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Remote sensing and machine
learning method to support sea
surface pCO2 estimation in the
Yellow Sea
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Huizeng Liu3 and Wenjuan Ma1

1Marine College, Shandong University, Weihai, China, 2Frontier Research Center, Southern Marine
Science and Engineering Guangdong Laboratory, Zhuhai, China, 3Institute for Advanced Study,
Shenzhen University, Shenzhen, China
With global climate changing, the carbon dioxide (CO2) absorption rates

increased in marginal seas. Due to the limited availability of in-situ spatial and

temporal distribution data, the current status of the sea surface carbon dioxide

partial pressure (pCO2) in the Yellow Sea is unclear. Therefore, a pCO2 model

based on a random forest algorithm has been developed, which was trained and

tested using 14 cruise data sets from 2011 to 2019, and remote sensing satellite

sea surface temperature, chlorophyll concentration, diffuse attenuation of

downwelling irradiance, and in-situ salinity were used as the input variables.

The seasonal and interannual variations of modeled pCO2 were discussed from

January 2003 and December 2021 in the Yellow Sea. The results showed that the

model developed for this study performed well, with a root mean square

difference (RMSD) of 43 matm and a coefficient of determination (R2) of 0.67.

Moreover, modeled pCO2 increased at a rate of 0.36 matm year-1 (R2 = 0.27, p <

0.05) in the YS, which is much slower than the rate of atmospheric pCO2

(pCO2
air) rise. The reason behind it needs further investigation. Compared with

pCO2 from other datasets, the pCO2 derived from the RFmodel exhibited greater

consistency with the in-situ pCO2 (RMSD = 55 matm). In general, the RF model

has significant improvement over the previous models and the global data sets.

KEYWORDS
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1 Introduction

The rapid growth of fossil fuel usage and industry has increased the atmospheric carbon

dioxide (CO2) concentration by approximately 40% since the Industrial Revolution

(Landschützer et al., 2014; Friedlingstein et al., 2022). Global oceans absorb 30% of the

CO2 released by industry and human activities and they are a significant sink for
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atmospheric CO2. Coastal seas cover 7% of the oceanic surface area

but the sea-air exchange carbon fluxes (FCO2) comprise

approximately 25–50% of the global oceans (Laruelle et al., 2018),

and thus they play important roles in absorbing atmospheric CO2

(Dai et al., 2022). Due to the effects of the complex physical

environment and biological activities, great errors occur in

estimations of FCO2 in coastal seas (Landschützer et al., 2018;

Mignot et al., 2022). Therefore, estimating sea surface carbon

dioxide partial pressure (pCO2) accurately for coastal seas is

critical for precisely estimating the global FCO2 (Laruelle

et al., 2018).

In general, pCO2 is regulated by thermodynamic effects,

biogeochemical effects, mixing effects, and air–sea exchange

effects (Liu et al., 2019; Ye et al., 2022). Some environmental

variables can characterize these four effects. In particular, the sea

surface temperature (SST, °C) directly reflects thermodynamic

effects, while the chlorophyll concentration (Chl, mg m−3) and

diffuse attenuation of downwelling irradiance (Kd, m−1) can

indicate biogeochemical effects on the surface pCO2. In addition,

the SST, salinity (SSS, psu), and mixed layer depth (MLD, m) are

closely related to mixing effects, and the wind speed can

characterize the sea–air exchange process (Gu et al., 2021).

Due to their unique advantage in terms of high spatiotemporal

resolution, satellite approaches are efficient for observing pCO2. In

previous studies, both semi-analytical (Hales et al., 2012; Bai et al.,

2015; Chen et al., 2017) and empirical approaches (Lohrenz et al.,

2010; Tao et al., 2012; Qin et al., 2014; Chen et al., 2016; Chen et al.,

2019; Fu et al., 2020) were used to estimate the sea surface pCO2.

Many studies have used satellite data to estimate the sea surface

pCO2, but recent studies also examined and compared the capability

of semi-analytical and empirical algorithms for estimating the coastal

pCO2 (Chen et al., 2017; Chen et al., 2019). However, the high

spatiotemporal variability and diversity of pCO2, the inaccuracy of

satellite data, and limited availability of in-situ pCO2 data from

coastal seas make it challenging to establish a model of pCO2.

