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Extreme low pH events in estuaries and upwelling areas can modulate the

phenotypic and genetic diversity of natural populations. To test this hypothesis,

we explored the linkage between local scale extreme low pH events, genetic

diversity, and variation in fecundity-related traits (body size, egg size, and egg

production rate) in the broad-dispersal copepod Acartia tonsa. We assessed

genetic and phenotypic characteristics of populations by contrasting extreme

low pH environments (upwelling and temperate estuary) in the coastal Southeast

Pacific, under natural and experimental conditions. These populations showed

significant genetic differentiation with higher diversity in mitochondrial and

nuclear loci (encoding mtCOI and 18S rRNA) in the estuarine population.

Copepods from this population are exposed to more frequent extreme low pH

events (< 7.7), and the adult females exhibit consistent phenotypic variation in

body size, egg size, and egg production rate across different cohorts.

Experimental acclimation to extreme low pH conditions revealed no significant

differences in fecundity-related traits between A. tonsa populations. Although

these results partially support our hypothesis, the experimental findings suggest

other drivers might also influence phenotypic differences in the

local environments.

KEYWORDS

coastal variability, carbon chemistry, extreme events, temperate and subtropical
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2023.1221132/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1221132/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1221132/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1221132/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1221132/full
https://orcid.org/0000-0001-5791-5250
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2023.1221132&domain=pdf&date_stamp=2023-12-07
mailto:victor.aguilera@ceaza.cl
https://doi.org/10.3389/fmars.2023.1221132
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2023.1221132
https://www.frontiersin.org/journals/marine-science


Aguilera et al. 10.3389/fmars.2023.1221132
Introduction

Compared to open ocean in which surface pH is progressively

lowered solely due to ocean acidification (Gruber et al., 2021),

coastal environments are characterized by complex and dynamic

pH conditions that vary across time and space (Carstensen and

Duarte, 2019). This environmental variability (in terms of

predictability, range, and extremes) can promote inter-population

differences in phenotypic plasticity and genetic diversity in natural

populations (Gaitán-Espitia et al., 2017; Kapsenberg and Cyronak,

2019; Sasaki and Dam, 2019; Sasaki and Dam, 2020). Extreme low

pH events in coastal habitats (e.g., freshwater-influenced areas,

coastal upwelling areas, and oxygen minimum zones) occur

episodically usually as short term intervals (days) (Spisla et al.,

2021), and have been associated with greater phenotypic and

genetic variations in inhabiting populations compared to those in

less variable and extreme habitats (Calosi et al., 2013; Kelly and

Hofmann, 2013; Aguilera et al., 2016; Riquelme-Bugueño

et al., 2020).

Extreme low pH events (i.e., pH-threshold) affecting marine

invertebrate physiology, mainly crustacean, were recently defined

as pH values < 7.7 (Bednars ̌ek et al., 2021). These extreme low pH

events can vary across biogeographic regions depending on the

interactions between the seascape/landscape, natural dynamics of

physical-chemical conditions and the specific level of influence of

climate and global change (Gruber et al., 2021; Burger and

Frölicher, 2023). For temperate estuarine ecosystems,

temperature, salinity, and pH conditions vary mostly due to the

influence of cold, low alkalinity and high pCO2 freshwater

(Waldbusser and Salisbury, 2014; Vargas et al., 2016; Carstensen

and Duarte, 2019). This influence is expected to change due to

changing hydrological cycles and river runoff driven by climate

change, and/or changing land uses by global change, exposing

these habitats, for example, to anomalous extreme low pH events

(Diffenbaugh et al., 2005; Curra-Sánchez et al., 2022). Conversely,

in coastal upwelling regions, temperature and pH conditions can

vary dramatically due to wind-driven upwelling, which uplift

deep, cold, and low pH water to the ocean surface (Feely et al.,

2008; Vargas et al., 2017; Vargas et al., 2022). The projections of

increased frequency and intensity of extreme low pH events are

related to either more intense upwelling favorable winds

(Sydeman et al., 2014) and/or the expansion and shoaling of

CO2-rich oxygen minimum zones (Cabré et al., 2015). The

specific environmental variability, including frequency and

magnitude of extreme pH events that these habitats provide to

local populations, can promote specific patterns of physiological

plasticity and genetic differentiation (Burger et al., 2020; Gruber

et al., 2021).

