of SSS to estimate underwater salinity and found

that SSS was an essential parameter for 3D salinity reconstruction

(Agarwal et al., 2007; Ballabrera-Poy et al., 2009). Yang et al. (2015)

used linear regression and neural network models to retrieve

vertical salinity profiles from SSS observed by SMOS. The

nonlinear neural network provided more accurate estimation than

the linear model in the upper 2000 m of the global ocean, and the

root mean square error (RMSE) varies from 0.077 psu to 0.138 psu

in different regions. This highlights the potential of artificial

intelligence (AI) approach in underwater salinity reconstruction.

However, due to the relatively short period of SMOS data at that

time, the accuracy was not high enough.

The amount of satellite data has explosively increased in recent

years, and as a result, oceanographic research has entered the “big

data era” (Li et al., 2020). The combination of ocean big data and AI
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provides a new way of reconstructing 3D salinity fields from surface

variables observed by satellites. Recently, Su et al. (2019) introduced

a machine learning method called extreme gradient boosting to

estimate global ocean subsurface salinity structure from the

anomaly of several surface variables including SSS, sea surface

temperature (SST), sea surface height and sea surface wind

(SSW). The model uses monthly Argo salinity profiles on a 1°

grid as label data, with resultant average normalized RMSE and

correlation coefficient of 0.042 and 0.735, respectively. Other

machine learning and deep learning methods have also been

proposed to obtain the salinity or salinity anomaly profiles in the

open ocean from satellite observations, such as the generalized

regression neural network (Bao et al., 2019), long- and short-term

memory (LSTM) (Buongiorno Nardelli, 2020), convolutional

neural network (CNN) (Meng et al., 2022) and convolutional

LSTM (Song et al., 2022). Generally, the surface variables used as

model inputs include SSS/SSS anomaly, SST/SST anomaly, SLA,

SSW/SSW anomaly, or absolute dynamic topography (ADT).

However, less attention is given to the reconstruction of interior

salinity structure in marginal seas, where it is more difficult to

obtain accurate results due to complex topography and multi-scale

dynamics. The South China Sea (SCS, Figure 1A) is one of the

largest marginal seas adjacent to the West Pacific Ocean, where

mesoscale and sub-mesoscale processes are very active (Wang et al.,

2003; Zheng et al., 2007; He et al., 2018; Xie et al., 2022a). High-

resolution 3D ocean observations are urgently needed to capture the

fine structure and evolution of these dynamic processes. Therefore,

the reconstruction of 3D salinity fields at high temporal and spatial

resolution is necessary for the SCS. To achieve this goal, a U-net

deep learning model combined with an attention mechanism

(hereafter called “Attention U-net”) is here presented to

reconstruct the 3D salinity field in the upper 1000 m of the SCS

from satellite observations of SSS, SST, SLA and SSW. The daily

vertical salinity profiles on a 1/4° grid from the GLORYS2V4

reanalysis product were used for training and evaluating the

network. The paper is organized as follows. Section 2 presents the

satellite-observed sea surface variables and reanalysis data of ocean

salinity profiles used here. The detailed configuration of the

Attention U-net model is also described. The model performance

in reconstructing 3D salinity field of the SCS is evaluated in Section

3. In Section 4, the estimation errors are analyzed, and the influence

of SSS on the upper-layer salinity reconstruction is discussed. An

applicative example of the reconstruction model in revealing the

underwater salinity signals related to the mesoscale cold eddy is also

shown. Finally, conclusions are given in Section 5.
2 Materials and methods

2.1 Satellite observations and
reanalysis product

The surface variables used as inputs to the Attention U-net model

are SSS, SST, SLA, and zonal and meridional components of SSW. The

SSS data are provided by the European Space Agency (ESA) Sea

Surface Salinity Climate Change Initiative (CCI) consortium (https://
frontiersin.org
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data.ceda.ac.uk/neodc/esacci/sea_surface_salinity) which produces

global multi-sensor SSS maps by merging SMOS, Aquarius and

SMAP measurements with an optimal interpolation in the time

domain, covering 2010 to 2020. The SMOS SSS dataset is based on

the ESA Level 2 version 622 algorithm and is corrected for seasonal

latitudinal biases and dielectric constants (Zine et al., 2008; CATDS,

2017). The SMAP and Aquarius products are obtained from SMAP

version 4 and Aquarius version 5 retrieval algorithms, respectively, and

they are all projected on the global cylindrical 25 km Equal Area

Scalable Earth (EASE) grid to have the same spatial grid with the SMOS

data (Meissner et al., 2018;Meissner et al., 2019). The CCI SSS products

of version 03.21 are spatially sampled on a 25 km EASE grid at 1 day

time sampling (Boutin et al., 2021). The daily optimally interpolated

SST product (version 2.1) with a spatial resolution of 1/4° is from the

National Oceanic Atmospheric Administration (https://

www.ncei.noaa.gov/products/optimum-interpolation-sst). It

incorporates observations from different platforms, such as satellites,

ships, buoys, and Argo floats, and has a global coverage from 1981 to

present (Reynolds et al., 2007; Huang et al., 2021). The multi-mission

altimeter SLA product is available on the website of Copernicus Marine

Env ironment Moni tor ing Serv ice (CMEMS, ht tps : / /

resources.marine.copernicus.eu). Its delayed-time version (id:

SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047) has a

spatial and temporal resolution of 1/4° and 1 day, respectively and

contains data from 1993 to 2020. The SSW data are derived from the

version 2 of Cross-Calibrated Multi-Platform (CCMP) wind product,

which consists of four daily 1/4° gridded surface vector winds maps

based on various microwave scatterometers and radiometers, such as

QuikSCAT, ASCAT, SSM/I, AMSR, SSMIS, WindSat, etc. (Atlas et al.,
Frontiers in Marine Science 03
2011; Mears et al., 2019). The data cover a wide time range from July

1987 to April 2019 and can be obtained from the Remote Sensing

Systems (https://www.remss.com/measurements/ccmp/). Figure 1

shows the water depth and climatological distribution of satellite

observed surface variables in the SCS from 2010 to 2018.

The daily vertical salinity profiles on a grid of 1/4° are from the

GLORYS2V4 reanalysis product, which was built to be in agreement

with the model physics at eddy-permitting resolution (Garric et al.,

2017). The assimilated observations include satellite observed SST,

SLA, sea ice concentration and in situ profiles of temperature and

salinity. The product (id: GLOBAL_REANALYSIS_PHY_001_031) is

now supplied by CMEMS consisting of 75 vertical levels and covering a

period from 1993 to 2019 (https://data.marine.copernicus.eu/product/

GLOBAL_REANALYSIS_PHY_001_031).
2.2 Attention U-net model

The Attention U-net model is the combination of U-net

architecture and attention mechanism. U-net is a classic CNN,

which consists of a contracting path to capture context and a

symmetric expansive path. The contracting path includes the

repeated application of convolutions and a max pooling

operation, while the pooling operators are replaced by

upsampling operators in the expansive path to increase the

resolution of outputs. In order to help the network precisely

localize, the upsampled features are combined with the same

resolution features from the contracting path. Then, the feature

channels are doubled, which allows the network to propagate
B C

D E F

A

FIGURE 1

(A) Distribution of water depth in the SCS. Contours of 200 m and 1000 m depth are overlaid with black lines, and the location of a mooring station
is marked as a yellow pentagram. (B–F) Climatology of sea surface variables in the SCS from 2010 to 2018. (B) Sea surface salinity, (C) sea surface
temperature, (D) sea level anomaly, (E) zonal and (F) meridional wind speed.
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contextual information to higher resolution layers. The U-net

shows superiority in solving the small sample learning problems

by producing accurate results with very few training samples and

performs well in the multi-scale feature extraction of images

(Ronneberger et al., 2015; Han and Ye, 2018; Li et al., 2020;

Zhang et al., 2022). However, it might repeatedly extract similar

lower-level features, which would lead to the redundant use of

computational resources and poor model performance. The

attention mechanism focuses selectively on important features

and suppresses unnecessary ones. It can improve the calculation

efficiency of the model by introducing a small number of

parameters (Xu et al., 2015; Chaudhari et al., 2021). The addition

of the attention module to U-net can effectively avoid paying the

excessive attention to simple features of targets, and thus can be

helpful to improve the model accuracy on the classification and

regression tasks (Oktay et al., 2018; Li et al., 2022; Xie et al., 2022b).

The structure of the Attention U-net model is shown in

Figure 2A. The maps of five surface variables are used as inputs
Frontiers in Marine Science 04
and double convoluted to produce the feature maps, and then a 2×2

max pooling operation and convolutional block attention module

(CBAM) are applied. As shown in Figure 2B, the CBAM consists of

the channel attention module (CAM) and spatial attention module

(SAM), which tells the model “what” and “where” to attend in the

channel and space, respectively (Woo et al., 2018). The CAM first

uses the average pooling and max pooling operations to obtain

different features. The resulting features are merged by element-

wise summation after the application of the shared network. Then, a

sigmoid activation function is applied to yield the channel attention

map. The element-wise multiplication between the channel

attention map and original features is used as the input of SAM.

Two feature maps are obtained through average pooling and max

pooling operations along channels. The average-pooled and max-

pooled features are concatenated and then convolved by a

convolutional layer with the filter size of 7×7 followed by a

sigmoid activation function to get the spatial attention map. It is

multiplied with the input of SAM to produce the final output of
B

A

FIGURE 2

(A) Schematic diagram of Attention U-net model. The subtitles “Convolution”, “Maxpooling”, “Up-sampling” and “CBAM” represent the specific
operations between two layers. (B) Schematic diagram of CBAM structure and sub-modules.
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CBAM. Hence, the important feature maps of the original sized

object are obtained after the first CBAM. The down-sampled

features are also processed with a double convolution and put

into the CBAM, which can capture significant object features on the

coarse scale. Next, the output is up-sampled with a 2×2 filter to yield

the original sized features, concatenated with the features derived

from the first CBAM, and then convoluted twice. After the last

convolution operation, a single feature map is produced as the

model output, which is the interior salinity field for the study of 3D

salinity reconstruction. Except for the output layer, all

convolutional layers have a filter size of 3×3, followed by the

rectified linear unit (ReLU) activation function. The filter size of

the output layer is 1×1 and the activation function is linear. The

adaptive moment estimation (Adam) optimizer is selected to help

the network to rapidly converge to the optimal solution. In addition,

the training epochs are set at 1000, and a varied learning rate, which

is reduced by half if the loss value of validation data remains

unchanged during 50 training rounds, is adopted to avoid the over-

fitting problem.