Several efforts have been made to construct various algorithms or

models, but the satellite-derived pCO2 in coastal seas generally has

higher uncertainty than that for open seas, and the root mean square

difference (RMSD) can be as high as 90 matm (Chen et al., 2019).

The Yellow Sea (YS) is an important coastal sea in the west

Pacific Ocean. The pCO2 in the YS has considerable seasonal

variations and an unbalanced spatial distribution (Wang and

Zhai, 2021). For example, extremely high pCO2 values have been

observed during the summer in the center of the YS, whereas

extremely low pCO2 values have been observed in the southwestern

YS (Qu et al., 2014; Zhai, 2018). Since the 1980s, many studies have

investigated carbonate, pCO2, and FCO2 in the YS (Xue et al., 2011;

Qu et al., 2014; Zhai et al., 2014; Zhai, 2018; Choi et al., 2019; Deng

et al., 2021). However, accurately quantifying pCO2 and FCO2 in

the YS remains a challenge. In particular, Wang and Zhai (2021)

indicated that the YS is a carbon sink and FCO2 is about –0.5 ± 1.9

mol m−2 year−1, whereas Qu et al. (2014) suggested that the YS is a

carbon source. In addition, the physical and biological conditions in

coastal seas have changed due to rapid climate change. For example,

SST and Chl have increased (Liu et al., 2021; Lu et al., 2021). These

variations will have influenced the changes in the sea surface pCO2.
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Indeed, recent studies showed that the CO2 absorption rates

increased in some coastal seas (Li and Zhai, 2019; Xiong et al.,

2020). To the best of our knowledge, no previous studies have

quantified the long-term trend in the carbon absorption capacity of

the YS due to the lack of in-situ pCO2 data over the entire YS. Thus,

in order to accurately quantify the pCO2 in the YS and understand

the response of the pCO2 to global climate change, we developed an

inversion model of pCO2 in the YS in the present study. Two

previous remote sensing studies investigated the pCO2 in the YS

(Tao et al., 2012; Qin et al., 2014), and both used in-situ SST and Chl

data to establish multiple polynomial regression (MPR) models.

This modeling method is simple but the errors are large. Therefore,

in the present study, we aimed: (1) to develop machine learning

models for accurately deriving pCO2 from satellite remote sensing

data; and (2) to analyze the long-term trend in the pCO2 during

2003–2021 in the YS.
2 Materials and methods

2.1 Study area

The YS is a semi-enclosed shelf shallow sea (29.5°N–40.5°N,

118.5°E–126.5°E) located west of the Liaodong Peninsula and east

of the Korean Peninsula (Figure 1). The mean water depth is 44 m

(Liu et al., 2009). The areas and depths of the North Yellow Sea

(NYS) and South Yellow Sea (SYS) are 70 × 103 km2 and 38 m, and
FIGURE 1

Chart of the study region. The three black dashed lines represent the
boundaries between the North Yellow Sea (NYS) and Bohai Sea, the
NYS and South Yellow Sea (SYS), and the SYS and East China Sea (ECS).
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300 × 103 km2 and 44 m, respectively. The climate and ocean

circulations exhibit strong seasonality due to the effect of the East

Asian Monsoon (Ding et al., 2018). In the winter, the YS is mainly

influenced by the Yellow Sea Warm Current (YSWC) and the

Yellow Sea Coastal Current. The Yellow Sea Warm Current invades

the YS from south to north, and brings warm ocean water to the YS,

which makes some regions into carbon sources in the YS (Xue et al.,

2011). In the summer, the central YS is occupied by the Yellow Sea

Cold Water Mass (YSCWM) and there is a strong thermocline

above the YSCWM. In addition, the northeastern extension of the

Changjiang Dilution Water (CDW) carries a considerable amount

of nutrients to the west of the SYS, and this region sustains high

phytoplankton production, thereby leading to lower pCO2 values

(Qu et al., 2014). Overall, the YS current is an important factor that

affects pCO2. A previous study showed that the coastal currents in

the YS have strengthened in recent years (Liu S, et al., 2023), which

may affect the interannual variation in the pCO2 in the YS.