The global cosmopolitan and broad dispersal copepod species

Acartia tonsa (Copepoda, Calanoida) (Chaalali et al., 2013), is

distributed in the southeastern Pacific from tropical (5°S)

upwelling areas (Aronés et al., 2009), temperate estuaries

(Aguilera et al., 2013) and subantarctic channels (∼54°S) (Aguirre
et al., 2012). In between, there are contrasting climate-geographic
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provinces (Camus, 2001; Escribano et al., 2003), each exhibiting

specific patterns of local scale environmental variability (Vargas

et al., 2017; Vargas et al., 2022). A. tonsa populations inhabiting

these specific geographic provinces might present different patterns

of genetic and phenotypic variation. In this study, we assessed

genetic and phenotypic variation in fecundity related-related traits

of two distant (>15° latitude separation) A. tonsa populations

inhabiting a temperate-seasonal estuary and sub-tropical year-

round upwelling system in the southeastern Pacific. Although

contradictory results have been observed with regards to pH

effects on copepod traits, fecundity related-traits, such as egg

production rate and egg size, tend to be highly sensitive to low

pH conditions (Wang et al., 2018). These traits can determine the

fitness of the offspring through maternal effects (Vehmaa et al.,

2012), while accounting for demographic and biogeochemical

processes like secondary production (Poulet et al., 1995). Our

results indicate the estuarine A. tonsa population was exposed to

more frequent extreme low pH events (< 7.7), and the adult females

exhibit consistent phenotypic variation in fecundity-related traits

across different cohorts. Although copepod populations were

genetically structured, acclimation experiments revealed no

significant differences in fecundity-related traits between A. tonsa

populations, suggesting other drivers might also influence

phenotypic differences in the local environments.
Materials and methods

Study areas

Local scale pH conditions, genetic diversity and copepod

fecundity-related traits were characterized in a temperate-estuarine

system in Southern Chile (Valdivia River Estuary, 39.8°S 73.2°W) and

a coastal upwelling system off northern Chile (Antofagasta, -23.4°S

-70.6°W). Strong riverine discharges characterize the estuarine

system, with maximum runoff during the austral autumn-winter

period (130 ± 93 mm y-1 of precipitation), and occasional rainy

events occurring throughout the year (Pérez et al., 2016). The

influence of freshwater runoff in this estuarine system is widely

affected by tidal cycles that determine regular events of low

temperature (< 14°C), low pH (pHT < 7.7) and low salinity

conditions (< 33 psu) in the adjacent coastal zone (Aguilera et al.,

2013; Garcés-Vargas et al., 2020; Osma et al., 2020). In contrast, the

Antofagasta upwelling system is located off the most arid global

desert, the Atacama Desert, which lacks seasonality and freshwater

discharges (Hartley et al., 2005). Permanent equatorward winds

promote year-round uplifts of subsurface cold and low pH (pHT <

7.7) water (Torres et al., 2002; Aguilera et al., 2020a) over an

extremely narrow (< 5 km) continental shelf. The estuarine and

upwelling habitats are embedded in the Humboldt Current System

and located in distant coastal provinces (> 1700 km, > 15° latitude

distant), separated by oceanographic clines efficiently structuring the

latitudinal distribution and genetic diversity of benthic invertebrates

(Haye et al., 2014).
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Characterization of environmental
variability in each habitat

Environmental characterization in the estuarine system was

assessed during the seasonal (austral spring-summer) occurrence

and reproduction of the local A. tonsa population, between the

years 2010 and 2012, under the influence of flood tides (Aguilera

et al., 2013). The environmental variability was characterized at 7 m,

likely reflecting the most prevalent environmental niche of adult

females in which fecundity-related traits were assessed. Indeed, the

spatial niche of A. tonsamight be smaller in the estuarine system due

to hydrographic conditions potentially reducing the habitat suitability

on the surface (less dense and low pH freshwater lens) and near the

bottom (i.e., turbulent and sediment enriched tidal currents) (Pino

et al., 1994; Vargas et al., 2003; Osma et al., 2020). Environmental

drivers such as temperature, salinity, pHT, and food concentration

were characterized on an inter-daily scale (i.e., each 4 – 6 days) by

means of 18 oceanographic surveys (Table 1). A small CTD (Ocean

Seven 305 Plus, www.idronaut.it) deployed from above the bottom to

the surface provided continuous temperature (°C) and salinity (psu)

measurements. In addition, water samples were collected at 7 m

depth with a 10-L Niskin bottle for determinations of pHT, total

alkalinity (AT), and copepod food. Within 2 h of collection, pHT was

measured in a closed 25-mL cell thermostated at 25.0°C using a

Metrohm 713 pH meter and a glass combined double junction Ag/

AgCl electrode (Metrohm model 6.0219.100) calibrated with Tris

buffer at 25°C. Samples for AT were collected in 250 mL high-density

polypropylene bottles, poisoned with 50 µL of a saturated HgCl2
solution and then stored in darkness at room temperature until

analysis no longer than 1 month. AT was analyzed using the

automated potentiometric titration method (Haraldsson et al.,

1997) controlling the accuracy against certified reference material

(CRM, Batch #101, Scripps Institution of Oceanography, San Diego,

USA). With pH, AT, temperature, and salinity data, pHT (total scale)

and other carbonate system parameters were estimated using the

CO2sys_v3.0 software (Pierrot et al., 2021), set with Mehrbach

solubility constants (Mehrbach et al., 1973) and refitted after

Dickson and Millero (1987). Food concentration was determined as

the biomass of nanoflagellates and phytoplankton cells in carbon

units (mg C L-1) (e.g., Vargas and González, 2004).

