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Accurately estimating the ocean’s subsurface thermohaline structure is essential

for advancing our understanding of regional and global ocean dynamics. In this

study, we propose a novel neural network model based on Convolutional Block

Attention Module-Convolutional Neural Network (CBAM-CNN) to

simultaneously estimate the ocean subsurface thermal structure (OSTS) and

ocean subsurface salinity structure (OSSS) in the tropical Indian Ocean using

satellite observations. The input variables include sea surface temperature (SST),

sea surface salinity (SSS), sea surface height anomaly (SSHA), eastward

component of sea surface wind (ESSW), northward component of sea surface

wind (NSSW), longitude (LON), and latitude (LAT). We train and validate themodel

using Argo data, and compare its accuracy with that of the original Convolutional

Neural Network (CNN) model using root mean square error (RMSE), normalized

root mean square error (NRMSE), and determination coefficient (R²). Our results

show that the CBAM-CNN model outperforms the CNN model, exhibiting

superior performance in estimating thermohaline structures in the tropical

Indian Ocean. Furthermore, we evaluate the model’s accuracy by comparing

its estimated OSTS and OSSS at different depths with Argo-derived data,

demonstrating that the model effectively captures most observed features

using sea surface data. Additionally, the CBAM-CNN model demonstrates

good seasonal applicability for OSTS and OSSS estimation. Our study highlights

the benefits of using CBAM-CNN for estimating thermohaline structure and

offers an efficient and effective method for estimating thermohaline structure in

the tropical Indian Ocean.

KEYWORDS

ocean thermohaline structure, satellite observations, machine learning, CNN, tropical
Indian Ocean
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1 Introduction

Ocean temperature and salinity are two of the most important

parameters of seawater, playing an important role in regulating the

transfer of heat (Johnson and Lyman, 2020), freshwater (Hall et al.,

2008), and carbon (Smith et al., 2009) between the ocean and

atmosphere (Watson et al., 2020). Changes in ocean temperature

and salinity have significant impacts on ocean circulation, marine

ecosystems, and the Earth’s climate system (Levitus et al., 2001;

Sprintall et al., 2014). Accurately estimating the ocean subsurface

thermal structure (OSTS) and ocean subsurface salinity structure

(OSSS) is therefore important for understanding ocean dynamics,

climate variability and predicting future climate scenarios. The

tropical Indian Ocean is an important region for studying climate

change as it has a significant impact on the regional and global

climate (Luo et al., 2012; Cai et al., 2021). The ocean thermohaline

structure in the tropical Indian Ocean exerts a significant influence

on ocean circulation, climate variability and hydrological cycle by

affecting the Earth’s energy budget, evaporation, and precipitation

processes (Trenberth and Caron, 2001; Bao et al., 2019). Therefore,

accurate estimation of the thermohaline structure in the tropical

Indian Ocean is important for predicting the regional and global

impacts of climate change on marine ecosystems, ocean circulation,

and weather patterns (Schott et al., 2009; Ateweberhan and

McClanahan, 2010).

The estimation of the OSTS and OSSS in the tropical Indian

Ocean has traditionally relied on numerical simulation, data

assimilation, and dynamical modeling techniques (Rao and

Sivakumar, 2003; Liu et al., 2005; Rahaman et al., 2014; Yan et al.,

2015). Although these traditional methods have achieved some

successes, they are computationally intensive and require significant

resources due to the complexity of the thermodynamic processes

governed by a set of equations. Thus, an accurate and efficient

approach to estimate OSTS and OSSS using acceptable

computational resources is essential and remains an active

research area.

Recent advances in remote sensing technology have brought

about a revolution in ocean observations, providing continuous and

widespread sampling of some sea surface parameters, such as sea

surface salinity (SSS), sea surface height (SSH), and sea surface

temperature (SST). Some earlier studies have demonstrated that

many oceanic subsurface phenomena can be retrieved from surface

manifestations using satellite observations, motivating exploration

of the potential for estimating OSTS and OSSS from sea surface data

(Khedouri et al., 1983; Fiedler, 1988; Ali et al., 2004; Klemas and

Yan, 2014). Various approaches have been employed, such as

statistical relationships (Khedouri et al., 1983; Yan et al., 2020),

linear and geographically weighted regression models (Guinehut

et al., 2012), empirical orthogonal functions (DeWitt, 1987; Maes

and Behringer, 2000), and parametric models (Chu et al., 2000). For

example, Maes and Behringer (2000) used the empirical orthogonal

function (EOF) methodology to reconstruct subsurface salinity

structure by utilizing sea level anomaly and SST data. Watts et al.