The YS is surrounded by rapidly developing economic regions,

and the rapid development of mariculture has caused severe

environmental problems, such as phytoplankton blooms and

changes in ocean acidification. Therefore, the carbon cycle

process in the YS is managed by both the coastal hydrodynamics

and human activities (Choi et al., 2019).
2.2 Data sets

We collected fugacity of CO2 (fCO2) data from 14 cruises

conducted between 2011 and 2019, which homogenously covered

the entire annual cycle (Table 1). Data were derived from four

cruises conducted in 2019 by Yu et al. (2022), and data collected

from 10 other cruises by Wang and Zhai (2021).

fCO2 was conversed into pCO2 using the following formula (1):

fCO2 = pCO2 · exp p ·
B + 2s
RT

� �
(1)

where p is the total pressure (Pa), R is a gas constant (8.314 J

K−1 mol−1), T is the absolute temperature of the sea surface (K), and

B and s are rectification coefficients, which are calculated with

formulas (2) and (3).

B = ( − 1636:75 + 12:0408� T − 3:27957� 10−2T2 + 3:16528

� 10−5T3)� 10−6 (2)

s = (57:7 − 0:118T)� 10−6 (3)
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The inverse model of pCO2 in the YS was established with Chl,

SST, SSS, and Kd as input variables. In addition, Julday (Jday, or

day of year) was selected as an input to highlight the periodical

changes in pCO2 (Lefevre et al., 2005; Signorini et al., 2013). Chl

and Kd, SST, and SSS were used to represent biochemical,

thermodynamic, and mixing effects on the sea surface pCO2,

respectively. Level 3 8-days and monthly SST (°C), Chl

(mg m−3), and Kd (m−1) data sets were obtained from

Moderate Resolution Imaging Spectroradiometer (MODIS)-

Aqua for January 2003 and December 2021 (https://

oceancolor.gsfc.nasa.gov/) at a spatial resolution of 4 km. SSS

data observed directly by ocean color sensor satellites are not

available, so in-situ SSS data were used to develop the model in

this study. The HYbrid Coordinate Ocean Model (HYCOM) SSS

data set (monthly products with a 4-km resolution) was selected to

derive maps of the sea surface pCO2 (available from: https://

www.hycom.org/). In addition, the gridded atmospheric pCO2 (p

CO  air
2 ) data set (daily, with a spatial resolution of 2° × 2.5°)

provided by Rödenbeck et al. (2013) was used (available from:

http://www.bgc-jena.mpg.de/SOCOM/).

Due to the influence of cloud cover, sensor technology,

atmospheric correction algorithms, and other factors, satellite

remote sensing data have a high missing rate in time and space.

Therefore, satellite data were interpolated using Data Interpolating

Empirical Orthogonal Functions (DINEOF) to obtain more

matching pairs. A pixel located at 122°E and 33.2°N was

selected to verify the rationality of the reconstructed data. The

reconstructions agreed with the original data and complemented

the missing data well (Figure 2).

Satellite data were matched with in-situ data according to (Le

et al., 2019). Briefly, a time window of ± 8 days was applied

between the in-situ and satellite-derived data. In addition, in order

to filter sensor and algorithm noise, the median of a 3 × 3-pixel

box was focused on every sample point. If the coefficient of

variation for the effective pixels in the 3 × 3-pixel box was ≤ 0.4,

the extracted data were used to develop the model together with

the in-situ data. Finally, we obtained 638 matched pairs from 14

cruises (Figure 3).
2.3 Model training and testing,
and model selection

The 638 matched pairs were split into training and test data

sets in a stratified random manner, where they accounted for 80%

and 20% of the pairs, respectively. Histograms showing the
TABLE 1 Comparison of two empirical modeling approaches. .

