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Coastal shorelines are a key interface between terrestrial and aquatic ecosystems

and are vital for human livelihood. As a result, shorelines have experienced

substantial human modifications worldwide. Shoreline “hardening” – the

construction of armor including seawalls, bulkheads, or rip-rap – is a common

modification that has substantial negative ecological effects. Currently,

restoration involving the removal of armor and replacement with “living”

shorelines is becoming an established practice. Still, the ecological response to

armor removal is oftentimes unpredictable and site-specific. We hypothesized

that the confluence of larger-scale geophysical features might strongly influence

ecological restoration outcomes at particular locations. To measure the

effectiveness of armor removal in the context of broad-scale geophysical

features across the Salish Sea, WA, USA, we studied 26 paired restored and

natural reference beaches of the same shoretype (feeder bluff, accretion

shoreform, or pocket beach), as well as corresponding fetch, sub-basin, and

percent of shoreline sediment drift cell armored. Sites were restored for an

average of six years. We gauged restoration effectiveness based on levels of five

ecological response variables: beach wrack (percent, depth), logs (count, width),

sediments (percent sand), vegetation (percent overhanging, count of fallen

trees), and insects (density, taxa richness). We found that armor removal often

restored these variables to natural levels, but that restoration response was

dependent on geophysical features such as shoretype and fetch. Natural

beaches did have higher measurements of overhanging vegetation, fallen

trees, and insect taxa richness, as these features likely take time to mature at

restored beaches. Feeder bluffs had a higher proportion of surface sand and

number of fallen trees than other shoretypes, coinciding with the erosion of bluff

material, whereas natural pocket beaches within bordering rocky headlands had

higher insect densities. Sites with a large fetch had higher input of deposited

wrack and logs, whereas sites with a small fetch had higher input from localized

terrestrial sources – fallen trees and eroding sand. By incorporating the

effectiveness of restoration with landscape features such as shoretype and

fetch, we can more effectively plan for future restoration actions and better

predict their outcomes.
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1 Introduction

Geophysical features can govern habitat function on shorelines

(Roff and Taylor, 2000) and therefore potentially influence

effectiveness of restoration efforts. Coastal landforms such as

bluffs, dunes, saltmarshes, and rocky headlands are globally

common features that can provide important functions for shore-

dwelling biota (Boström et al., 2011; Morris et al., 2022). Restoring

functioning shoreline habitat is vital for the recovery of species,

such as juvenile fishes and invertebrates that are threatened by a

mosaic of stressors including habitat loss and sea level rise (Toft

et al., 2018; Lefcheck et al., 2019; Duarte et al., 2020). Providing

linkages across coastal seascape habitats can provide scientists and

managers a foundation for building effective, data-based recovery

plans (Boström et al., 2011; Rogers et al., 2014), and can lead to

informed implementation of restoration actions. Our objectives are

to build upon these topics by examining the restoration

effectiveness of shoreline habitats in the context of their larger

geophysical features.

Worldwide, intertidal shorelines have experienced a host of

human modifications such as land reclamation and placement of

shoreline armor (i.e., seawalls, bulkheads, rip-rap) to protect

property and infrastructure from erosion (Ma et al., 2014; Morris

et al., 2019a). More than 14% of the total US coastline is armored

(Gittman et al., 2015), and a global increase is expected (Bugnot

et al., 2021). In the Salish Sea, WA, USA, 29% of shorelines are

armored (MacLennan et al., 2017). Armor placement can have

negative impacts on biodiversity and organism abundance both

regionally (Dethier et al., 2016) and worldwide (Gittman et al.,

2016b), and as a result, efforts to remove armor and restore natural

processes are increasing. Studies in the Salish Sea have focused on

measuring restoration effectiveness in upper intertidal-supratidal

areas where impacts of armor (Dethier et al., 2016) and therefore

restoration actions (Toft et al., 2021) have been most pronounced

on beach characteristics such as wrack, logs, sediments, vegetation,

and invertebrates. Armoring and restoration can have important

food web implications, as the forage fish surf smelt (Hypomesus

pretiosus) and Pacific sand lance (Ammodytes hexapterus) lay their

eggs on beach sediments (Rice, 2006), and endangered populations

of Chinook salmon (Oncorhynchus tshawytscha) feed on insects

along the shore as outmigrating juveniles (Toft et al., 2007). Armor

removal is often combined with sediment nourishment, placement

of logs, and planting of vegetation (Johannessen et al., 2014), similar

to the implementation of living shoreline techniques worldwide that

incorporate a number of complementary techniques such as

inclusion of marsh sills and oyster beds (Gittman et al., 2016a;

Morris et al., 2019b), along with armor removal (Bilkovic et al.,

2017; Smith et al., 2020).