(2001) utilized a gravest empirical mode (GEM) to reconstruct the
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temperature and salinity structures at various depths in the

southern Australian region. This method has also been utilized in

the Southern Ocean (Meijers et al., 2011). Guinehut et al. (2012)

employed a linear regression model to reconstruct global

temperature and salinity fields using sea surface data and in situ

measurements with enhanced resolution. Despite their success, each

method has its strengths and limitations. Therefore, researchers

continue to explore new and innovative ways to retrieve the ocean

interior structure using sea surface data.

Recently, the application of machine learning techniques in the

ocean and atmosphere has received widespread attention, providing

valuable insights to understand the intricate physical and dynamic

processes between the ocean and the atmosphere (Reichstein et al.,

2019). Among the various applications of machine learning, the

estimation of the OSTS and OSSS has emerged as a prominent

research area. In this regard, extensive efforts have been made to

reconstruct ocean interior structures using machine learning

techniques. For example, Ali et al. (2004) proposed a novel

approach utilizing artificial neural networks (ANN) to reconstruct

the temperature structure from sea surface data, including SSS, SST,

net radiation, wind stress, and net heat flux. Wu et al. (2012)

combined the self-organizing map neural network (SOM)

algorithm with multiple satellite measurements to estimate

subsurface temperature structure in the North Atlantic, showing

that their model outperformed traditional methods and

highlighting the potential of machine learning techniques in

oceanography. Bao et al. (2019) proposed a generalized regression

neural network with the fruit fly optimization algorithm

(FOAGRNN) to reconstruct the three-dimensional salinity field

in the Pacific Ocean via sea surface salinity data. Su et al. (2015;

2018a; 2018b, and 2021) successfully estimated OSTS using

machine learning approaches such as support vector machine

(SVM), Random Forest, light gradient boosting machine

(LightGBM) and CNN. Meng et al. (2021) developed a CNN

based deep neural network model to reconstruct the subsurface

temperature anomalies and subsurface salinity anomalies in the

Pacific Ocean and simultaneously enhance their resolution. Most

recently, Pauthenet et al. (2022) presented a novel method for

estimating the temperature and salinity structures in the Gulf

Stream in combination with physical constraints.

While machine learning has emerged as a valuable tool for

estimating ocean structure from sea surface data, pure machine

learning models treat all input features equally, regardless of their

relevance to the task at hand. This may result in the inclusion of

irrelevant or noisy features, leading to a decrease in the model’s

overall accuracy. Furthermore, these models may struggle to

capture complex patterns or relationships in large or high-

dimensional datasets. Recently, Li et al. (2022) demonstrated that

the integration of various attention mechanisms into current deep

learning-based ocean remote sensing models is a promising

direction for the design and advancement of such models. Other

studies have also incorporated the attention mechanism in their

approach to ocean remote sensing processing. For example, Xie

et al. (2022) utilized a combination of the U-net deep learning
frontiersin.org

https://doi.org/10.3389/fmars.2023.1181182
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Qi et al. 10.3389/fmars.2023.1181182
model and the attention mechanism to reconstruct a high-

resolution subsurface temperature field in the South China Sea

from satellite observations. The results revealed that the U-net

model with the attention mechanism achieved superior

performance compared to the pure U-net model, XGBoost

machine learning model, and classical multiple linear regression

model with the same inputs. In this study, we propose a novel model

based on the Convolutional Block Attention Module-Convolutional

Neural Network (CBAM-CNN) to estimate the OSTS and OSSS in

the tropical Indian Ocean using satellite observations.

The rest of the study is organized as follows: Section 2 describes

the data and methods, Section 3 presents the results, and Section 4

provides a summary and discussion.
2 Data and methods

2.1 Data

In this study, we use a range of sea surface data obtained from

satellite observations to simultaneously estimate the OSTS and

OSSS in the tropical Indian Ocean. Based on previous studies and

analyses, we select SST, SSS, SSHA, and sea surface wind (SSW),

which is separated into the eastward component sea surface wind

(ESSW) and the northward component sea surface wind (NSSW),

in combination with geographic information such as longitude

(LON) and latitude (LAT), as independent input variables for the

model (Qi et al., 2022). The SST data are obtained from the National

Oceanic and Atmospheric Administration (NOAA), which

combines AMSR, AVHRR, and in-situ observations with a spatial

resolution of 1° latitude × 1° longitude (Reynolds et al., 2002). We

also obtain SSS data from the Soil Moisture and Ocean Salinity

(SMOS) Level-3 SSS product with a spatial resolution of 0.25°

latitude × 0.25° longitude (Boutin et al., 2018), and SSHA data from

the Archiving, Validation, and Interpretation of Satellite

Oceanographic (AVISO) data center with a spatial resolution of

0.25° latitude × 0.25° longitude (Hauser et al., 2020). Additionally,

we utilize SSW data from the Cross-Calibrated Multi-Platform
Frontiers in Marine Science 03
(CCMP) product, which has a high-resolution of 0.25° latitude ×

0.25° longitude (Atlas et al., 2011). To train and evaluate the

performance of the models, we also utilize the Roemmich-Gilson

Argo Climatology (RG-Argo) gridded data, with a horizontal

resolution of 1° × 1°, and covers the period from January 2004 to

the present (Roemmich and Gilson, 2009).