Approach RMSD (matm) R2 MAE (matm) MAPE

PSO-SVR
43 0.63 35 9%

54 0.44 40 11%

RF
34 0.82 24 6%

43 0.67 32 8%
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distributions of the sample points in the training and test data sets

are presented in Figure 4. Evaluation indicators comprising the

RMSD, coefficient of determination (R2), mean absolute error

(MAE), and mean absolute percentage error (MAPE) were

employed to quantify the reliability of the pCO2 model.

Two machine learning algorithms comprising Random

Forest (RF) and particle swarm optimization-support vector

regression (PSO-SVR) were used to develop sea surface pCO2

models because of their high generalizability for nonlinear
Frontiers in Marine Science 04
relationships (Mountrakis et al., 2011). The inversion model

was established using identical data sets. The algorithm was

determined as formula (4).

pCO2 = f (input variables)

= f (SST, Kd, SSS, Chl, cos(2p(Julday − g)=365) (4)

The value of g was optimized iteratively (0 to 365) until the

RMSD reached a minimum value.
FIGURE 3

Spatial distribution of 638 matched pairs.
FIGURE 2

Comparison of reconstructed and original data.
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2.4 Random forest

The RF consists of multiple decision trees, where the structure

of a single decision tree is based on a group of training data

(Breiman, 2001). In RF, a bootstrap strategy is used to conduct

resampling from the original data sets to produce multiple

subgroups. The structure regression trees are then obtained for

every subgroup, and the final output is the mean of the outputs of all

regression trees.

RF model development (Figure 5) requires the determination of

three customized parameters: the number of randomly selected

variables for constructing the tree (mtry), the minimum number of

terminal nodes for each tree (node size), and the number of trees

(ntree) (Sun et al., 2016).

The node size was set to 5 because this is a common value for

regression models (Sun et al., 2016). The grid search method was

used to determine the RF parameters ntree and mtry (Figure 6). The
Frontiers in Marine Science 05
optimal values were determined with the minimal RMSD, and 4 and

200 were selected as the best mtry and ntree values, respectively, for

the RF model.
2.5 Model sensitivity to input variables

Sensitivity analysis was conducted to assess the sensitivity of

the model to the inherent uncertainties in SST, SSS, Chl, and Kd.

The original pCO2 (using the original inputs) was compared with

the new pCO2 (using inputs with extra added uncertainties)

derived from the same RF model to identify the model’s

sensitivity to the uncertainty in these inputs. Only one input

variable was changed in each analysis and the remaining variables

were kept the same. Statistical parameters comprising the mean

bias (MB), mean ratio (MR), RMSD, and R2 were applied to

quantify the sensitivity.
FIGURE 5

General Random Forest model development process.
FIGURE 4

Histograms showing the distributions of the sample points in the training and test data sets.
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The uncertainties of environmental variables were determined

by referring to published studies. In particular, the uncertainty of

remote sensing SST is ≤ 1°C (Hao et al., 2017), the uncertainty of

HYCOM SSS is about 0.5 when SSS is more than 32, the uncertainty

of HYCOM SSS is about 3 when SSS is less than 32 (Jang et al.,

2022), and the uncertainties of Chl and Kd are 32% and 48%,

respectively (Cui et al., 2014). Thus, we used ± 1°C, ± 1, ± 30%, and

± 45% as the uncertainties of SST, SSS, Chl, and Kd, respectively.
3 Results

3.1 Model performance

Table 1 shows that RF outperformed PSO-SVR. The R2 and

RMSD values were 0.82 and 34 matm, and 0.67 and 43 matm for the

model training and test data sets, respectively.

The sea surface pCO2 predicted by the RF model was slightly

underestimated when the sea surface pCO2 was larger than 500

matm, and slightly overestimated when pCO2 was smaller than 300

matm (Figure 7). The pCO2 values estimated by the model varied in

the range of 250−550 matm, with some larger than 550 matm and

lower than 250 matm. A histogram showing the residuals (modeled

pCO2 minus field pCO2) is presented in Figure 7, which

demonstrates that 82.45% of the residuals were within the interval

of ± 50, i.e., the observed 50 matm pCO2 standard deviation.
3.2 Model sensitivity

Statistically, when a bias of +1°C was applied to the SST input,

the RF model overestimated the sea surface pCO2 slightly (RMSD =

10 matm, R2 = 0.96, MB = 3 matm), and when a bias of –1°C was

applied to the SST input, the RF model underestimated the sea

surface pCO2 slightly (R
2 = 0.96, RMSD = 10 matm, MB = –2 matm)
Frontiers in Marine Science 06
(Figure 8). These results suggest that pCO2 increased with SST, and

vice versa, which is consistent with the relationship between

temperature and pCO2 in thermodynamics.