In the Salish Sea, our knowledge of nearshore restoration

effectiveness has increased as studies are published over multiple

scales, as is true elsewhere. For example, in Florida, seagrasses

showed a greater response at seven years post-restoration than at

three years (Bell et al., 2014). In Chesapeake Bay, nekton use of

living shorelines was found to be equivalent to natural marshes at

thirteen sites (Guthrie et al., 2022), whereas an initial study of just
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two sites showed a positive response for some but not all fish species

(Davis et al., 2006). Previous studies of restoration effectiveness in

our region have assessed site-to-site and annual variability of wrack,

logs, and invertebrates in 18 locations (Des Roches et al., 2022), the

effectiveness of living shorelines in 10 locations (Toft et al., 2021), a

meta-analysis of six case studies (Lee et al., 2018), and invertebrates

at one site of armor removal (Toft et al., 2014). Our project builds

on this previous research by studying 26 restored beaches,

encompassing a broader spatial area and allowing us to determine

the effects of multiple large-scale predictor variables, including

coastal landforms. To accomplish this effort, the Shoreline

Monitoring Database (https://www.shoremonitoring.org) has been

instrumental in providing a framework for our collaborative team

of academic, agency, and community scientist groups to work

together, broadening what we can achieve.

Shoreline ecosystems are shaped by their surrounding coastal

landforms. Different categories of coastal landforms can be

characterized by processes of sediment erosion and deposition,

and the type of coastal landform is likely to influence armor

removal and shoreline restoration. In the Salish Sea, shorelines

are segmented into “drift cells”, each with sediment sources,

transport paths, and deposition areas (Coastal Geologic Services

(CGS), 2020). There are three main shoretypes mapped in regional

geodatabases at which restoration occurred (Figure 1). First, feeder

bluffs (FB) are high-elevation coastal bluffs that erode through time

and supply sediment to the nearshore (Coastal Geologic Services

(CGS), 2020). Sediment is transported down-drift, maintaining

beach structure and providing habitat value. Second, accretion

shoreforms (AS) are low-elevation beaches where sediment is

deposited from eroding updrift bluffs, leading to landform

maintenance and development over time as long as sediment

processes in the drift cell are intact (i.e., not interrupted by

artificial armor and other infrastructure) (Dawson et al., 2009).

Finally, pocket beaches (PB) are closed systems that occur between

rocky headlands, and therefore are not formed by littoral drift.

In addition to the impact of coastal landforms on the outcome

of restoration actions, we predict that several additional landscape-

level parameters will be important in shoreline habitat function,

including fetch, sub-basin location, and percent of the drift cell that

is armored. Fetch is the distance that waves are generated by wind,

and may be a governing force in the supply and movement of

sediments, wrack, and logs (Nordstrom and Jackson, 2012). Within

the protected waters of the Salish Sea, fetch is limited, as opposed to

the open coast where ocean swells and storms can generate much

larger forces, and along with rising seas are leading to management

actions such as managed retreat (Hino et al., 2017). Sub-basins

incorporate larger geological features such as tidal flux and position

in the landscape, which along the sinuous shorelines of the Salish

Sea are influential in some impacts of armor (Dethier et al., 2016).