To ensure consistency and accuracy in the model, we process all

the data into monthly averages, and interpolate them onto a grid

with a resolution of 1° latitude × 1° longitude, with the same

temporal and spatial coverage of the tropical Indian Ocean (35°

E–120°E and 30°S–30°N). Any data points with missing parameters

within the tropical Indian Ocean are excluded. Additionally, to

expedite model convergence during the training process, all remote

sensing data and Argo measurements are normalized by utilizing

the data’s mean and standard deviation before training. Table 1

provides a summary of the data used in this study.
2.2 Methods

Recently, more and more deep learning models has used the

attention mechanism, and it has also been an important

development trend to add various attention mechanisms to deep

learning models on ocean remote sensing (Li et al., 2022). In this

study, we present an improved CNN model that incorporates the

Convolutional Block Attention Module (CBAM) into the standard

CNN architecture. The details of models used in this study are

described in the following sections.

2.2.1 CNN and CBAM
CNN is a deep learning algorithm that has been extensively used

in a variety of fields. In the geoscience community, CNN has gained

widespread attention and has been successful in several applications

(Ham et al., 2019; Meng et al., 2021). One of the key advantages of

CNN is its ability to consider the spatial relationship between input

data, making it particularly well-suited for geospatial data (Bolton

and Zanna, 2019; Zheng et al., 2020). The ability of CNN to share

weights also allows for efficient processing of high-dimensional data
TABLE 1 Summary of data used in this study.

Index Contents

Study Area tropical Indian Ocean 35°E-120°E, 30°S-30°N

Data

SST 2010-2020 NOAA

input
SSS 2010-2020 SMOS

SSHA 2010-2020 AVISO

SSW (ESSW, NSSW) 2010-2020 CCMP

OSTS 2010-2020 RG-Argo
output

OSSS 2010-2020 RG-Argo

3D thermohaline field
Spatial Resolution monthly 1°× 1°

Vertical Layers 2.5-1975m 58 layers
fro
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and automated feature extraction, making it a useful tool for

estimating OSTS and OSSS accurately. However, the complex

architecture of CNN can also lead to slow model parameter

updates and difficulty in capturing the relationship between

global and local information. A schematic of the CNN model

used in this study is presented in Figure 1A.

CBAM is a powerful attention mechanism that can enhance the

performance of CNNs in computer vision tasks. It was developed by

Woo et al. (2018), which consists of two modules, the Channel

Attention Module (CAM) and the Spatial Attention Module (SAM)

and can extract feature information from both the spatial and

channel dimensions of the input data. As a lightweight architecture,

CBAM can be seamlessly integrated into CNN-based models,

making it an attractive option for improving the performance of

deep learning models. In Figure 1B, the CBAM module is depicted,

demonstrating its ability to enhance the performance of the

CNN model.
2.2.2 CBAM-CNN
The CBAM-CNN model is an improved model of the CNN

model, specifically designed to enhance the accuracy of estimating

OSTS and OSSS from ocean surface parameters. By incorporating

both the CAM and SAM, the CBAM-CNN model is capable of

assigning weights to sea surface parameters along the channel and

spatial dimensions, thus enabling it to focus its attention on key

variables and informative features while excluding irrelevant

factors. This attention mechanism significantly improves the

model’s accuracy in estimating OSTS and OSSS and enhances its

ability to generalize. The sequential utilization of CAM and SAM in

the CBAM-CNN model allows for the efficient extraction of spatial
Frontiers in Marine Science 04
and channel-wise feature information, leading to more accurate

predictions. As shown in Figure 2, the CBAM-CNN model is

composed of convolutional layers, a CBAM module, fully

connected layers, an activation layer, and a global average pooling

layer. The CBAM module is inserted after the convolutional and

activation layers, and the Exponential Linear Unit (ELU) is used as

the activation function, improving the model’s robustness and

convergence speed by reducing the vanishing gradient effect

(Clevert et al., 2015). To prevent overfitting, as well as exploding

or vanishing gradients, we use Batch Normalization (BN) and

Dropout algorithms after the convolutional and fully connected

layers. We also employ the early stopping algorithm, which selects

the best-performing model on the validation dataset, to prevent

overfitting during training. Additionally, to optimize the training

process, we include a global average pooling layer to reduce

computational complexity.