Environmental characterization in the upwelling system was

carried out at variable intervals (4 ± 3 d) during 2015 (Table 1). In
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this system, A. tonsa reproduces throughout the year (Ruz et al.,

2015) and its vertical niche seems to be constrained to the upper 20m

of the water column due to a shallow oxygen minimum zone

(Escribano et al., 2009). Thus, environmental characterization in

the upwelling system was accomplished at 10 m depth by means of

28 oceanographic surveys, all during 2015 (Table 1). Temperature

and salinity vertical profiles were recorded from above the bottom

(∼ 30 m) to the surface, through vertical deployments of a calibrated

SeaBird SBE19 Plus CTD. Seawater was collected through

oceanographic sample collections at 10 m depth for determinations

of pHT, AT and copepod food. Seawater pHT was measured in

triplicate as described above, within 1 h from the time of collection

in a closed 25 mL cell thermostated (25°C). AT samples were handled

and determined as described above by means of an automated

Alkalinity Titrator AS-ALK2 Apollo SciTech. The accuracy for AT

determinations was controlled in combination with certified

reference material (A. Dickson, Batch #140). The pHT was

calculated as described above. Food concentration was determined

as chlorophyll-a (Chl, µg Chl L-1) concentration, and then Chl

concentration was converted to carbon units by using a Chl:C

ratio=120, according to Vargas and González (2004), for the same

study area. Triplicate samples (200mL) of sieved (200 mm mesh)

seawater were filtered onto a GF/F filter (nominal pore size=0.7 µM).

Chl was extracted for 24 h in 90% acetone v/v and measured in a TD

Turner fluorometer (Strickland and Parsons, 1972).
Copepod sampling

Three different cohorts of both the estuarine and upwelling A.

tonsa populations were assessed. Three different cohorts were

assessed in the estuarine habitat over the period of 2010–2012,

while in the northern-upwelling habitat, copepods were sampled

throughout 2015. Cohorts were identified because they were either

sampled in subsequent seasons (estuary) or by accumulated changes

in the body size of adult females across an annual period (upwelling)

(Aguilera and Bednarsěk, 2022). Copepod samples were collected by

gentle oblique hauls with a 200-µmmesh sizeWP2 net equipped with

a non-filtering 1 L cod-end, from 12 to 7 m depth (estuary) and 15 to

10 m depth (upwelling) strata. Samples were gently transferred to a

temperature-controlled and well oxygenated container over the

duration of the transport to the laboratory.
TABLE 1 Operational definitions characterizing the study areas.

System Lat. Climate Dynamic Surveys Survey
freq. (d)

Column
depth (m)

Sampling
depth (m)

Estuary -39.8 Rainy Seasonal 18 4 ± 1 20 7*

12-7**

Upwelling -23.4°S Desert Continuous 28 4 ± 3 40 10*

15-10**
Latitude (Lat.) and dynamic refers to the copepod’s population dynamic and sampling regime. Survey frequency (freq.) in days (d, ± SD) of environmental (*) and biological (**) sampling.
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Genetic diversity

Genetic diversity was assessed using females randomly sorted from

samples collected during surveys encompassing months (upwelling,

n=29) to years (estuary, n=32) and analyzed individually. For

molecular analyses, partial sequences of the mitochondrial gene

cytochrome c oxidase subunit I (mtCOI, c. 700bp; Forward

LCO1490: 5’-GGTCAACAAATCATAAAGATATTGG-3’ and

Reverse HCO2198: 5’-TAAACTTCAGGGTGACCAAAAAATCA-3’;

Folmer et al., 1994) and nuclear gene for 18S ribosomal RNA (c.1600

bp; Forward 18A1mod: 5’-CTGGTTGATCCTGCCAGTCATATGC-

3’) and Reverse 1800mod: 5’-GATCCTTCCGCAGGTTCACCTACG-

3’; Raupach et al., 2009) were amplified through the polymerase chain

reaction (PCR). The mtCOI gene is related to the maternal mode of

inheritance with sharp intraspecific (up to 4%) and interspecific (∼9 to
>25%) genetic divergence (Bucklin et al., 1999; Bucklin et al., 2003;