Compared with the SST, the RF pCO2 model was more sensitive

to the uncertainties in SSS. Moreover, the RF model was more

sensitive to lower SSS values, where a change of –1 in SSS resulted in

a substantial decrease in the predicted pCO2. In particular, with

input +1 uncertainty in SSS, the RF pCO2 model tended to

overestimate the sea surface pCO2 (R
2 = 0.83, RMSD = 20 matm,

and MB = 5 matm) and with input –1 uncertainty in SSS, the RF

pCO2 model tended to greatly underestimate the sea surface pCO2

(R2 = 0.73, RMSD = 30 matm, and MB = –16 matm).

Similar to SST, the RF pCO2 model exhibited minor sensitivity

to Chl. When all data were used in the calculations with +30%

uncertainties added, the RF model slightly overestimated pCO2 (R
2

= 0.96, RMSD = 10 matm, and MB = 2 matm). With input –30%

uncertainties in Chl, the RF model slightly underestimated pCO2

(R2 = 0.95, RMSD = 11 matm, and MB = –3 matm). Similarly, the RF

pCO2 model was insensitive to Kd. With +45% and –45%

uncertainties added in Kd, the new pCO2 was not very different

from the original pCO2. In particular, with a bias of +45%

uncertainty added to Kd, the RF slightly overestimated the surface

pCO2 (R
2 = 0.93, RMSD = 16 matm, and MB = 9 matm), and with a

bias of –45% uncertainty added, the RF pCO2 model slightly

underestimated the pCO2 (R2 = 0.89, RMSD = 18 matm, and

MB= –8 matm).

The sensitivity of the RF model was different according to the

uncertainty in each environment variable, but the differences

introduced by each variable were generally within the range of

the uncertainty of the model itself.
3.3 Seasonal and interannual variations in
pCO2 in the YS

The RF model was applied to monthly MODIS and HYCOM

data for the period between January 2003 and December 2021 to

generate monthly climatological maps and determine the annual

trend in pCO2 in the YS (Figure 9).

Spatially, due to the effects of the hydrology environment and

terrestrial organic matter, the pCO2 values tended to decrease from

the nearshore to central areas, and the highest pCO2 values were

observed in the SYS. Seasonally, there were apparent variations in

pCO2 throughout the YS (Figure 9). Statistically, the average sea

surface pCO2 values were 377 ± 7 matm, 430 ± 6 matm, 426 ± 11

matm, and 378 ± 10 matm in the spring, summer, autumn, and

winter, respectively. In addition to these seasonal patterns, more

complex variations were found in the spring and autumn (Figure

S1). In most years, pCO2 decreased in March because of

phytoplankton blooms, and increased in September or November

because of the collapsing seasonal stratification.

The annual mean sea surface pCO2 values were extracted to

explore the interannual variation. The results showed that the

surface pCO2 values in the YS increased between 2003 and 2021

at a rate of 0.36 matm year−1 (R2 = 0.27, p< 0.05, N = 19) (Figure 10).
FIGURE 6

Influence of mtry and ntree on RMSD.
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According to the model sensitivity analysis results in section 3.2,

when a bias of +1°C was applied to the SST input, the RF model

overestimated pCO2 by 10 matm. The annual rate of change in the

SST determined by the remote sensing products was 0.039°C year–1

(Figure S2). Therefore, increasing the SST approximately led to an

increase in the pCO2 at a rate of 0.39 matm year–1 in the YS. The

pCO2 in the YS has increased in the past 19 years, but its rate of

increase was lower than that for pCOair
2 (with a rate of 2.31 matm

year−1; R2 = 0.99, p< 0.01, N = 19) in the same period (Figure S3).