The CBAM-CNN model developed in this study consists of two

primary steps for estimating the OSTS and OSSS in the tropical

Indian Ocean. Firstly, we select the ocean surface parameters,

including SST, SSS, SSHA, SSW, and geographic information

(LON and LAT) as input data for the CBAM-CNN model, while

the Argo data are used as training and testing labels. Secondly, we

train and evaluate the model using the selected input and label data.

Specifically, we input the training data from January 2010 through

December 2019 into the CBAM-CNN model and randomly select

80% of the data for training and the remaining 20% for validation.

Finally, we evaluate the performance of the CBAM-CNN model

using data from 2020, based on the root mean square error (RMSE),

normalized root mean square error (NRMSE), and determination

coefficient (R²). Here, the RMSE is used as a metric to quantify the

discrepancy between the predicted and observed values. It is
B

A

FIGURE 1

Structure of (A) CNN model and (B) CBAM module.
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calculated by taking the square root of the average of the squared

differences between the predicted and observed values. The model’s

performance is evaluated to determine its ability to accurately

estimate OSTS and OSSS in the tropical Indian Ocean.

Optimizing the model parameters is a critical step in machine

learning, as it directly impacts the performance of the models. In

this study, we utilize the random search method to obtain the

optimal combination of parameters for our models. The best

combination of parameters for our models is presented in

Table 2, which details the optimal values of hyperparameters for

the CBAM-CNN model.
3 Results

3.1 Validation of satellite-derived SST
and SSS

To ensure accurate predictions of OSTS and OSSS in the

tropical Indian Ocean, it is essential to evaluate the accuracy of
Frontiers in Marine Science 05
input data to machine learning models. Previous studies have

highlighted the importance of SST and SSS for OSTS and OSSS

estimation (Ali et al., 2004; Pauthenet et al., 2022). Therefore, in this

study, we compare them to Argo-observed data. Figure 3 presents a

spatial comparison of long-term annual mean of satellite-derived

data and Argo-observed data. The satellite-derived data’s spatial

distribution is highly consistent with the Argo-observed data in

terms of both overall pattern and main features. For example, both

the Argo data and satellite-derived data show that a thermal ridge

run along the equator up to 60°E and thereafter sloping

southwestwards west of 60°E. The northern tropical Indian Ocean

has higher SSTs than the southern tropical Indian Ocean. Argo data

identifies a region of high SSTs in the southwest region of the

Arabian Sea, and satellite-derived SST reproduces this feature. The

SST discrepancies are mainly between -0.1 and 0.25°C (Figure 3C).

Similarly, the SSS data from satellite and Argo observations display

good consistency and similar spatial distribution features. They

both indicate that the maximum SSS (>36 psu) occurs in the

northern Arabian Sea, while the minimum (<33 psu) occurs in

the Bay of Bengal. The SSS discrepancies are concentrated between
FIGURE 2

Flowchart of the CBAM-CNN model for estimating ocean subsurface thermohaline structure in the tropical Indian Ocean.
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-0.1 psu and 0.1 psu (Figure 3F). Although slight discrepancies exist,

these comparisons confirm the accuracy of satellite remote sensing

data and provide reliable support for further research.
3.2 Comparison of the CBAM-CNN model
with CNN model

In this section, we compare the performance of the CBAM-

CNN model and CNN model for estimating the OSTS and OSSS in

the tropical Indian Ocean using data from 2020. Figure 4 illustrates

the vertical distributions of RMSE and R2 for both models. The

results indicate that the overall RMSE values for OSTS increase

from the surface to a maximum value near 100 m depth, before

decreasing with depth. Conversely, the overall R2 values show an

opposite trend, decreasing from the surface to 100 m depth before

gradually increasing and reaching their maximum around 1200 m

before decreasing again. The same pattern is observed for OSSS,

where the RMSE initially increase and then decrease, and the R2
first

decrease and then rapidly increase before reaching its maximum
Frontiers in Marine Science 06
around 1200 m and then gradually decreasing with depth. The

results indicate that the accuracy of OSTS and OSSS estimation

decreases at depths of approximately 100-150 m, possibly due to the

presence of a thermocline layer, which makes it challenging to

accurately estimate the OSTS and OSSS. In contrast, it is evident

that the CBAM-CNN model outperforms the original CNN model,

as demonstrated by the smaller RMSE and larger R2 values (as

shown in Figure 4).