Additionally, the percent of drift cell armored can account for the

scale of human impacts along the entire drift cell, as opposed to that

at singular sites. Although this parameter can lead to the coarsening

of sediments due to the legacy of armor placement (Dethier et al.,

2016), the clearest outcomes of restoration actions have been

documented at the site scale (Toft et al., 2021).
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In this study, we evaluate the effectiveness of removing armor

across different shoretypes – feeder bluffs, accretion shoreforms,

and pocket beaches. We compare restored beaches (restored for an

average of six years) to natural never armored beaches, which serve

as a reference point for successful restoration actions because they

should have largely intact localized processes and functions (e.g.,

sediment movement, invertebrate diversity). A broad spatial

sampling scale enables us to include effects of shoretype (feeder

bluff, pocket beach, accretion shoreform), fetch (distance), sub-

basin, and relative amount of armored shoreline in the surrounding

drift cell. Due to the underlying factors that may affect habitat

response on the landscape level, we hypothesize that these

geophysical features will influence restoration effectiveness at the

site level. Our sampling regime measures structural habitat

components of beach wrack, logs, sediments, and vegetation, as

well as insects among shoreline vegetation, at upper intertidal and

supratidal elevations (as per Dethier et al., 2016; Toft et al.,

2021; Des Roches et al. , 2022). Our goal is to assess

restoration effectiveness across shoretypes and landscape features

in order to adaptively plan for future restoration actions along

developed coasts.
Frontiers in Marine Science 03
2 Materials and methods

2.1 Study area

We surveyed 26 sites within the Salish Sea (Washington State,

USA) which is an estuarine fjord with mixed semidiurnal tides

(Sobocinski, 2021). Each site included paired transects at beaches of

restored and natural status that were of the same shoretype

(accretion shoreform, feeder bluff, pocket beach) (Figure 1). Sites

were restored for an average of six years, ranging from 1 to 17 years

(Supplemental Material). Accretion shoreforms were the shoretype

at four sites, Cornet Bay (Deception Pass), Kukutali Preserve

(Similk Bay), Similk Bay (Similk Bay), and Sunlight Shores

(Whidbey Island). Feeder bluffs were the prevalent shoretype,

consisting of 20 sites at Anna Smith Park (Dyes Inlet), Brown

Island (San Juan Islands), Dabob Bay (Hood Canal), Dockton Park I

and II (Maury Island), Dawley (Sequim Bay), Edgewater Beach (Eld

Inlet), Forest Glen (Vashon Island), Fort Townsend (Port

Townsend), Howarth Park (Everett), Maylor Point (Whidbey

Island), Penrose Point (Carr Inlet), Piner Point (Maury Island),

Ross Point (Sinclair Inlet), Seahorse Siesta (Whidbey Island),
FIGURE 1

Map of twenty-six restored sites in the Salish Sea, WA, USA (A), each with a paired natural reference beach. Shapes indicate the shoretype: AS =
Accretion Shoreform (B), FB = Feeder Bluff (C), and PB = Pocket Beach (D). Colors indicate the fetch distance (miles, binned for display). Text labels
and lines show the four regions included in the analysis, based on sub-basins: Northern (Strait of Juan de Fuca, San Juan Islands and Georgia Strait,
and north central Puget Sound); Southern (south central and south Puget Sound); Whidbey; and Hood Canal. Map base map source: Esri, HERE,
Garmin, (C) OpenStreetMap contributors, and the GIS user community.
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Seahurst Park I and II (Burien), Tahlequah (Vashon Island), Titlow