The loss function is one of the key parameters for model

evaluation and optimization in the training process. Our previous

study (Xie et al., 2022b) proved that the Huber loss function is

superior to the commonly used mean square error (MSE) function

in the reconstruction of subsurface temperature in the SCS, as it

helps the model to converge quickly and pays less attention to the

invalid value brought by the topography, which is usually specified

as a number far away from the actual water temperature in the

model. The Huber loss function can be expressed as

Li,d,d =
1
2 (yd,i − f (xd,i))

2 yd,i − f (xd,i)
�� �� ≤ d

d yd,i − f (xd,i)
�� �� − 1

2 d
2 yd,i − f (xd,i)

�� �� > d

(
(1)

where Li,d,d is the value of the Huber loss function; yd,i and f(xd,i)

represent the real salinity and model estimation, respectively; d is

the water depth, i is the number of the data point, and d is the hyper
parameter which determines the expression form of Huber loss

function. In addition, a new loss function, denoted “mask based

root mean square error” (Mrmse), was defined. It considers the

topography mask Md,i of the marginal sea and is expressed as

Ld =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
mo

m

i=1
½(yd,i − f (xd,i))

2 ·Md,i�
s

(2)

where Ld is the value of the Mrmse loss function; m is the total

amount of the data points; Md,i is the topography mask, and if the

ith point at the depth of d is on the land, its value is set to 0,

otherwise it is set to 1. In this way, the model performance is only

evaluated on the valid salinity data in the training process and

would be less affected by the outliers from topography. The

attention of the model to salinity features would also not be

shared, which could help yield more accurate salinity fields. To

investigate the effect of loss functions on the accuracy of 3D salinity

reconstruction in the SCS, we first carry out comparative

experiments using different loss functions in the Attention U-

net model.
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The reconstruction model was established by month for each

vertical layer considering the seasonal variation of the ocean salinity

field. Data from January 2010 to December 2018 were used to build

and test the model, 3278 samples in total. All surface data were

standardized to the same resolution as the vertical salinity profile

data and normalized by clustering them with a zero mean and

variance of one to eliminate the variable differences. 80% of the

processed samples were randomly selected to train the model and

divided into two groups at 9:1: training set (72%) and validation set

(8%). The remaining samples were used as testing data.
3 Results

3.1 Influence of loss function on the
performance of Attention U-net model

The performance of the Attention U-net model was evaluated

by calculating the RMSE and correlation coefficient between the

reconstructed salinity and GLORYS2V4 reanalysis product on the

testing dataset. We take the 3D salinity reconstruction model in

January as an example, with estimation results shown in Table 1 and

Figure 3A. Here, the hyper parameter d of the Huber loss function is

set to be 1. The model with Huber loss function performs better

than the one with MSE. This might be due to the lower penalty

degree on the outliers of the Huber function, and as a result, the

model focuses less on the invalid values caused by topography.

However, larger RMSEs are present in the upper layers and the

correlation coefficient decreases rapidly from 0.972 at the top layer

to less than 0.6 in waters deeper than 700 m.

In contrast, the Mrmse loss function only calculates the errors

between the estimation and ground truth at valid data points without

consideration of outliers. When the Mrmse loss function is used, the

model yields the most accurate construction results, especially in

deeper waters. The RMSE at different vertical layers between the

labelled and estimated salinity is half or even less than 85% of the

error obtained by using the Huber loss function. The error decreases

significantly as the water depth increases and the minimum value is

0.002 psu at 947 m depth. Meanwhile, the correlation coefficient is

significantly increased from 23.0% to 108.9% in waters deeper than 200

m and its value remains above 0.975. It is marginally larger in the upper

waters and changes slightly with the water depth. Similar results were

obtained for the model in July (Table 1 and Figure 3B), where the

RMSE has a large reduction between 44.0% and 86.7% and the

correlation coefficient has a significant increase of 2.8% to 172.8% at

different depths. This shows that the Mrmse loss function works better

than the MSE or Huber loss function for 3D salinity reconstruction in

the SCS. The Huber loss function greatly reduces the attention on the

anomaly values, however, it is still not effective for the establishment of

3D salinity reconstruction model in the SCS, because invalid data

always exist due to uneven distribution of topography. These invalid

data regarded as outliers would induce noise in the training dataset and

thus provide false data features, which may lead to unsatisfactory

performance of the reconstruction model. On the other hand, the

salinity changes slightly within a month. In this case, different features

learned by the network are relatively few, and hence false features
frontiersin.org
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TABLE 1 RMSE and correlation coefficient (R) between Attention U-net estimated salinity and GLORYS2V4 reanalysis in the upper 1000 m of the SCS
in January and July.