Therefore, the DpCO2 (sea surface pCO2– pCOair
2 ) exhibited a

remarkable decreasing trend with a rate of −1.95 matm year−1 (R2

= 0.92, p< 0.01, N = 19).

Moreover, the spatial trends in pCO2 were obtained by

calculating the trend for each grid in pCO2 (Figure 10B). In

general, pCO2 increased in most regions of the YS, with a range

from 0 to 2.78 matm year−1 from 2003 to 2021. Decreasing trends

were also found in some regions. For example, pCO2 decreased in

the NYS and the runoff area of the Changjiang River. These results

indicate that the NYS and runoff area of the Changjiang River have
Frontiers in Marine Science 07
more substantial carbon absorption capacities. Both pCO2 and Chl

tended to decrease in the runoff area of the Changjiang River

(Figures 10B, S4). Therefore, the decrease in the transportation of

terrestrial organic matter might be the main reason for the decrease

in pCO2 in this area, which might alleviate the seasonal

hypoxia phenomenon.
4 Discussion

4.1 Evaluation based on comparisons with
field observations of sea surface pCO2

Two algorithms were tested to establish models for estimating

pCO2. The best RMSD and R2 values for the model were 43 matm
and 0.67 in the YS, respectively (Figure 7). The accuracy of four data

sets were evaluated by comparing with field observations of sea

surface pCO2. The resolutions, names of the four data sets, and

comparisons of the results are shown in Table 2.
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Sensitivity of RF model to the uncertainties in SST, SSS, Chl, and Kd.
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FIGURE 7

Performance evaluation for RF using (A) training and (B) test data sets; and (C) histogram of residuals.
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Figure 11 shows scatter diagrams to compare the results. The

pCO2 derived from the RF model exhibited greater consistency

(RMSD = 55 matm) with the in-situ pCO2 than CSIR-ML6 (RMSD

= 71 matm), MPI-SOMFNN (RMSD = 82 matm), and SatCO2

(RMSD = 119 matm). The significant underestimation of the field

pCO2 by SatCO2 was predictable because the algorithm was

originally developed for the ECS and it may not be applicable to

the YS. Significant differences between the global pCO2 products

and in-situ data in coastal seas were expected (Landschützer et al.,

2020). Moreover, CSIR and ML6 were not effective at matching the

pCO2 in the YS, as shown by the number of scatter points in

Figure 11. The comparison of four products showed that the RF

model was the optimal method for estimating pCO2 in the YS

because the root mean square difference was less than those with the

other three products (CSIR-ML6, MPI-SOMFNN, and SatCO2).
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Understanding the variations in pCO2 can provide greater insights

into the response of the carbon absorption capacity to climate

change in the YS. Erroneous estimates may be obtained in coastal

seas if global pCO2 products are used, which might affect

quantification of the longer-term trends in global carbon budgets.
4.2 Satellite estimation of pCO2 in
coastal seas

Due to its unique advantage in terms of high spatiotemporal

resolution, satellite remote sensing is an effective method for

observing the sea surface pCO2. Table 2 lists some inversion

models for pCO2 in coastal seas. The maximum RMSD for these

models was 45.19 matm. Tao et al. (2012) and Qin et al. (2014)
FIGURE 10

(A) Long-term trends in regional average pCO2 and DpCO2 (pCO2 − pCOair
2 ); and (B) spatial trends in pCO2 during 2003–2021.
FIGURE 9

Monthly climatological maps of pCO2 in the YS from January 2003 to December 2021.
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established pCO2 estimation models based onMPR using the in-situ

SST and Chl, and the RMSD values for the two models were 15.82

−31.7 and 16.68–21.46, respectively, and both were less than 43. The

error was small for the two models, mainly because the in-situ data

used for modeling were mostly located in the YS center, with few

data located in the nearshore area. The MPR-based inversion model

was developed using the same training data sets employed in the

present study, and the error was much larger than 43 matm. Overall,

the error was acceptable for the RF model developed in this study.