Park (Tacoma), and Waterman (Whidbey Island). Pocket beaches

were the shoretype at two sites, Bowman Bay (Deception Pass) and

Family Tides (San Juan Islands).
2.2 Data collection

We collected data during the spring and summer months (May-

September) spanning the years 2009 to 2022. Data collections were

not consistent across this timespan, as they varied by the year of

restoration at any given site. All methods used standardized

protocols as described in our previous publications (Dethier et al.,

2016; Toft et al., 2021; Des Roches et al., 2022) and are

available online at the Shoreline Monitoring Database (https://

shoremonitoring.org). Data were collected along 50-meter

transects parallel to shore during low tides when the upper beach

was exposed. At the most recently deposited beach wrack line, we

measured the proportion of wrack cover and wrack depth at ten

random points along the transect, using a 0.1 m2 quadrat sub-

divided into 25 squares for ease of estimating percentages. We

counted the number of logs greater than 1 m in length and 0.1 m in

diameter (driftwood) and the width of the log line perpendicular to

shore at five random points on the transect. Along the 50 m

transect, we measured the linear percent overhanging vegetation

on the upper beach and counted the total number of fallen trees. We

sampled sediment size using either visual estimates (0.1 m2 quadrat

with visual sediment size indicators at five random points) or

collection of sediment (sieving and weighing) consistent within a

restored-natural pairing, to calculate the proportion of sand (<

2 mm diameter) versus gravel (2 mm - 6 cm) in surface and sub-

surface (5 cm) layers (dug with a hand trowel to a 5 cm

measurement). We sampled insects and other terrestrial

arthropods (e.g., arachnids, collembola), all together shortened to

“insects” hereafter, with fallout traps (40 × 25 cm plastic bins with a

small amount of soapy water) deployed for 24 hours at five random

points along the transect. Samples were sieved at 106 mm, preserved

in 70% isopropanol, and returned to the laboratory for

identification and enumeration under a dissecting microscope.
2.3 Statistical analysis

To generate a dataset for our study sites that included shoretype,

percent of drift cell armored, fetch, and sub-basin, we used the

Spatial Join function in ArcMap (ArcGIS Desktop 10.8.2) from the

Nearshore Geospatial Framework (Coastal Geologic Services

(CGS), 2017) and the Beach Strategies Phase 1 Database

(MacLennan et al., 2017). All data were transformed to the same

Geographic Coordinate System (GCS_WGS_1984) for analysis and

the spatial joins were manually checked for accuracy. Percent of

drift cell armored was updated with the length of armor that was

removed at our restored beaches. Shoretype was coded as feeder

bluff, accretion shoreform, or pocket beach. For feeder bluffs, we

included the following bluff-backed sub-categories in our feeder

bluff grouping (Coastal Geologic Services (CGS), 2020) – feeder
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bluff exceptional, feeder bluff, and transport zones that are generally

more stable. To increase site replication within spatially adjacent

sub-basins, we combined three northern sub-basins into one

northern grouping (Strait of Juan de Fuca, San Juan Islands and

Georgia Strait, and north central Puget Sound), and two southern

sub-basins into one grouping (south central and south Puget

Sound), with Whidbey and Hood Canal sub-basins separate.

We conducted statistical analyses using analyses of variance

(ANOVA) on generalized linear mixed models. Final models were

chosen by comparing potential models using the corrected Akaike

Information Criterion (AICc) (Hurvich and Tsai, 1989). Post-hoc

analyses included estimating marginal means of significant

responses (p < 0.05) across factors, conducting pairwise

comparisons of marginal means (with Tukey or multivariate t

corrections for multiple post-hoc testing), and calculating the

effect size of the comparisons, that is, the magnitude of difference

between groups (Cohen, 1988). Potential fixed effects were based on

study questions and included the status of the beach (restored or

natural), shoretype (feeder bluff, accretion shoreform, pocket

beach), fetch (miles), sub-basin (southern, northern, Whidbey,

and Hood Canal), and percent armoring of the site’s drift cell.

Interactive effects of beach status and shoretype were included, and

if no interactive effects were present based on ANOVA results, the

main effects were studied. Random effects included year (to account

for interannual sampling variation) and a spatial effect to account

for variation due to site location and among transects within sites

(Bolker et al., 2009). The spatial effect was coded as a unique

transect identifier nested within its site. To account for time since

restoration for restored sites, years since restoration was tested as a

fixed effect, but this did not improve model fits and was

subsequently removed from analyses.

Response variables included beach wrack (proportion total

cover, wrack depth), logs (total counts, width of log line),

vegetation (fallen trees, percent overhanging vegetation), insects

(density, taxa richness), and sediments (proportion of sand at

surface and subsurface depths). Response variables measured as

proportions (e.g., wrack cover and sand) followed a beta

distribution. Continuous responses followed a Gaussian

distribution, while count data followed a Poisson or negative

binomial distribution (Supplemental Material). All statistical

analyses were performed using R Statistical Software (v4.2.2; R

Core Team, 2022). Data manipulation was performed using “dplyr”

(v2.2.1; Wickham et al., 2022). We developed GLMMs using R

package “glmmTMB” (v1.1.5; Brooks et al., 2017), designed post-hoc

comparisons for beach status and shoretype using the package

“emmeans” (v1.8.3; Lenth, 2022), and used “ggplot2” (v3.4.0

Wickham, 2016) for data visualization.
3 Results

Shoretype, fetch, sub-basin, and restored or natural status of

beaches accounted for significant differences in at least one of our

measured response variables; however, the percent of drift cell

armored did not explain significant variation and therefore was

not included in our final models (Table 1; Supplemental Material).
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TABLE 1 ANOVA summaries of response variables (vegetation, logs, insects, wrack, sediments) for generalized linear mixed-effects models with
shoretype (accretion shoreform, feeder bluff, pocket beach), beach status (natural or restored), fetch, and sub-basin, including Chi-square values,
degrees of freedom, and p-values (highlighted in bold when significant; “*” indicates interactions).