Depth/m Month
RMSE/psu R

MSE Huber Mrmse Relative difference MSE Huber Mrmse Relative difference

5
Jan. 0.262 0.189 0.095 -49.7% 0.945 0.972 0.993 2.2%

Jul. 0.277 0.209 0.117 -44.0% 0.928 0.959 0.988 3.0%

10
Jan. 0.286 0.191 0.089 -53.4% 0.926 0.968 0.993 2.6%

Jul. 0.277 0.198 0.092 -53.5% 0.902 0.951 0.990 4.1%

19
Jan. 0.266 0.184 0.095 -48.4% 0.929 0.966 0.991 2.6%

Jul. 0.209 0.186 0.074 -60.2% 0.935 0.949 0.992 4.5%

31
Jan. 0.249 0.202 0.103 -49.0% 0.929 0.953 0.988 3.7%

Jul. 0.223 0.162 0.072 -55.6% 0.933 0.966 0.993 2.8%

41
Jan. 0.279 0.186 0.100 -46.2% 0.887 0.951 0.986 3.7%

Jul. 0.186 0.183 0.070 -61.7% 0.949 0.951 0.993 4.4%

54
Jan. 0.223 0.185 0.078 -57.8% 0.913 0.941 0.990 5.2%

Jul. 0.202 0.160 0.062 -61.3% 0.904 0.941 0.991 5.3%

61
Jan. 0.238 0.170 0.073 -57.1% 0.886 0.944 0.990 4.9%

Jul. 0.178 0.150 0.061 -59.3% 0.900 0.930 0.989 6.3%

69
Jan. 0.217 0.155 0.064 -58.7% 0.872 0.937 0.989 5.5%

Jul. 0.169 0.123 0.052 -57.7% 0.889 0.943 0.990 5.0%

78
Jan. 0.187 0.130 0.057 -56.2% 0.874 0.942 0.989 5.0%

Jul. 0.155 0.111 0.041 -63.1% 0.879 0.940 0.992 5.5%

87
Jan. 0.174 0.117 0.055 -53.0% 0.851 0.935 0.986 5.5%

Jul. 0.132 0.094 0.039 -58.5% 0.865 0.934 0.989 5.9%

97
Jan. 0.146 0.098 0.046 -53.1% 0.833 0.928 0.984 6.0%

Jul. 0.114 0.079 0.033 -58.2% 0.866 0.937 0.990 5.7%

147
Jan. 0.055 0.037 0.016 -56.8% 0.812 0.918 0.985 7.3%

Jul. 0.058 0.038 0.015 -60.5% 0.774 0.911 0.986 8.2%

200
Jan. 0.039 0.037 0.011 -70.3% 0.788 0.800 0.984 23.0%

Jul. 0.044 0.029 0.010 -65.5% 0.557 0.813 0.981 20.7%

245
Jan. 0.035 0.033 0.009 -72.7% 0.745 0.767 0.984 28.3%

Jul. 0.038 0.032 0.009 -71.9% 0.482 0.606 0.973 60.6%

301
Jan. 0.029 0.025 0.007 -72.0% 0.577 0.647 0.975 50.7%

Jul. 0.033 0.023 0.005 -78.3% 0.447 0.618 0.983 59.1%

412
Jan. 0.030 0.019 0.004 -78.9% 0.425 0.650 0.987 51.8%

Jul. 0.028 0.022 0.004 -81.8% 0.517 0.642 0.990 54.2%

509
Jan. 0.030 0.020 0.004 -80.0% 0.521 0.732 0.989 35.1%

Jul. 0.031 0.022 0.005 -77.3% 0.535 0.646 0.984 52.3%

628
Jan. 0.022 0.018 0.003 -83.3% 0.642 0.702 0.990 41.0%

Jul. 0.027 0.019 0.003 -84.2% 0.547 0.684 0.993 45.2%

697 Jan. 0.026 0.016 0.004 -75.0% 0.519 0.664 0.978 47.3%

(Continued)
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would have a considerable negative impact on the model performance.

The influence of outliers on themodel is particularly great in the deeper

layers because the number of real salinity data will decrease with depth.

When evaluating model errors between estimation and labels over the

study domain, the model will learn unnecessary features from the
Frontiers in Marine Science 07
outliers and pay relatively less attention to the useful information of the

valid data. Ignoring outliers in the loss function can help the model

efficiently learn the characteristics of the real salinity field and yield an

estimation close to the ground truth. The generalization ability of the

model can be significantly improved as well. Thus, the introduction of
TABLE 1 Continued