Hebert et al., 2003b; Bucklin et al., 2010). The nuclear 18S gene evolves

at a lower rate thanmitochondrial genes (Moriyama and Powell, 1997),

which has been a valuable complementary tool to disentangle complex

phylogenetic relationships and reconstruction in copepod species

(Blanco-Bercial et al., 2011; Cornils and Blanco-Bercial, 2013). All

PCR amplifications were performed in 30 µl volume reaction with 3µl

PCR buffer (Promega), 3µl MgCl2 (Promega), 0.5 µl dNTPs (10 mmol

µl-1), 0.5 µl of each primer (100 pmol µl-1), 0.2 µl Taq polymerase

(Promega), 17.3 µl of sterile water and 5 µl of DNA template. For

mtCOI amplification, a temperature profile with an initial denaturation

at 94°C for 1 min was applied, followed by 32 cycles at 94°C for 40 s,

annealing at 48°C for 40 s, extension at 72°C for 1 min, and finishing

with another extension at 72°C for 1 min. Amplification of the 18S

fragment consisted in an initial denaturation at 94°C for 1 min, then 37

cycles at 94°C for 40 s, annealing at 54°C for 1 min, extension at 72°C

for 1min and a final extension at 72°C for 90 s. Successful amplification

of fragments was confirmed by 1.2% agarose gel electrophoresis and

staining with GelRedTM fluorescent DNA dye. Both DNA strands

were directly sequenced (Macrogen, Seoul, Korea; http://

www.macrogen.com). Mitochondrial and nuclear sequences were

edited and aligned in Geneious R11.1.5 (2018) using a MUSCLE

alignment algorithm (Edgar, 2004) with default settings. Population

diversity indexes, as the number of polymorphic sites (p), number of

mutations (nm), nucleotide diversity (p), mean number of nucleotide

differences (k), haplotype diversity(h), number of haplotypes (nh) and

number of private haplotypes (np), were estimated in DnaSp software

V.6. (Rozas et al., 2017). Genetic divergences between populations

(Fst) were estimated in the software Arlequin V.3.5 with 10000

permutations (Excoffier and Lischer, 2010). Finally, genealogical

relations between haplotypes were represented with a minimum

spanning haplotype network (Bandelt et al., 1999) in PopART

software (Leigh and Bryant, 2015).
Fecundity related traits

Assessed fecundity-related traits were female body size, egg

production rate and egg size. Within 2 h of collection, only mature

and visibly healthy A. tonsa females were sorted out under a
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stereomicroscope (Supplementary Figure 1). Up to 40 copepod

females were immediately preserved in 90% ethanol for further

measurements of copepod body length (mm) within two weeks of

preservation to diminish ethanol effects on body size (Moksness and

Fossum, 1992). Additional copepods were incubated in seawater

collected during sampling with the aim of estimating phenotypic

plasticity in fecundity-related traits as related to the habitat-specific

variations in environmental conditions. Mean incubation

temperature was 14 ± 1°C, which corresponded to the mean

temperature conditions experienced by the various cohorts in

both habitats. Mean egg production rates (EPR) were estimated

based on batches of 30–40 copepod females, individually incubated

for 17–20 h in 200 mL clean crystallizing dishes filled with sieved

(<200 mm) natural seawater. The concave walls of the dishes that

converge towards the floor, allow the settlement and grouping of the

relatively dense copepod eggs (Tang et al., 1998) onto the floors of

the dishes (although the walls of the dishes were surveyed as well).

Eggs produced over this period by each group were counted under a

stereomicroscope, standardized to daily duration (24 h), with the

mean EPR expressed as the egg fem-1 d-1 (± SD) (Aguilera et al.,

2011). After being counted, some of the produced eggs (20–30) were

preserved (90% ethanol) and their size (i.e., diameter in µm)

measured under an inverted microscope within two weeks of

preservation to diminish ethanol effects on egg size (Moksness

and Fossum, 1992).
Acclimation experiments

Environmental conditions in acclimation experiments should be

consistent with the habitat conditions of the respective populations

(Stillman, 2003), providing the opportunity of examining phenotypic

outcomes in response to specific attributes of environmental

variability, such as extreme conditions. This contrasts with

common garden experiments in which the mean habitat conditions

of one (or more) population is displaced to a common nominal level

to allow comparison of phenotypic responses among different

populations (Thorpe et al., 2005). Three acclimation experiments

with three different cohorts were carried out within each population

immediately after estimating phenotypic responses to field

conditions. Females were acclimated during 96-h under mean field

temperature and salinity, controlled food supply, and high (i.e.,

control) and extreme low pH levels (Supplementary Figure 3).

Events with pH < 7.7 were considered extreme low pH events

(Bednarsěk et al., 2021). This threshold of pH 7.7 corresponds to

the 5th percentile of measurements at the estuarine and upwelling

habitats. These conditions are associated either to the predominance

of freshwater in the estuary (Aguilera et al., 2013; Osma et al., 2020) or

very recently upwelled waters (Torres et al., 2002). In the estuarine

system, seawater was collected 8 km northward from the estuarine

system and transferred into a micro-mesocosm laboratory at the

Calfuco Marine Station, Austral University of Chile. In the upwelling

system, seawater was collected during three different opportunities

from the Antofagasta Bay and transferred to laboratory facilities at

the Marine Sciences Faculty of the Antofagasta University. Mean
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seawater temperature was maintained relatively constant (± 0.2°C) in

a free circulating water system (estuary) or cold room (upwelling)

during the incubations. In both systems, the target pHT levels were

achieved by mixing seawater with air containing different pCO2

concentrations (Vargas et al., 2017). Mean control and extreme pH

values reproduced during acclimation experiments were 7.73 ± 0.05

and 8.0 ± 0.06 in both the estuarine and upwelling system. Copepod

females (4 – 6) were pipetted into three 660-mL borosilicate acid-

washed bottles filled with pH equilibrated water, with daily exchange

of incubation water and food, the latter composed of Isochrysis sp.