Count of Fallen Trees

Chisq Df Pr (>Chisq)

(Intercept) 0.53 1 0.467

Shoretype 17.721 2 < 0.001

Status 6.499 1 0.011

Fetch 8.923 1 0.003

Log Counts

Chisq Df Pr (>Chisq)

(Intercept) 0.487 1 0.485

Status 0.229 1 0.632

Shoretype 1.411 2 0.495

Fetch 10.909 1 0.001

Status*Shoretype 5.203 2 0.074

Log Line Width

Zero Inflation Chisq Df Pr (>Chisq) Conditional Chisq Df Pr (>Chisq)

(Intercept) 8.927 1 0.003 0.674 1 0.412

Status 0.399 1 0.527 0.462 1 0.497

Shoretype 17.712 2 < 0.001 1.395 2 0.498

Fetch 96.119 1 < 0.001 0.182 1 0.67

Status*Shoretype 0.14 2 0.932 1.416 2 0.493

Sub-basin 2.427 3 0.489

Insect Densities and Fixed Effects of Taxa Richness

Densities Chisq Df Pr (>Chisq) Taxa Richness Chisq Df Pr (>Chisq)

(Intercept) 90.976 1 < 0.001 48.718 1 < 0.001

Shoretype 10.55 2 0.005 5.023 2 0.081

Status 0.059 1 0.807 11.966 1 0.001

Status*Shoretype 6.268 2 0.044

Wrack Proportion Cover and Depth

Proportion Cover Chisq Df Pr (>Chisq) Depth Chisq Df Pr (>Chisq)

(Intercept) 4.787 1 0.029 2.821 1 0.093

Shoretype 6.531 2 0.038 0.229 1 0.632

Status 0.001 1 0.971 3.641 2 0.162

Status*Shoretype 0.542 2 0.763 1.308 2 0.52

Fetch 8.423 1 0.004

Sediments (Proportion Sand)

Surface Chisq Df Pr (>Chisq) Subsurface Chisq Df Pr (>Chisq)

(Intercept) 1.854 1 0.173 0.073 1 0.787

Status 0.003 1 0.957 0.24 1 0.624

(Continued)
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Final models for vegetation data analyzed the effects of beach status

(restored and natural), shoretype (FB, AS, PB), and fetch. Natural

beaches had more overhanging vegetation than restored beaches

(Figure 2). Feeder bluffs had more fallen trees than the other

shoretypes (marginal mean comparisons = -3.44 AS-FB, 5.27 FB-

PB), and natural beaches had more fallen trees than restored

(Figures 2, 3; Table 1). Fallen trees increased as fetch

decreased (Figure 4).

The interaction of beach status and shoretype was significant for

log counts (Table 1). Pairwise comparisons of marginal means

within each shoretype showed that log counts at natural feeder

bluffs were higher than those at restored feeder bluffs (marginal

mean comparison = 0.70, and a small effect size of 0.14) (Figures 2,

3). There were no pairwise differences in log counts at other

shoretypes. However, the width of the log line was significantly

more likely to be zero at feeder bluffs than pocket beaches and

accretion shoreforms, regardless of beach status (Figure 2;

Supplemental Material). Log counts increased along with fetch

distance (incidence rate ratio = 1.18, SE = 0.001) (Figure 4), and

width of the log line had more occurrences of zeros with lower fetch

(estimate = -0.28, SE = 0.03).

The interaction of beach status and shoretype was significant for

insect density (i.e., inclusive of insects and other terrestrial

arthropods), with pairwise comparisons showing that natural

pocket beaches had higher insect densities than natural

accretional shoreforms and feeder bluffs (marginal mean

comparisons = -2.06 natural AS-PB, -1.77 natural FB-PB)

(Figure 2, Table 1; Supplemental Material). Natural beaches had

higher insect taxa richness than those that were restored, and there

were no interactions with shoretype (Figures 2, 3, Table 1). Final

models for insect data did not include fetch or sub-basin.