Depth/m Month
RMSE/psu R

MSE Huber Mrmse Relative difference MSE Huber Mrmse Relative difference

Jul. 0.027 0.017 0.003 -82.4% 0.447 0.623 0.991 59.1%

773
Jan. 0.027 0.017 0.003 -82.4% 0.338 0.571 0.989 73.2%

Jul. 0.025 0.016 0.003 -81.3% 0.385 0.578 0.987 70.8%

857
Jan. 0.021 0.013 0.003 -76.9% 0.350 0.573 0.983 71.6%

Jul. 0.021 0.013 0.002 -84.6% 0.344 0.489 0.989 102.2%

947
Jan. 0.031 0.013 0.002 -84.6% 0.206 0.473 0.988 108.9%

Jul. 0.029 0.015 0.002 -86.7% 0.151 0.364 0.993 172.8%

Average
Jan. 0.185 0.133 0.064 -51.9% 0.970 0.985 0.997 1.2%

Jul. 0.160 0.125 0.055 -56.0% 0.978 0.987 0.997 1.0%
The MSE, Huber and Mrmse loss functions were used in the model. Relative difference of RMSE is (RMSEMrmse-RMSEHuber)/RMSEHuber and a negative value indicates an improvement in
accuracy. Relative difference of R is (RMrmse-RHuber)/RHuber and a positive value indicates an improvement in correlation.
B

A

FIGURE 3

Variations of RMSE and correlation coefficient (R) between Attention U-net estimated salinity and GLORYS2V4 reanalysis as a function of water
depth in the SCS in January (A) and July (B). The subscripts “MSE”, “Huber” and “Mrmse” of RMSE and R represent the estimation derived from the
model based on MSE, Huber and Mrmse loss functions, respectively.
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the Mrmse loss function in the Attention U-net model has effectively

improved the accuracy of salinity reconstruction result at all layers,

especially in deeper waters of the SCS.
3.2 Overall performance of Attention
U-net model

Based on the comparative experiment results, we finally

established the 3D salinity reconstruction model by month for

each vertical layer, in which the Mrmse loss function was used. In

this section, we evaluated the performance of these models by

comparing the model results with GLORYS2V4 reanalysis and in

situ mooring measurements, respectively.

3.2.1 Estimated salinity vs. GLORYS2V4 reanalysis
The overall RMSE and correlation coefficient between

estimation and the reanalysis in each layer is shown in Table 2.

As the water depth increases, the RMSE rapidly decreases from

0.106 psu near the surface to 0.009 psu at 200 m depth. After that, it

continues to decline and reaches a minimum value of 0.002 psu in

waters deeper than 773 m. The vertical variation of the correlation

coefficient is notably different than the RMSE. It remains stable at

high values between 0.983 and 0.994. The estimation of testing

samples at all depths and over all month has an average RMSE of

0.051 psu and a correlation coefficient of 0.998, suggesting an

impressive performance in reconstructing 3D salinity field in the

SCS. The RMSE is less than 0.03 psu in areas deeper than 100 m all

year round (Figure 4). Relatively larger values are distributed in the

upper 100 m layers of the SCS, but are still less than 0.14 psu, and

the RMSE in the upper layers shows a seasonal difference. The

vertical spatial variation pattern of RMSE is consistent with the

results of Meng et al. (2022) in the Pacific Ocean using CNNmodel.

The correlation coefficient always remains high above 0.965, and

rarely changes between seasons. However, the value is a little lower

in the water layers between 200 m and 400 m. This might be related

to the higher variability of salinity at these depths.

We further calculated the number of salinity points in the

testing dataset at intervals of 0.001 psu, divided it by the total

number of the testing data, and then normalized it to a range of 0 to

1 to obtain the density of data points in each interval. Figure 5

shows the density scatterplots between the salinity derived from

satellite observed variables and GLORYS2V4 reanalysis at different

depths. One can see that most of the statistics are distributed along
Frontiers in Marine Science 08
the isoline where the estimated salinity is equal to the true value,

demonstrating that the Attention U-net model performs quite well.

The points are concentrated in a wider salinity range of 33.3 psu to

34.2 psu at the depth of 54 m, and at a smaller range for deeper

layers. This might be related to the relatively large variation of

salinity in the upper SCS. As shown in the left panel of Figure 6, the

spatial variability of salinity field is indeed more significant in

shallower waters. The maximum horizontal difference is about 2.1

psu at 54 m depth but is only 0.3 psu at depth more than 500 m.

Figure 6 also shows that the salinity field estimated from the

Attention U-net model has a spatial distribution pattern highly

consistent with the GLORYS2V4 reanalysis. The fresher waters

within the 100 m depth are widely distributed in the southern SCS,

while those at the depth of 509 m are mainly located in the west of

the Luzon Strait. The estimation error is close to 0 in almost the

whole SCS, especially in the deeper layers. However, errors are

slightly larger in a few areas.