(estuary) and Isochrysis sp. + Tetraselmis suecica (upwelling) in

concentrations above the saturation level for this species (>350 µg

C L-1 and > 4 µg Chl L-1; Thompson et al., 1994). After the last 24 h

incubation within the 96 h of acclimation, fecundity-related traits

(i.e., EPR) were estimated as described above.
Data analysis

To test differences in environmental conditions at the inter-

population level (i.e., between A. tonsa populations) we used a one-

way ANOVA, while body-size dependent fecundity was compared

with an ANCOVA analysis. Parametric tests were carried out after

successfully fulfilling requirements of normal distribution (Lilliefors

test, p<0.01) and homogeneity of variance (Levene’s tests). Inter-

population comparisons with significant differences (p-value<

0.005) were a posteriori compared with Tukey’s HSD test (Sokal

and Rohlf, 1995). The numerical relationships of fecundity with

environmental pH conditions were explored with Pearson’s

correlation tests, such as plastic responses which were expressed

as a mean reaction norm that had a significantly non-zero slope

(Stearns, 1992). Such a mechanistic approach to detect the

relationship between phenotypic plasticity and specific

environmental features can yield insights into ecological

speciation among populations (Chen and Hare, 2008).

Acclimation experiments were carried out with three different

cohorts of each population. Although these cohorts were sampled
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in subsequent chronologies, such sampling was not continuous and

thus, assessed cohorts correspond to discrete subgroups within each

population (group). To evaluate inter-population differences in the

EPR during acclimation experiments, we conducted a linear mixed

effects model. Extensions of simple linear models and mixed effects

models allow the simultaneous assessment of fixed and random

effects on non-independent data sets, such as phenotypic/genetic

variations across cohorts of a given population (i.e., hierarchical

structure). Experimental conditions (temperature, salinity, and

body size) and populations (estuarine and upwelling) were

considered as fixed effects, while experiments (I, II, III) as a

random effect. Differences in fecundity plasticity were indicated

by a significant effect of population. Statistical analyses were

performed in PRIMER6+ and STATISTICA package10.
Results

Genetic diversity

A total of 61 mtCOI sequences, 29 from the upwelling and 32

from the estuarine population were aligned in a region of 508 bp

(Genbank access code OQ877133-OQ877193). COI sequences

showed a moderate to high diversity in both localities with 13

haplotypes in total. Particularly, a relatively higher diversity was

revealed in the estuarine with respect to the upwelling population

(details in Table 2), with the presence of 6 private haplotypes. In the

upwelling population, we found 3 private haplotypes (Figure 1). The

most abundant haplotypes were present in both populations, while

the private haplotypes were less frequent (Figure 1A). However, the

pairwise Fst comparison showed a considerable and significant

genetic divergence between populations (Fst=0,414; p-value <

0.001). An alignment of 1460 bp to nuclear 18S was constructed

with 19 sequences, 12 from the estuarine and 7 from the upwelling

population (Genbank access code OQ875872-OQ875890). These

sequences showed a high diversity in both populations with the

presence of 12 haplotypes (Figure 1B). As with mtCOI, estuarine
TABLE 2 Comparison of environmental drivers and copepod traits regarding two variability factors: cohorts (3 levels) and habitats (2 levels).

Mitochondrial COI (508 bp)

Population n na np h ± SD p ± SD p nm k Fst p-value

Estuarine 32 10 6 0.893 ± 0.025 0.014 ± 0.002 24 25 6.956

0.414 <0.001

Upwelling 29 7 3 0.522 ± 0.108 0.013 ± 0.003 22 22 6.424

Total 61 13 - 0.808 ± 0.04 0.018 ± 0.001 26 27 9.103

Nuclear 18S (1460bp)

Estuarine 12 8 8 0.848 ± 0.104 0.133 ± 0.094 1056 1115 191.651

-0.008 0.374

Upwelling 7 4 4 0.714 ± 0.181 0.01 ± 0.007 53 53 14.571

Total 19 12 - 0.906 ± 0.05 0.089 ± 0.065 1075 1146 127.743
fro
Cohorts were nested within their respective habitats. Environmental and biological traits passed tests of normal distribution and homogeneity of variance. Post-hoc test (Tuckey) denotes the
comparison among cohorts and between populations.
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individuals showed a greater diversity than upwelling copepods

(Table 2), with the presence of 8 haplotypes. No shared haplotypes

were found, all being private haplotypes. However, a low and not

significant genetic divergence was found between populations

(Fst =-0.008; p-value= 0.374), likely related to high nucleotide

differentiation (diversity) among estuarine individuals (p=0.133
and see detailed pairwise comparisons in Supplementary Table 1.
Distribution of drivers and copepod traits

There was a marked divergence between inter-daily

temperature variation assessed for the estuarine (11.9–16.9°C)

and upwelling (14.0–17.3°C) populations (Figures 2A, B).