The RMSD of the model for estimating the surface pCO2 in the YS
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was higher than that in other marginal seas due to the following

three reasons. (1) The uncertainty of satellite data and field pCO2. In

the YS, the error of satellite remote sensing Kd and Chl data can

reach 48%, and 32%, respectively (Cui et al., 2014). Moreover, the

pCO2 data used in this study were converted from fCO2, and fCO2

was estimated using the dissolved inorganic carbon and total

alkalinity. The uncertainty in the pCO2 obtained by using this

method is ± 5%, which is larger compared with ± 1% using directly

measured pCO2 data (Wang and Zhai, 2021). (2) The hydrological

complexity of the YS environment leads to a wide range of sea
TABLE 2 Published models based on remote sensing of sea surface pCO2 and global pCO2 products.

Reference Model or data set Study area Spatial resolution/Model inputs RMSD (H atm)

Gregor et al. (2019) CSIR-ML6 Yellow Sea 1° x1° 71

Landschützer et al. (2016) MPI-SOMFNN Yellow Sea 1° x1° 82

Bai et al. (2015) SatCO2 Yellow Sea 1.6 km 119

this study RF Yellow Sea 4 km 55

Parard et al. (2014) SOM Baltic Sea SST. Chl. CDOM, NPP, MLD. Jday 35

Tao et al. (2012) MPR Yellow Sea and Bohai Sea SST. Chl 31.74

Qin et al. (2014) MPR Yellow Sea SST. Chl 16.68–21.46

Chen et al. (2016) MNR West Florida Shelf SST. Kd. Chl. Iday <11.79

Liu J, et al. (2023) MNR East China Sea SST. SSS, Chl. Jday, LAT. LON 3.73-45.19
SOM, Self Organizing Map; MNR, Multi-variate Nonlinear Regression; NPP, Net Primary Production; CDOM, Colored Dissolved Organic Matter; LAT, Latitude; LON, Longitude.
B

C D

A

FIGURE 11

Scatter plots of pCO2 obtained from (A) RF model, (B) CSIR-ML6, and (C) MPI-SOMFNN; and (D) SatCO2 against the field pCO2 in the test set.
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surface pCO2 changes. In particular, the magnitude of the change in

pCO2 in the YS is 450 matm (Figure 3), but only about 350 matm in

the Gulf of Mexico (Fu et al., 2020) and the Gulf of Maine (Signorini

et al., 2013). The performance of the model constructed for the YS

was similar to that of a model for the Baltic Sea (RMSD = 47.48

matm, R2 = 0.63) (Zhang et al., 2021), where pCO2 ranged from 100

−600 matm. (3) Importantly, the RF model needed to include all of

the processes from 2011 to 2019. These three reasons explain why

estimating pCO2 is very difficult in the YS compared with other

marginal seas, and thus the error is large.
4.3 Advantages and limitations of RF model

The comparisons of the models based on the two algorithms

showed that the RF algorithm was advantageous for inverting the sea

surface pCO2 in the YS (Table 1; Figure 11), and the uncertainty was

less than 50 matm. However, the RF model still has some problems.

First, in the eastern YS, the seasonal variation in the pCO2

obtained from the RF model differed compared with the in-situ

pCO2. Choi et al. (2019) found that pCO2 tended to increase from

May to February in the Southeastern YS. However, the maximum

pCO2 obtained by RF inversion was in August (Figure 9). Wang and

Zhai (2021) divided the YS region west of 124°E into four regions

and analyzed the seasonal variations in the pCO2. They found that

the maximum values in the four regions occurred in July,

September, or October, with none in February. Due to the effect

of hydrodynamics and other factors, the seasonal patterns in the

pCO2 differ greatly in the eastern YS and western YS. Therefore, the

differences in the seasonal variations in pCO2 may be explained by

only using in-situ data for the area located west of 124°E for

modeling, and thus the model was unable to fully identify the

pCO2 control process.

Second, using the RF model to compute the interannual trends

in the pCO2 could introduce uncertainties. The homogenously

collected cruise data covered the whole annual period (Table 3).