3.2.2 Estimated salinity vs. in situ measurements
Field measurements can provide reliable ocean salinity profile

data, although these data are sparse in space. We collected the

salinity data observed by a mooring chain consisting of eight

Conductivity-Temperature-Depth (CTD) instruments deployed at

20.54°N, 115.57°E in the northern SCS (Figure 1A). The mooring

measures underwater salinity and temperature in depth from about

50 m to 380 m. The salinity profiles from July 11 to 25 2016 were

used to further evaluate the accuracy of the reconstructed salinity

results. The daily reconstructed salinity profile and its evolution are

in good agreement with the mooring observations (Figure 7),

further indicating the good performance and applicability of the

Attention U-net model. The depth-averaged RMSE between the

model estimation and in situ measurements varies from 0.032 psu

to 0.066 psu, and the correlation coefficient is greater than 0.94.
4 Discussion

4.1 Error analysis of Attention U-net model

Overall, the Attention U-net model performs quite well in

estimating underwater salinity in the SCS and the accuracy is very

high in deep waters. The RMSE of the reconstructed salinity in the

upper 100 m is slightly larger than that in deeper layers, which may

be caused by the more complex salinity structure resulting from
TABLE 2 RMSE and correlation coefficient (R) between Attention U-net estimated salinity and GLORYS2V4 reanalysis for each layer in the upper 1000
m of the SCS.

Depth/m 5 10 19 31 41 54 61 69 78 87 97

RMSE/psu 0.106 0.079 0.070 0.071 0.067 0.058 0.054 0.049 0.042 0.038 0.031

R 0.991 0.994 0.994 0.994 0.994 0.994 0.993 0.992 0.992 0.991 0.991

Depth/m 147 200 245 301 412 509 628 697 773 857 947

RMSE/psu 0.014 0.009 0.008 0.006 0.005 0.004 0.003 0.003 0.002 0.002 0.002

R 0.987 0.985 0.983 0.984 0.983 0.990 0.990 0.989 0.991 0.990 0.988
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active dynamic processes here. The horizontal distribution of the

RMSE at three different surface depths is illustrated in Figures 8A–

C. At a depth of 5 m, the relatively large error is mainly located in

two coastal regions, but their values are still less than 0.3 psu. The

regions correspond to the generation and extension of the Pearl
Frontiers in Marine Science 09
River and Mekong River plumes that have a significant impact on

the salinity field of the coastal and upper waters of the SCS (Chen

et al., 2016; Zeng et al., 2022). The larger error near the Mekong

River estuary is particularly notable in the upper 10 m, while the

error near the Pearl River estuary is mainly distributed in the top
BA

FIGURE 4

Variation of RMSE (A) and correlation coefficient (R) (B) between Attention U-net estimated salinity and GLORYS2V4 reanalysis with water depth and month.
B

C D

A

FIGURE 5

Density scatterplots between the Attention U-net model estimated salinity (SAU-net) and GLORYS2V4 reanalysis (SGLOR) at the depth of (A) 54 m, (B)
97 m, (C) 200 m and (D) 509 m in the SCS. The black line indicates the 1-to-1 line. N is the number of data points in all testing samples.
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layer. This might be associated with larger pulse of riverine flow into

the SCS via the Mekong River, which results in a stronger halocline

near the estuary (Gan et al., 2009; Zeng et al., 2022).

Figure 4A shows the upper-layer RMSE between the

reconstructed salinity and reanalysis product for all samples in

the testing dataset differing between seasons. It is smaller in spring

(March-May) and summer (June-August) than in autumn

(September-November) and winter (December-February). This
Frontiers in Marine Science 10
seasonal variation is also evident in Figure 9. In summer, the

RMSE within the top three layers is larger near the Pearl River

and Mekong River estuaries than that in the other parts of the SCS.

This might be related to the large amount of river discharge caused

by the monsoon and wide extension of the river plumes to the SCS

(Ou et al., 2007; Zeng et al., 2022). The southwest monsoon will

bring a lot of precipitation over the ocean, thus increasing the river

discharge. In winter, rainfall is less due to land breeze, and the
B

C

D

A

FIGURE 6

Distribution of salinity field estimated by the Attention U-net model compared to the GLORYS2V4 reanalysis and their difference (dS = SAU-net –
SGLOR) at the depth of (A) 54 m, (B) 97 m, (C) 200 m and (D) 509 m in the SCS on 1 May 2018.
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corresponding river plume is weaker. As a result, the accuracy of

upper-layer salinity reconstruction near the river plumes is much

higher than that in summer.
4.2 Broader applications and limitations of
salinity reconstruction model

The 0.25°×0.25° gridded satellite observations used as model

inputs do not contain many smaller-scale signals which are usually

smoothed from the filters in the data processing and might have a

significant influence on the accuracy of reconstructed salinity field.

To investigate whether the noisy features of sea surface variables

would affect the estimation results, an additional group of

experiments based on 3D salinity reconstruction model were

conducted, in which Gaussian white noise was added to all input
Frontiers in Marine Science 11
satellite data. The results for January are given in Figure 10. After

adding noise to surface variables, the Attention U-net model still

performs well in 3D salinity reconstruction. The RMSE ranges from

0.002 psu to 0.111 psu and the correlation coefficient is always

higher than 0.973, which is close to the results obtained when using

smooth data as model inputs. The RMSE in the upper 45 m is

slightly larger, but compared to the noiseless case, the maximum

increase is less than 0.011 psu. The correlation coefficient shows

almost no change at all vertical layers. This indicates that our model

is a robust model that can resist some possible noise interference

from input data.