Temperatures below 13°C were significantly more prevalent

(>70%) in the estuarine system (Table 3). Unimodal (13.1°C)

distribution of temperature at the estuarine system contrasted

with warmer (>15°C), unimodal distribution observed at the

upwelling system. A clear divergence in salinity ranges and

variability was evidenced between populations (Figures 2C, D).

The highest salinity values (33.7 psu) experienced by copepods in

the estuarine system were below the lower threshold (34.7 psu) of

salinity variations experienced by upwelling copepods. Mean ( ±

SD) pHT values, 7.94 ± 0.14 (estuary) and 7.92 ± 0.12 (upwelling),

overlap between both coastal habitats (Figures 2E, F). Differences in

mean pH conditions were not significant between A. tonsa

populations (Table 3). The magnitude of extreme low pH events

was similar for both populations (pHT <7.7), although the

frequency of such events was three times higher (9.4%) for the

estuarine than upwelling (3.6%) population. Food in the estuarine

system was higher and less variable (190 ± 76 µg C L-1) than in the

upwelling (175 ± 200 µg C L-1) site (Figures 2G, H), such that, there

was a significant difference in the food conditions between systems.

Mean (± SD) values of environmental conditions experienced by

each cohort of both populations are in Supplementary Figure 2.
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The distribution of female body size tended to overlap to a

certain extent between populations (Figures 3A, B). The prevalence

(>20%) of individuals larger than the mode (>1.1 mm) in estuarine

females were significantly higher than upwelling congeners (p-

value; Table 3). Within EPR ranges extended up to 70 egg ind-1

d-1, the mode in both systems were below 20 egg ind-1 d-1. Relatively

smaller copepod females were found in the upwelling habitat, which

produced larger brood-sizes (13 egg fem-1 d-1) than those produced

by the largest females collected in the estuarine system (11 egg fem-1

d-1) (p-value; Figures 3C, D). There was a relationship between body

size and fecundity (ANCOVA, p<0.05) in the estuarine population.

Similar ranges of egg size (13–15 µm) were found in both

populations (Figures 3E, F), though lower egg size values (<82

mm) were significantly more prevalent (>70%) in the estuarine

population (Table 3).

There were population-specific patterns of phenotypic plasticity

in fecundity to field pH conditions (Figure 4). Such pH variations

explained 58% (estuary, y =-543 + 70*x; p<0.0001; r2 = 0.58) and

47% (upwelling, y=-259 + 34*x; p<0.0001; r2 = 0.47) of the EPR

variability according to Pearson’s correlation coefficient, while

student’s t-test0.05 indicate significant differences (p=0.002)

between population EPR slopes. Accordingly, a positive non-zero

EPR slope was observed in both populations with pH increasing

(Figure 4), although the sensitivity (i.e., EPR change rate) of

estuarine copepods was twice as high as that of the

upwelling counterparts.
Acclimation experiments

Relatively similar in magnitude, extreme low pH levels were three

times more frequent in the estuarine than in the upwelling system.

Natural extreme (pHT 7.68–7.78) and high (pHT 7.94–8.06) pH levels

were replicated in three 96-h acclimation experiments involving females

from both populations. There were significant differences in
BA

FIGURE 1

Minimum spanning network to A. tonsa populations from estuary (blue) and upwelling (cyan) populations with mtCOI (A) and nuclear 18S (B). Short
lines between haplotypes represent mutational steps among them.
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temperature (F1,24 = 1488, p=0.0001) and salinity (F1,24 = 249, p=0.0001)

levels between experiments conducted with both populations

(Supplementary Table 2). In addition, the temperature (F2, 24 = 11,

p=0.0004) of experiment I and salinity (F2, 24 = 6, p=0.006) of

experiment III with the estuarine population were significantly lower

than other treatments. Both control and extreme pH scenarios were

similar among the experiments for both populations (F1,24 = 1.1, p=0.3).
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The phenotypic plasticity in EPR to extreme pH conditions varied

among the three different cohorts assessed for each A. tonsa population

(Figure 5). The full linear mixed effects model indicates reproductive

outcomes were significantly influenced by salinity, body size, pH-

condition, population, and the interaction experiment*pH-

condition*population (adj. R2 = 0.78) (Table 4). The effect of body

size did not appear in a best-fittingmodel, while its adjusted R2 was 0.68.
A B

D

E F

G H

C

FIGURE 2

Density plots of (A, B) temperature, (C, D) salinity, (E, F) pHT and (G, H) food concentration assessed for three cohorts of the estuarine (blue) and
upwelling (cyan) A. tonsa populations.
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Discussion

Extreme climate and biogeochemical events might represent a

negative deviation from optimum environmental conditions for

natural populations. Thus, such events are expected to influence

microevolutionary processes, modulating phenotypic and genetic

plasticity among populations (Porlier et al., 2012; Thor et al., 2018;