Restored and natural beach status was not significant in wrack

proportion cover or wrack depth. Shoretype was significant for

wrack proportion cover, but post-hoc analyses showed no

differences, and shoretype was not significant for wrack depth.

Due to model selection, fetch and sub-basin were not included in

final models for wrack proportion cover (Figures 2, 3, Table 1).

Fetch was included in final models for wrack depth, and showed

significant increases in wrack depth as fetch increased (estimate =

0.09, SE = 0.03) (Figure 4).

Final models for sediment size included fetch and sub-basin,

and feeder bluff and pocket beach shoretypes, as sample sizes at

accretion shoreforms were too few for analyses. Sand and gravel
Frontiers in Marine Science 06
sediment sizes were inversely proportional (Figure 2), and

proportion sand was the focus of analyses. Feeder bluffs had a

higher proportion of surface sand than pocket beaches at both

natural and restored beaches (Figures 2, 3, Table 1). Proportion of

sand in surface sediments also increased as fetch decreased

(Figure 4), and Whidbey Basin had a higher proportion of surface

sand than the southern sub-basin (Table 1; Supplemental Material).

Effects were not as strong in sub-surface sediments (5 cm depths),

yet natural feeder bluffs had a higher proportion of sand than

natural pocket beaches (Figures 2, 3, Table 1).
4 Discussion

Our study harnesses data collected from 26 pairs of natural and

restored (armor removal) sites to show how geophysical features

can influence key indicators of restoration effectiveness including

beach wrack cover, the number of beached logs, sediment sand

composition, amount of vegetation and fallen trees, and insect

density and richness. Shoreline restoration in the Salish Sea is

often, but not always, effective at approaching natural conditions,

and geophysical features, mainly shoretype and fetch, are associated

with variations in restoration responses. One of the aims of

shoreline restoration has been to re-establish natural ecological

processes, structure, and function to conditions prior to armor

construction. Yet, the extent to which ecosystems return to these

former conditions is variable and can be unpredictable. Even across

natural, never-armored beaches, there is appreciable variation in the

deposition of beach wrack and logs and the composition of

invertebrate communities (Des Roches et al., 2022). Geophysical

features, including coastal landforms, fetch, sub-basin, and drift cell

characteristics are likely to affect restoration effectiveness, yet are

difficult to study in a controlled manner.

The proportion of wrack cover and depth, the width of the log

line, and the proportion of sand were comparable between

natural and restored beaches, regardless of shoretype. Similar

shoreline restoration benefits have been found regionally (Toft

et al., 2021) and internationally (Strain et al., 2018). However,

natural beaches had higher percentages of overhanging

vegetation, more fallen trees, and higher insect taxa richness

(i.e., inclusive of insects and other terrestrial arthropods). These

results suggest that more time is necessary for growth and

maturation of vegetation at restored sites, relative to rapid
TABLE 1 Continued

Sediments (Proportion Sand)

Surface Chisq Df Pr (>Chisq) Subsurface Chisq Df Pr (>Chisq)

Shoretype 10.228 1 0.001 4.796 1 0.029

Fetch 3.966 1 0.046 0.001 1 0.979

Sub-basin 7.505 2 0.023

Status*Shoretype 0.323 1 0.57 0.546 1 0.46
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responses like wrack and log deposition, and longer term

monitoring is needed to track these conditions beyond our

average of six years post-restoration. This temporal component

is noteworthy given the influence that shoreline vegetation can

have on fish and their invertebrate prey (Romanuk and Levings,

2003; Romanuk and Levings, 2006; Toft et al., 2007). Protection
Frontiers in Marine Science 07
of existing riparian vegetation, especially large trees, is an

important practice to partner with restoration actions.