To further compare the performance of the CBAM-CNNmodel

and CNN model for estimating OSTS and SSS, we analyze the

vertical averaged RMSE of the estimated temperature and salinity

profiles in the tropical Indian Ocean. Figure 5 displays the spatial

distribution of RMSE, and reveals that the CBAM-CNN model

outperforms the CNN model. For example, in the southern tropical

Indian Ocean (south of 15°S) and in the southeastern Arabian Sea,

the RMSE of OSTS estimated by the CBAM-CNN model is

significantly lower than that of the CNN model (Figures 5A, B).

Likewise, the RMSE of OSSS estimated by the CBAM-CNN model

is generally lower than that of the CNN model across most regions.

For example, in the northern Bay of Bengal, the CBAM-CNNmodel
B C

D E F

A

FIGURE 3

Long-term annual mean SST and SSS from Argo (left panel: A, D) and satellite observations (middle panel: B, E), as well as the differences between
the two (right panel: C, F) in the tropical Indian Ocean from January 2010 to December 2020. Boxes (A–D) represent four boxes used in this study.
Box A (64.5°E~76.5°E and 4.5°N~13.5°N), Box B (79.5°E~95.5°E and 7.5°N~23.5°N), Box C (87°E~105°E and 10°S~5°N), and Box D (40°E~55°E and 10°
S~10°N).
TABLE 2 Optimal combination of parameters of CBAM-CNN and CNN.

Model Parameters

CNN

convolutional layer: number of layers = 3, size = 3×3, stride = 1;
adaptiveavgpool2d: output_size = 1×1;

fully connected layer: number of layers = 3, size = [64, 32, 2];
loss function: mse; optimizer: radam; learning rate: 0.03;
reducelronplateau: mode=‘min’, factor=0.1, patience=10;

batch size: 1024; activation function: elu; dropout: 0.1; batchnorm2d; validation frequency: per epoch
earlystopping: patience = 12, verbose=False, delta=0

CBAM-CNN

convolutional layer: number of layers = 3, size = 3×3, stride = 1;
adaptiveavgpool2d: output_size = 1×1;

fully connected layer: number of layers = 3, size = [64, 32, 2];
loss function: mse; optimizer: radam; learning rate: 0.02;
reducelronplateau: mode=‘min’, factor=0.1, patience=8;

batch size: 1024; activation function: elu; dropout: 0.1; batchnorm2d; validation frequency: per epoch
earlystopping: patience = 7, verbose=False, delta=0
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demonstrates superior performance compared to the CNN model,

as evidenced by the RMSE of OSSS estimates (Figures 5C, D). This

superiority of the CBAM-CNN model can be attributed to its

enhanced ability to capture spatial attention and represent

complex oceanographic processes. Overall, these results

demonstrate the CBAM-CNN model’s capabilities in accurately

estimating OSTS and OSSS in the tropical Indian Ocean.
3.3 Evaluation of the CBAM-CNN model

In this section, we conduct a comprehensive evaluation of the

performance of the CBAM-CNNmodel from multiple perspectives.

The annual average OSTS and OSSS estimated by the CBAM-CNN

model at six different depths (50 m, 100 m, 500 m, 1000 m, 1500 m,

and 1900 m) in 2020 are shown in Figures 6, 7. The differences

between the Argo data and the CBAM-CNN estimated data (the

difference between Argo and CBAM-CNN model data) are used to
Frontiers in Marine Science 07
evaluate the performance of the CBAM-CNN model. Figure 6

shows the spatial distribution of the CBAM-CNN estimated

OSTS and demonstrates a high level of agreement with the Argo-

derived OSTS at different depths. The CBAM-CNN model

accurately captures prominent temperature features using sea

surface data in the tropical Indian Ocean. At 50 m depth, both

the CBAM-CNN model and Argo data reveal a higher temperature

in the northern tropical Indian Ocean than in the southern region,

with the highest temperature observed in the equatorial eastern

Indian Ocean. The temperature gradually decreases from the

equator towards the south, and a prominent temperature front

appears near 20°S. The temperature differences in most regions

range from -0.5°C to 0.5°C (Figure 6C). The CBAM-CNN model

also demonstrates good agreement with Argo observations for

OSTS estimation at a depth of 100 m. However, the differences at

this depth are slightly larger than those at 50 m, ranging from −0.6°

C to 0.6°C. Notably, relatively large differences are observed in the

region between the equator and 10°S, which may be attributed to
B

C D

A

FIGURE 4

Comparison of the CBAM-CNN model (black line) with CNN model (blue line) for OSTS and OSSS estimation at different depths based on (A, C)
RMSE (°C) and (B, D) R2 in 2020.
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the presence of the thermocline layer and the impact of upwelling.