Thus, additional consideration of the river plume to the model

input seems to be helpful to improve salinity estimation accuracy

(see Section 4.1). However, the runoff discharge data that are usually

used to describe the intensity of the river plume are dispersedly

distributed on land where 3D salinity data are unavailable, which
FIGURE 7

Attention U-net model estimated salinity profiles (SAU-net) compared to mooring observations (SMooring) from July 11 to 25 2016.
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limits the input of runoff discharge in the model. It is also difficult to

obtain these data because most of them are not public. Can we take

the effect of river plumes into account indirectly when

reconstructing the 3D salinity field in the SCS? This is possible, as

SSS information provided by satellites already reflects the impact of

river plumes on sea surface properties. To illustrate this, two

comparative experiments were conducted to reconstruct 3D

salinity fields in the upper 20 m of the SCS from surface variables

with and without using SSS, respectively. The RMSE between the

estimations and the GLORYS2V4 reanalysis at each vertical layer in

summer and winter is given in Table 3. When SSS is added to the

model inputs, the horizontally averaged RMSE decreases at each

layer, and the maximum decline is 16.4% at a depth of 5 m. A more

significant reduction of RMSE appears in summer than winter,

while the estimation error near river estuaries is also much larger

(see Figure 9B). The influence of SSS on the subsurface salinity

reconstruction accuracy in the SCS, especially in the river plume
B CA

FIGURE 8

Distribution of RMSE between Attention U-net estimated salinity and GLORYS2V4 reanalysis at the depth of 5 m (A), 10 m (B) and 19 m (C) in the
SCS. Black arrows in (A) specify the location of Pearl River estuary (PRE) and Mekong River estuary (MRE), respectively.
B

A

FIGURE 9

(A) Vertical variation of RMSE between Attention U-net estimated salinity and GLORYS2V4 reanalysis in four seasons. (B) RMSE maps at 5 m, 10 m
and 19 m depth of the SCS in summer and winter.
FIGURE 10

Variations of RMSE and correlation coefficient (R) between Attention
U-net estimated salinity and GLORYS2V4 reanalysis as a function of
water depth in the SCS in January. The subscripts “General” and
“Noisy” of RMSE and R represent the estimation derived from sea
surface variables without and with the Gaussian white noise,
respectively. The Mrmse loss function is used in the model.
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areas, is further investigated using a distribution map of the

difference between RMSE derived from surface variables with and

without SSS (Figure 11). When SSS is added to the model inputs, the

RMSE near the Mekong estuary is significantly reduced in summer

and the RMSE around the Pearl River plume also decreases. This

indicates that SSS is crucial for 3D salinity reconstruction in the

SCS, especially in river plume regions, as it can provide useful

information about the impact of river discharge on the salinity.

However, the accuracy of satellite-observed SSS is not high enough

in coastal areas of the SCS, due to the contamination of land-based

radio frequency interference (Zhang et al., 2023). The use of new

technologies or satellite sensors to obtain more accurate SSS from
Frontiers in Marine Science 13
satellites will further improve the accuracy of salinity reconstruction

in the future.
4.3 Application of reconstructed salinity
fields to a mesoscale eddy case study

The high-resolution 3D salinity field estimated from satellite

observations using the Attention U-net model can be useful in the

study of dynamic processes in the SCS, such as mesoscale eddies.

We employ version 3.1 of the altimetric Mesoscale Eddy

Trajectories Atlas, supplied by AVISO (https://aviso.altimetry.fr),
TABLE 3 RMSE between Attention U-net estimated salinity and GLORYS2V4 reanalysis in the upper 20 m of the SCS in summer and winter.

Depth/m
Summer Winter

RMSE5/psu RMSE4/psu Relative difference RMSE5/psu RMSE4/psu Relative difference

5 0.112 0.134 -16.4% 0.096 0.112 -14.3%

10 0.094 0.111 -15.3% 0.091 0.107 -15.0%

19 0.075 0.084 -10.7% 0.094 0.103 -8.7%

Average 0.095 0.112 -15.2% 0.094 0.108 -13.0%
Subscripts “5” and “4” of RMSE represent the estimation error derived from five surface variables (SSS/SST/SLA/SSW field) and four surface variables without SSS, respectively.The relative
difference is (RMSE5-RMSE4)/RMSE4 and a negative value indicates an improvement in accuracy when considering SSS as model input.
FIGURE 11

Distribution of differences between RMSE (dRMSE = RMSE4 –RMSE5) derived from sea surface variables with and without SSS at 5 m, 10 m and 19 m
depth of the SCS in summer and winter.
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which contains information of global mesoscale eddies (Mason

et al., 2014; Pegliasco et al., 2022). Using this dataset, a mesoscale

cyclonic eddy with the radius larger than 100 km was captured in

the central SCS. The evolution of the eddy within 5 days from 13 to

17 November 2017 is presented in Figure 12A. The cyclonic eddy

propagates northwestward as its shape and internal negative SLA

signal slightly change, which means that the eddy may be stable at

this stage. Meanwhile, the corresponding SSS anomaly field,

obtained by subtracting the SSS from the climatology, is always

positive within the eddy during the propagation (Figure 12B). This

is associated with upwelling induced by the cyclonic eddy, which

lifts the relatively saltier waters at the lower layers to the upper

layers and hence increases the salinity at the sea surface. The

positive SSS anomaly signal agrees well with the eddy signal

detected from the SLA field, though it is slightly smaller. This

indicates that the characteristics of the eddy can be at least partially
Frontiers in Marine Science 14
described from the salinity field. Therefore, the reconstructed

subsurface salinity anomaly is useful for tracking the evolution of

eddy signal beneath the sea surface.