We found various parameters of coastal landforms to cause

significant variation in the response to shoreline restoration. Bluffs

with active sediment input (“feeder bluffs”) are important for

providing sediments that create and maintain beaches, and also
A
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FIGURE 2

Boxplots depicting response variables by beach status (natural or restored) among shoretypes (AS = yellow, FB = green, PB = blue), including (A)
count of fallen trees, (B) log counts, (C) insect densities, (D) proportion wrack cover, (E) proportion sand and gravel, (F) percent overhanging
vegetation, (G) log line width, (H) insect taxa richness, and (I) wrack depth. #, indicates number.
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for supporting diverse biota that are dependent on these habitats. In

our study, feeder bluffs were the prevalent shoretype and had a

higher proportion of surface sand than pocket beaches at both

natural and restored beaches, which is understandable given the

localized source of eroding sand at feeder bluffs, in contrast with the

closed system of pocket beaches bordered by rocky headlands.
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Feeder bluffs also had more fallen trees than the other shoretypes,

a habitat feature that coincides with the erosion of bluff material

which includes riparian vegetation as well as sediments. These

autochthonous sources may be important to nearshore food webs,

as has been found in restored marshes where estuarine consumers

are dependent on localized subsidies (Howe and Simenstad, 2011).
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FIGURE 3

Marginal means plots depicting response variables by beach status (natural or restored) among shoretypes (AS = yellow, FB = green, PB = blue),
including (A) count of fallen trees, (B) log counts, (C) insect densities, (D) proportion wrack cover, (E) proportion surface sand, (F) log line width,
(G) insect taxa richness, (H) wrack depth, and (I) proportion subsurface sand.
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Allochthonous (marine) sources of algae and eelgrass in wrack are

also important to beach-dwelling talitrid amphipods and other

consumers (Toft et al., 2021; Hyndes et al., 2022). Beach wrack

abundance was similar across all shoretypes and beach status,

pointing to its rapid accumulation at restored beaches and its

prevalence across diverse coastal landforms.
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Natural pocket beaches had the highest insect densities of all

shoretypes. Since pocket beaches are closed systems rather than a

portion of a larger drift cell, insects and other terrestrial arthropods

may be confined within the rocky headland boundaries more than

along open shoreline stretches. Similarly, insect taxa richness

increased at a created pocket beach along an urban shoreline

bordered by artificial armor (Toft et al., 2013), likely dependent

on the amount of supralittoral vegetation that is present along the

shoreline (Romanuk and Levings, 2003). Invertebrate community

recovery at pocket beaches is a resource for juvenile salmonids, as

these are important habitats for foraging (Beamer et al., 2006).

Pocket beaches have also proved to be valuable habitat elsewhere,

including for horseshoe crab spawning along the US Atlantic Coast

(Landi et al., 2015). Although accretion shoreforms were not found

to be higher in any of our analyzed metrics compared to the other

shoretypes, these depositional beaches are still prevalent features of

the landscape with associated habitat functions typical of shallow

water systems (Toft et al., 2007; Defeo et al., 2009). Since accretion

shoreform and pocket beach shoretypes were less represented in our

study sites than feeder bluffs, future studies should seek to more

broadly incorporate a diversity of shoretypes.

In addition to beach status and shoretype, fetch was a significant

predictor of restoration effectiveness. Because the fetch-limited

beaches characteristic of much of the Salish Sea have low-energy

waves, less wrack and fewer logs are carried to these sites as

compared to exposed coasts (Nordstrom and Jackson, 2012). Our

analysis shows that within the Salish Sea, increased fetch leads to an

increase in log counts and wrack depth. Conversely, as fetch

decreases, fallen trees and surface sand increase, as low local wave

energies allow fallen trees to remain in place and function as traps

for sediment movement alongshore (Nordstrom and Jackson,

2012). Of our predictor variables, percent armoring of the drift

cell was not a significant factor in our analyses. The larger scale of

armoring along a drift cell versus at a single site has been shown to

matter for overall armor impacts, specifically by coarsening

sediment sizes (Dethier et al., 2016), but not for restoration

effectiveness (Toft et al., 2021), at least on the more limited

spatial and temporal scales that restoration has occurred. As

restoration programs expand, shoretype and fetch should be

considered influential factors that can mediate the restoration

response to deleterious impacts of armor, such as decreased beach

logs and wrack (Dethier et al., 2016) and reduction of the variation

in ecological responses (Des Roches et al., 2022).