As the depth increases, the temperature becomes more stable, and

the differences between the temperature values derived from Argo

data and the CBAM-CNN model estimation below 500 m are

relatively small, ranging from -0.1°C to 0.1°C. Overall, these

results demonstrate the high accuracy of the CBAM-CNN model

in estimating OSTS in the tropical Indian Ocean.

Likewise, the CBAM-CNN model also exhibits good

consistency with Argo observations for OSSS estimation,

effectively reproducing the distribution characteristics of OSSS

without significant differences observed between the CBAM-CNN

estimated OSSS and the Argo-derived OSSS (Figure 7). In the upper

ocean (50 m and 100 m), the differences of salinity in most regions

range from -0.24 psu to 0.24 psu. As the depth increases, the OSSS

becomes more stable, with the differences between the CBAM-CNN

model estimated salinity and Argo-derived salinity are lower than

0.1 psu. These results confirm the effectiveness of the CBAM-CNN

model in estimating OSSS in the tropical Indian Ocean. A more

comprehensive evaluation of the CBAM-CNN model is presented

in the subsequent section.

To comprehensively evaluate the performance of the CBAM-

CNN model, we compare its estimated temperature and salinity

profiles with Argo profiles in 2020 in four representative regions:

Boxes A, B, C, and D (Figures 8, 9). Taking into consideration the

spatial distribution characteristics of temperature and salinity, we

carefully select four representative boxes, Boxes A, B, C, and D, as

shown in Figure 3A. Box A (64.5°E~76.5°E and 4.5°N~ 13.5°N) is

located in the SEAS area that have considerable influence on the

marine ecosystem, Indian monsoon, and climate variability, Box B

(79.5°E~95.5°E and 7.5°N~23.5°N) is situated in the BOB region

where it has high rainfall and cyclonic activity, Box C (87°E~105°E

and 10°S~5°N) is situated in the EEIO, which is influenced by the
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Walker circulation and the Indian Ocean Dipole (IOD), and Box D

(40°E~55°E and 10°S~10°N) is located in the western equatorial

Indian Ocean (WEIO), which is the western pole of the IOD and is

an upwelling region where the Indian Ocean monsoon prevails.

This selection allows us to comprehensively evaluate the

performance of the CBAM-CNN model in capturing the complex

features of temperature and salinity in these regions.

The comparison of estimated temperature profiles by the

CBAM-CNN model with the Argo profiles in these four regions

shows that the estimated temperature profiles are in good

agreement with the Argo profiles (Figure 8). The vertical mean

RMSE and R² values for each box are 0.0865°C and 0.9998 for Box

A, 0.1170°C and 0.9998 for Box B, 0.2224°C and 0.9993 for Box C,

and 0.1808°C and 0.9994 for Box D, respectively. These results

suggest that the CBAM-CNNmodel can accurately reconstructs the

vertical temperature profiles compared to the Argo observation

data. Moreover, the CBAM-CNN model exhibits excellent

performance in estimating OSSS (Figure 9). For example, the

salinity profiles derived from Argo observations show two

maxima in the WEIO, which the CBAM-CNN model accurately

captures. The RMSE values between the Argo observations and the

CBAM-CNN model are less than 0.04 psu, while the R2 values

exceed 0.93. These findings emphasize the CBAM-CNN model’s

ability to reproduce the temperature and salinity profiles with high

accuracy compared to the Argo observations.

As discussed above, the CBAM-CNN model demonstrates

strong performance in estimating annual mean OSTS and OSSS

in the tropical Indian Ocean. However, it remains unclear how well

the model performs in different seasons. To address this question,

we conduct a quantitative evaluation of the model’s accuracy in

estimating OSTS and OSSS across seasons, specifically February,

May, August, and November of 2020 representing winter, spring,
B

C D

A

FIGURE 5

Spatial distribution of vertical averaged temperature and salinity RMSE in 2020: (A) CNN and (B) CBAM-CNN models for OSTS, (C) CNN and (D)
CBAM-CNN models for OSSS.
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summer, and autumn respectively. Firstly, we present correlation

density scatterplots between the CBAM-CNN estimated

temperature (salinity) and the Argo measured temperature

(salinity) in different seasons, as depicted in Figure 10

(Figure 11). The plots illustrate that most data points are evenly

distributed along the equal value lines, indicating a strong

correlation between the estimated and observed OSTS and OSSS

in the tropical Indian Ocean. Moreover, the RMSE and R² values

between the Argo-observed temperature (salinity) and the CBAM-
Frontiers in Marine Science 09
CNN estimated temperature (salinity) are calculated, with values of

0.5707°C (0.0823 psu) and 0.9948 (0.9613) in February, 0.5506°C

(0.0818 psu) and 0.9952 (0.9620) in May, 0.5546°C (0.0760 psu) and

0.9946 (0.9677) in August, and 0.5424°C (0.0811 psu) and 0.9950

(0.9633) in November. These results indicate that the CBAM-CNN

model has reliable and accurate seasonal performance in estimating

OSTS and OSSS in the tropical Indian Ocean.