Sasaki and Dam, 2020; Barley et al., 2021). Species distributed over a

wide spatial range including highly heterogeneous habitats can be

exposed to these microevolutionary processes. Interestingly, marine

copepod populations can maintain gene flow despite distance and

habitat heterogeneity, for example, through coastal currents (Chen

and Hare, 2008). Therefore, in addition to being ecologically

important in their own right, copepod species constitute valuable

study models to explore mechanisms underpinning intra-specific

differences in plasticity in response to local scale conditions. Our

environmental characterization of contrasting coastal habitats

indicates extreme low pH events were similar in magnitude

though three times more frequent in the estuarine habitat. The

local population was genetically more diverse and exhibited higher

phenotypic variation across cohorts than the upwelling population.
Genetic diversity

The analysis of molecular diversity based on the mtCOI and

nuclear 18S genes including the number of haplotypes and

polymorphic sites, haplotype, and nucleotide diversity (Table 2),

indicates the estuarine population was genetically more diverse and

possibly older than that present in the upwelling habitat. The

considerable level of genetic variation also suggests that both

populations have not faced recent events of drastic population

reductions (bottlenecks), which could be caused by strong

selection pressure (Lloyd et al., 2016; Gurgel et al., 2020).

Furthermore, the observed molecular divergence based on the

mtCOI gene, and the absence of shared haplotypes to 18S

between estuarine and upwelling populations, suggest genetic

structuration and limited genetic connectivity between examined

A. tonsa populations. Cryptic lineages have been observed in A.

tonsa across latitudinal and environmental gradients (Caudill and
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Bucklin, 2004; Chen and Hare, 2008), sometimes coexisting in

sympatry and manifesting variable phenotypic responses (i.e.,

reaction norms) to specific habitat drivers (Chen and Hare, 2011).
Distribution of drivers and copepod traits

Environmental data (Figure 2) well represented those

environmental drivers, for example, temperature, salinity, and pH

conditions, prevailing either seasonally during the reproductive

period of the estuarine population (Aguilera et al., 2013; Garcés-

Vargas et al., 2020; Osma et al., 2020) or daily and synoptic

variations in the upwelling system due to a combination of solar

heating and surface mixing (Kaplan et al., 2003; Piñones et al.,

2007). Fluctuations in pH conditions, including extreme low events,

in the assessed coastal habitats are related to river discharges

(Aguilera et al., 2013; Pérez et al., 2016) or wind-driven upwelling

(Torres et al., 2002; Vargas et al., 2017; Aguilera et al., 2020a), both

characterized by cold water. The significant temperature-pHT

relationship (Supplementary Figure 3) provides confidence that

these events were well represented in the current study. However,

we also acknowledge some potential caveats. At a mean temperature

between 15–16°C, observed in both examined systems, A. tonsa

individuals can complete its ontogenetic development within 17–18

days (Miller et al., 1977), with a mean life span around 35 days

(Ceballos and Kiørboe, 2011; Kiørboe et al., 2015). This suggests our

sampling approach might have largely underestimated high

frequency (hours-day) variability affecting environmental pH in

both coastal systems (see for example Hofmann et al., 2011;

Carstensen and Duarte, 2019; Kapsenberg and Cyronak, 2019).

Such environmental variability might be critical in shaping the

phenotypic plasticity of short life cycle copepods (Gaitán-Espitia

et al., 2017; Vargas et al., 2017). For example, day-night pH cycles

have been observed in estuaries (Baumann and Smith, 2018) and

upwelling (Saderne et al., 2013) ecosystems associated with

photosynthesis/respiration balance. In this sense, assessed ranges

of pHT in both coastal systems overlapped to a certain extent

despite contrasting oceanographic, climatic, and geographic forcing

operating in distant eco-geographic provinces (Vargas et al., 2017;

Vargas et al., 2022). However, Pearson’s analysis indicated
TABLE 3 Results of ANCOVA comparison of environmental drivers and copepod fecundity-related traits between examined estuarine and upwelling
A. tonsa populations.

Data Source of
Variability

d.f. F p HSD

Environmental Temperature 1,172 32 <<0.0001 Est < Upwell

Salinity 1,172 960 <<0.0001 Est < Upwell

pH 1,172 1.2 0.3 Est = Upwell

Food 1,172 18 <0.0001 Est > Upwell

Traits Body size 1,172 17 0.0001 Est > Upwell

EPR 1,172 2.5 0.11 Est = Upwell

Egg size 1,172 23 <<0.0001 Est < Upwell
f

For differences in mean values, a Tukey’s HSD test was used.
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population-specific phenotypic responses to local pH variations

(Figure 4) that might reflect physiological adequations to local scale

pH conditions (Fitzer et al., 2012; Aguilera and Bednarsěk, 2022).