The variation in pCO2 was influenced by physical and
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biogeochemical processes in the sea, and the increase in

atmospheric CO2 (Xue et al., 2016). However, the parameters

(SST, Chl, Kd, and SSS) used in this study could only characterize

the physical and biogeochemical processes in the sea. If changes in

pCO2 caused by increases in the atmospheric CO2 could not be

captured implicitly by one or more of the four parameters (SST, SSS,

Chl, and Kd), uncertainties would be introduced when computing

the interannual trend in the pCO2 (Chen et al., 2019). The long-

term trend of SST in the YS was influenced by regional climate

change (Park et al., 2015), that is to say, the change of SST included

the change of atmospheric CO2 internally and implicitly, therefore,

the increase in the SST appeared to can capture the effects of

increasing atmospheric CO2 on the pCO2, the interannual trend was

still credible to some extent.

Third, in the present study, RF performed poorly at simulating

data from both ends of the data sets (underestimation for high

values and overestimation for low values) (Figure 7), which may be

explained as follows. First, due to the features of the algorithm itself,

RF averages the results for all regression trees. The underestimation

of extreme values and overestimation of small values appears to be a

common problem for RF regression models (Čeh et al., 2018;

Zimmerman et al., 2018; Wolfensberger et al., 2021). Second, the

training data sets contained very few extreme pCO2 values and they

were underrepresented in the RF model, thereby leading to a more

mean-biased output from the RF model.

In general, the problems with the RF model described above were

caused by the unbalanced distributions of the modeling data sets. The

number of extreme pCO2 values (>550 matm or<250 matm) was

relatively small in the field measurements (only 4.7%) but it did not

seem to affect the interannual variation in the pCO2. However, extreme

pCO2 is an influential component of the carbon cycle and it has

significant impacts on the health of marine ecosystems. Therefore, it is

very necessary to accurately estimate the extreme pCO2. The crucial

limitation of RFmodel is that its ability to estimate new pCO2 is limited

by the range of the training data set. That mean it can not estimate the

pCO2 beyond the range of the training data set (no extrapolation).

Therefore, a better RFmodel may be developed by using a data set with
TABLE 3 Cruises and statistics for SST, SSS, and sea surface pCO2 measurements used for model training and test (mean ± standard deviation).

Season Time SST (°C) SSS pCO2 (matm) Number of observations

Spring
2012−05
2018−04
2019−04

10.4 ± 2.9 32.1 ± 0.8 361 ± 58 133

Summer

2011−06
2015−08
2016−07
2019−08

23.0 ± 3.7 31.1 ± 1.1 410 ± 88 204

Autumn

2012−11
2017−09
2017−10
2019−10
2019−11

19.3 ± 3.7 31.5 ± 0.5 425 ± 58 231

Winter
2016−01
2017−12

8.6 ± 3.1 32.2 ± 0.3 373 ± 51 92

average/Total samples — 17.2 ± 6.6 31.6 ± 0.9 400 ± 73 660
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a wider range of variation, which can improve the reproducibility of the

RF model for extreme values. Therefore, we suggest that the modeling

data set need to include all pCO2 values that can be matched to the

satellite data, some extreme values in the in-situ data sets should not be

arbitrarily deleted (excluding the low and high values caused by

measurement errors).
5 Conclusions

In this study, we constructed a RF model of the YS with SST,

SSS, Chl, Kd, and Julday as the inputs. The RF model performed

well at estimating pCO2, with an RMSD of 43 matm and R2 of 0.67.

The RF model was applied to satellite data from between 2003 and

2021 to obtain a 19-year time sequence of pCO2 in the YS. Spatially,

except for the eastern YS, the spatial pCO2 distributions derived by

the RF model matched with the in-situ data. According to the

interannual changes, the sea surface pCO2 increased in most regions

of the YS, but there were differences among the regions, with

decreased trends in the pCO2 in the NYS and the runoff area of

the Changjiang River, which appears to contrast with the

background global warming and increasing atmospheric CO2

concentration. The present study is the first to using machine

learning methods to estimate the pCO2, and also the first to

determine the long-term trend in the pCO2 in the YS. Future

research should focus on obtaining balanced in-situ pCO2 data

and coupling the RF model with a mechanistic model to develop

more accurate pCO2 models. In addition, the reasons for the

increasing trend in the pCO2 in the YS should be explored.
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