We also evaluate the seasonal performance of the CBAM-CNN

model at different depths. To make the model accuracy at different
B C

D E F

G H I

J K L

M N O

P Q R

A

FIGURE 6

Annual average OSTS from Argo observation (left panel) and CBAM-CNN estimation (middle panel) and their differences (Argo minus CBAM-CNN,
right panel) at different depths (50 m, 100 m, 500 m, 1000 m, 1500 m, 1900 m) in 2020.
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depths comparable, we normalize the RMSE values (NRMSE) by

dividing the RMSE with the standard deviation of the Argo

temperature and salinity values at that depth. The vertical

distribution of the NRMSE and R2 at different depths for different

seasons is presented in Figure 12. The results indicate that the

CBAM-CNN model performs well overall. For both OSTS and

OSSS estimation, the NRMSE values show an increasing trend

followed by a decreasing trend, and then increasing again with

depth. The maximum NRMSE values for OSTS estimation are

observed around 70 m in February and 100 m in May, while the
Frontiers in Marine Science 10
maximum NRMSE values for August and November occur at 150

m. Similarly, the maximum NRMSE values for OSSS estimation are

observed around 70 m in February, May, and November, and at 100

m in August. Notably, the trend of R2 for both temperature and

salinity is opposite and symmetrical to the trend of their respective

NRMSE. The high NRMSE values observed at depths ranging from

70 to 150 m for OSTS and OSSS estimation may be related to the

complex and dynamic processes of the upper ocean, as well as the

potential disturbance caused by the mixing layer and thermocline

and halocline.
B C

D E F

G H I

J K L

M N O

P Q R

A

FIGURE 7

Same as Figure 6, but for OSSS.
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The seasonal performance of the CBAM-CNN model varies, as

seen from the NRMSE and R2 values for OSTS and OSSS estimation

in different seasons. The vertical average NRMSE (R2) values for

OSTS estimation are 0.2259 (0.9428), 0.2064 (0.9507), 0.2071

(0.9522), and 0.2110 (0.9510) for February, May, August, and
Frontiers in Marine Science 11
November, respectively. The highest NRMSE is observed in

February, and the lowest NRMSE in May, which may be

attributed to changes in the monsoonal circulation system.

During the winter months, the northeast monsoon winds in the

tropical Indian Ocean can lead to strong upwelling of deeper layers
B

C D

A

FIGURE 9

Same as Figure 8, but for salinity.
B

C D

A

FIGURE 8

Comparison of area-averaged temperature profiles [(A–D) Boxes A-D] at different depths by the CBAM-CNN model estimated (red dotted line) and
Argo observed (blue star line).
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of the ocean, which can result in large temperature variations and

pose a challenge for accurate temperature estimation by the CBAM-

CNN model. Conversely, during the spring months, ocean

temperature tends to be more stable, with less variability,

facilitating easier temperature estimation. For OSSS estimation,

the vertical average NRMSE (R2) values are 0.1427 (0.9741),

0.1406 (0.9733), 0.1396 (0.9748), and 0.1451 (0.9706) for

February, May, August, and November, respectively. These results

suggest that the CBAM-CNN model performs better in estimating

OSSS during the spring and summer seasons. In summary, the

CBAM-CNN model exhibits high accuracy in estimating OSTS and

OSSS for different seasons, demonstrating its robustness for the

tropical Indian Ocean.

To evaluate the impact of sea surface parameters on the

performance of the CBAM-CNN model, we calculate the Pearson

correlation coefficients between SST, SSS, SSHA, ESSW, and NSSW

with OSTS and OSSS at different depths (50 m, 100 m, 500 m, and

1000 m). By calculating the absolute value of the Pearson’s

correlation coefficients, we can compare the magnitude of the

correlation coefficients. Our results, presented in Figure 13, the

influence of sea surface variables on temperature and salinity

estimates decreases as depth increases. This suggests that sea

surface variables play a more significant role in the upper ocean,

especially in the shallow layers. The results show that the SST and

SSHA are the two most significant factors for estimating OSTS
Frontiers in Marine Science 12
(Figure 13A), with correlation coefficients of 0.58 and 0.44,