Our results show that landscape context interacts with

restoration practices to produce shoreline habitats that vary in the

type of restoration benefits that they provide. This variation in

restoration response can help to maintain a mosaic of habitat

benefits across a large scale, similar to what is found along

natural shorelines (Des Roches et al., 2022). The knowledge that

recovery of natural functions at restoration sites varies with their

larger landscape context can help shoreline managers envision

outcomes based on local characteristics. For example, restoring a

site with a large fetch may lead to higher input from outside sources

– floating logs and wrack that drift into the site – whereas a small

fetch may lead to higher input from localized sources – fallen trees,

and eroding sand. The degree of wave exposure and habitat type
A

B

D

C

FIGURE 4

Marginal effects plots of significant responses for fetch, including (A)
count of fallen trees, (B) log counts, (C) wrack depth, and (D)
proportion surface sand. Error bars are 95% confidence intervals.
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have also been found to be influential in other systems, such as on

fish composition along Australian coasts (Valesini et al., 2004;

Borland et al., 2017). Log-line width may also be dependent on

shoreline conditions, as it was more likely to be zero (i.e., no logs) at

high-bank feeder bluffs than low-bank pocket beaches and accretion

shoreforms. The subtle differences that we found across sub-basins

may reflect the specific sites sampled rather than overall sub-basin

characteristics (Dethier et al., 2016). The Whidbey sub-basin did

have a higher proportion of sand in surface sediments than the

southern sub-basin, likely because Whidbey and Camano Islands

have the greatest linear extent of intact unarmored feeder bluffs of

any county in Puget Sound (Coastal Geologic Services (CGS), 2020),

and therefore may have the greatest potential for eroding sand

accumulation on upper beaches.

Our study focused on the upper beach where direct shoreline

restoration actions most commonly occur. Further connections

across the land-sea interface will help identify how functions

operate at variable tidal elevations and distances from shore. For

example, previous work with community scientist groups has

shown that the taxa richness of lower intertidal biota was higher

at feeder bluffs than at accretional and modified shorelines (Toft

et al., 2017). Above the beach on the bluff face, piscivorous birds

such as Pigeon Guillemots nest and can influence food web

dynamics (Bishop et al., 2016). Further, sediment supply to tidal

flats are often the main reason that feeder bluffs are prioritized for

restoration and protection (Dawson et al., 2009; Coastal Geologic

Services (CGS), 2020). Along with forage fish spawning on beaches

(Rice, 2006), there are wider benefits of restoration and protection

efforts to the fish, birds, and invertebrates that rely on coastal

habitats for nursery functions (Lefcheck et al., 2019). These benefits

can connect to subtidal zones as well, in the context of shoreline

restoration associations for offshore subtidal fish (Francis et al.,

2022), as well as subtidal restoration actions for eelgrass (Zostera

marina) (Thom et al., 2018) and bull kelp (Nereocystis luetkeana)

(Carney et al., 2005).

Geophysical features can be used in the planning of restoration

site feasibility, as has been done regionally (Johannessen et al., 2014;

Coastal Geologic Services (CGS), 2020) and in Chesapeake Bay,

USA, using a suite of fine-scale coastal conditions to provide

management recommendations on where “living shorelines” are

suitable (Nunez et al., 2022). By incorporating the effectiveness of

restoration with landscape features such as shoretype and fetch, we

can further expand prioritization guidelines to include likely

functions of restoration. Physical and biological factors are tightly

linked in coastal systems (Dethier and Schoch, 2005; Defeo et al.,

2009), and continued examination of how these relate to aspects of

restoration effectiveness and global change should be prioritized by

shoreline scientists and managers, both along soft sediment shores

as in our study, as well as rocky shores such as at the base of cliffs in

the United Kingdom (Jackson and McIlvenny, 2011). Analyzing

this context-dependence will allow us to more effectively link our

knowledge of coastal seascape ecology (Boström et al., 2011) with

planning for the future restoration of our coasts (Morris et al.,

2022). By incorporating larger-scale geophysical features, we can
Frontiers in Marine Science 10
guide restoration effectiveness across diverse landscape

topographies, beyond the variability that is often noted at the

single-site scale within multi-scale analyses (Simenstad et al.,

2000; Valesini et al., 2014), and as interpretation of variability in

terms of restoration effectiveness (Des Roches et al., 2022; Morris

et al., 2022). These elements can improve our collective

understanding of not only shoreline restoration, but on a larger

scale, of the landscape features that govern shoreline functions.
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