Figure 13 shows a contour map of subsurface salinity anomaly

at different water depths (5 m, 10 m, 19 m and 31 m) in the same 5

days. Closed contours of positive subsurface salinity anomaly are

present at the top three layers and disappear at a depth of 31 m,

suggesting that the subsurface signal of the cyclonic eddy is strong

in the upper 19 m. Compared with the surface signal, the

underwater signal of eddy also moves towards northwest, but

with much smaller radius and lower intensity. Additionally, the

underwater center of the cyclonic eddy detected by the subsurface

salinity anomaly field is located on the southeast side of that at sea

surface captured from the SLA field, revealing the southeastward tilt

of eddy axis in the vertical direction (Zhang et al., 2016). The

subsurface salinity anomaly field provides a valuable view of the
B

A

FIGURE 12

Daily (A) SLA and (B) SSS anomaly map from 13 to 17 November 2017 in the central SCS. The blue star and curve denote the center and contour of
the cyclonic eddy, respectively. The movement of the eddy center within 5 days is presented as blue line in (A).
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eddy-induced changes in the interior ocean, which will help us

comprehensively understand the characteristics of mesoscale eddies

in the SCS, especially their vertical structures.
5 Conclusions

The reconstruction of 3D ocean salinity fields is now much

easier with the development of numerous remote sensing satellite

missions and AI approaches. However, less attention has been paid

to underwater salinity estimation in the SCS, where mesoscale and

sub-mesoscale phenomena are active, and high-resolution

observations are critically needed. We here adopted an Attention

U-net model to reconstruct the 3D daily salinity field on a 1/4° grid

in the upper 1000 m of the SCS from the satellite observed SSS, SST,

SLA and SSW field. In general, the 3D salinity fields of the SCS, at

high spatial and temporal resolution, can be well reconstructed. The

average RMSE between the estimation results and salinity profiles

from the GLORYS2V4 reanalysis product is 0.051 psu and the

overall correlation coefficient is 0.998. The RMSE decreases with

water depth and reaches a minimum value of 0.002 psu in waters

deeper than 773 m, while the correlation coefficient is always higher

than 0.983 at all layers. The comparison of salinity reconstruction

results with mooring measurements also demonstrates the good

performance of the Attention U-net model. In addition, the ability
Frontiers in Marine Science 15
to resist noise interference indicates a strong robustness of the

Attention U-net model.

The consideration of topography mask in the loss function is

effective in reconstructing more accurate salinity fields in the SCS,

especially in deeper waters. When only the estimation errors at valid

data points are evaluated in the built model, the RMSE at different

vertical layers is half of or even 85% less than the error obtained by

using the Huber loss function. The corresponding correlation

coefficient is increased by 23.0% to 108.9% in waters deeper than

200 m. Additionally, the use of SSS as model inputs can significantly

improve the accuracy of salinity reconstruction in the upper layers

of the SCS, especially in river plume regions. When SSS is added to

the model inputs, the maximum decline of the RMSE is up to 16.4%

at the depth of 5 m. The relatively larger estimation errors are

mainly distributed in the coastal and upper waters of the SCS, which

may be associated with the active dynamic processes here such as

river plumes, as well as the poor quality of SSS satellite products in

the coastal regions (González-Gambau et al., 2017; Zhang et al.,

2023). The accuracy of coastal satellite SSS products will

significantly improve in the near future, which will soon allow

more precise reconstructions of 3D salinity fields.

Satellite observed sea surface variables, which determine the

resolution of the model output, are of great importance for the 3D

ocean salinity reconstruction. However, we can only construct the

daily salinity field on a 1/4° grid due to the limitation of present
B C DA

FIGURE 13

Daily subsurface salinity anomaly map at the depth of (A) 5 m, (B) 10 m, (C) 19 m and (D) 31 m from 13 to 17 November 2017 in the central SCS.
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satellite data. Case studies show that the reconstructed salinity

structure clearly reveals the underwater signals of mesoscale

eddies in the SCS. Observations with higher spatial and temporal

resolution can help us better understand the characteristics and

evolution of ocean mesoscale or even sub-mesoscale processes. The

Surface Water and Ocean Topography (SWOT) mission (Morrow

et al., 2019) recently had a successful launch in December 2022.

This mission will bring significant future improvement of salinity

and wind sensors, and thus we will expect to observe sea surface

variables from space with unprecedented resolution and precision.

This advance will allow the resolution and accuracy of the 3D

temperature and salinity fields to be further improved, which will in

turn increase the knowledge of oceanic mult i - sca le

dynamic processes.
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