respectively, at 50 m depth. Conversely, SSS, NSSW, and ESSW

exhibit relatively weak correlations with OSTS, with most

coefficients less than 0.21. In the case of OSSS estimation, SSS

and SSHA are the two most influential factors (Figure 13B). Other

parameters, such as SST, ESSW, and NSSW although less strongly

correlated, should not be neglected, as they also affect estimation of

the OSSS. Their exact role in estimation of OSTS and OSSS requires

further investigation. Analyses show that the sea surface variables

selected by us are effective variables for estimating the OSTS

and OSSS.
4 Summary and discussion

Accurately estimating ocean subsurface thermohaline

structures is critical to understanding ocean dynamics and climate

change. In this study, we propose a neural network model based on

CBAM-CNN to estimate both OSTS and OSSS in the tropical

Indian Ocean using sea surface data. The CBAM-CNN model

integrates the attention mechanism in CNN architecture,

enhancing its ability to capture spatial attention and represent

complex oceanographic processes. We compare the performance

of the CBAM-CNN model with the original CNN model for

estimating OSTS and OSSS in the tropical Indian Ocean. The
B

C D

A

FIGURE 10

Scatter plots of temperature from Argo observation and CBAM-CNN model estimation in (A) February, (B) May, (C) August, and (D) November in
2020.
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B

C D

A

FIGURE 11

Same as Figure 10, but for salinity.
B

A

FIGURE 12

Seasonal performance of the CBAM-CNN model for ocean subsurface thermohaline structures estimation at different depths in the tropical Indian
Ocean in 2020. Blue indicates February (winter), red indicates May (spring), green indicates August (summer), yellow indicates November(autumn),
the histograms display the NRMSE, and the lines display R2. (A) for temperature, (B) for salinity.
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results demonstrate that the CBAM-CNN model outperforms the

original CNN model, as evidenced by smaller RMSE and larger R2

values. The CBAM-CNN model accurately estimates the OSTS and

OSSS at different depths, with overall high accuracy across the

tropical Indian Ocean. This superior performance can be attributed

to the CBAM-CNN model’s enhanced ability to capture spatial

attention and represent complex oceanographic processes. The

study also evaluates the performance of the CBAM-CNN model

from multiple perspectives, including spatial distributions, vertical

profiles, and seasonal variations.

We also compare the estimated OSTS and OSSS with Argo-

derived data at different depths, and the results show that the

CBAM-CNNmodel performs well and effectively reconstructs most

observed OSTS and OSSS features. Most of the observed OSTS and

OSSS features can be effectively reconstructed using sea surface data

via the CBAM-CNN model. Furthermore, we compare the CBAM-

CNN estimated temperature and salinity profiles with the Argo

profiles in four representative regions. The results demonstrate that

the CBAM-CNN model accurately captures the prominent features

of temperature and salinity in the tropical Indian Ocean. However,

the accuracy of OSTS and OSSS estimation decreases at depths of

approximately 100-150 m due to the presence of a thermocline

layer, which makes accurate estimation challenging. Nonetheless,

the CBAM-CNN model performs well overall and could accurately

estimate OSTS and OSSS at depths below 500 m. Additionally, we
Frontiers in Marine Science 14
evaluate the impact of sea surface parameters on the performance of

the CBAM-CNN model, showing that sea surface variables play a

more significant role in the upper ocean, especially in the shallow

layers. SST and SSHA are the two most significant factors for

estimating OSTS, whereas SSS and SSHA are the two most

influential factors for OSSS estimation. Our results show that the

CBAM-CNN model performs well across all four seasons,

indicating that the model has a good seasonal applicability for

OSTS and OSSS estimation in the tropical Indian Ocean.

In conclusion, the proposed CBAM-CNN model exhibits

superior performance compared to the CNN model for estimating

OSTS and OSSS in the tropical Indian Ocean. The model

demonstrates high accuracy in estimating OSTS and OSSS at

different depths and during different seasons. The findings of this

study have implications for the understanding of oceanographic

processes in the tropical Indian Ocean and provide insights for

further development of oceanographic models. Nevertheless, as a

statistical tool, the CBAM-CNNmodel has limitations in estimating

extreme anomaly events. In future studies, we will employ more

advanced machine learning methods and incorporate oceanic

dynamic mechanisms to further enhance the estimation accuracy.

Furthermore, the application of this model can be extended to cover

vast oceanic regions, thus enabling precise estimations of OSTS and

OSSS, and facilitating practical applications such as sound

propagation, MLD estimation, and ocean disaster prediction.
B

A

FIGURE 13

Correlation coefficients between the sea surface parameters (SST, SSS, SSHA, NSSW, and ESSW) and the Argo-observed (A) OSTS and (B) OSSS at 50
m (red), 100 m (blue), 500 m (golden), and 1000 m (green) from January 2010 to December 2020.
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Additionally, the model can be further utilized to estimate other

critical oceanic parameters such as velocity fields and ocean density,

thus presenting an extensive area for exploration in future studies.
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