Contradictory results have been found with regards to pH effects

(null, positive, and negative) on Acartia species through in situ

(Hansen et al., 2019; Aguilera et al., 2020b) or laboratory

observations by means of short (day-week) to long term

(transgenerational) experiments (Langer et al., 2019; Dam et al.,

2021). This emphasized that both approaches are needed to draw

more comprehensive patterns in the response of copepod species

and related biological communities to climate change (Reum et al.,

2016). In the case of copepod physiological responses to low pH,
Frontiers in Marine Science 09
such interaction can be modulated if ample and nutritious food is

available (Aguilera et al., 2020b; Cominassi et al., 2020), such as that

observed in both coastal habitats. Significant correlations between

EPR and field pH conditions might also correspond to the effect of

other simultaneous environmental drivers affecting copepods

physiology, including changes in temperature (Sasaki and Dam,

2019; Dam et al., 2021) and food spectra (Kleppel and Burkart,

1995; Jónasdóttir et al., 2009). For example, river-discharges can

introduce organic carbon and nutrients from different land use and

the resultant physical-chemical conditions might influence the

tolerance of marine organisms to environmental perturbations

associated with climate change (Pérez et al., 2016). However, the
A B

D

E F

C

FIGURE 3

Density plots of body size (A, B), egg production rate (C, D), egg size (E, F) assessed for three cohorts of the estuarine (blue) and upwelling (cyan) A.
tonsa populations.
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concentration of nutrients and carbon in the Valdivia estuary are

relatively low due to its low human intervention and greater

vegetation coverage (Pérez et al., 2015).
Acclimation experiments

An additional characterization of EPR phenotypic variations

was accomplished in this study through sequential acclimation

experiments (e.g., Stillman, 2003), in which mean habitat

conditions (temperature, salinity, pH and food condition) of each

population were replicated. Temperature and salinity levels varied

among experiments conducted with the estuarine population

(Supplementary Table 2), likely affecting phenotypic outcomes of
Frontiers in Marine Science 10
the local population. Since experimental temperature deviations

(0.5°C) were still within the most prevalent thermal conditions in

that habitat (Figure 2A), and salinity differences (0.2 psu) were well

below changes able to impact the metabolic scope of these copepods

(Calliari et al., 2008), observed experimental variations might have a

relatively low influence on observed phenotypic responses. This is

supported by results of the linear mixed effects model that indicated

no significant effect of temperature on EPR variation (Table 4).

However, body size, which is linked to habitat temperature (Miller

et al., 1977), did influence EPR during acclimation experiments

according to the full linear mixed effect model (Table 4). Multiple

discrete cohorts inherently contain genetic information and

manifest phenotypic plasticity in response to specific local

environmental conditions (Sasaki and Dam, 2020). Differences in
B

A

FIGURE 4

Phenotypic variations in EPR to field pH conditions manifested by three different cohorts of the estuarine (A) and upwelling (B) A. tonsa populations.
Plastic responses were expressed as a mean reaction norm that had a significantly non-zero slope. The slope might indicate the relative EPR
tolerance/sensitivity to low pH conditions.
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female age and related effects on fecundity (Rodrıǵuez-Graña et al.,

2010), not visually detectable during 96-h acclimation experiments,

could have reduced the influence of body size on experimental EPR

since this effect did not appear on a second best-fitting model.

During acclimation experiments, copepods from both

populations were fed at similar food concentration (400 µg C L-1)

but different composition. Estuarine A. tonsa females were fed

unialgal Isochrysis sp. Diet, whereas upwelling copepods a mixed

diet composed by Isochrysis sp. And Tetraselmis suecica (3:1

proportion). Subtle (< 30%) chemical (lipids, carbohydrates, and

proteins) differences have been found between different Isochrysis

and Tetraselmis strains (da Silva Gorgonio et al., 2013; Custódio

et al., 2014). However, such differences seem to not lead to relevant
Frontiers in Marine Science 11
changes in copepods reproduction (Lee et al., 2006), likely due to

Isochrysis being the main source of nutritional compounds

(Knuckey et al., 2005), which are highly required during

invertebrates’ reproduction (Müller-Navarra et al., 2000).

Acclimation experiments considered 96-h to acclimate copepod

EPR to experimental conditions. Copepod ingestion might require

at least 48 h to acclimate to laboratory non-limiting food conditions

while digestive enzymes dampened short-term food variations

(Mayzaud et al., 1992). Thus, acclimation to food (ingestion,

digestion) might have occurred within the first 48–72 h of our

experiment. Considering A. tonsa can convert ingested food into

egg production within less than 10 h (Tester and Turner, 1990), it is

highly possible our acclimation period might have been enough to
B

A

FIGURE 5

Phenotypic variation in egg production rate (EPR) as a function of mean ( ± SD) extreme low (7.66 ± 0.2) and Control (8.00 ± 0.02) pHT levels.
Acclimation experiments were conducted with females belonging to three different cohorts (C I, C II and C III) of the estuarine (A) and upwelling
(B) A. tonsa populations.
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evaluate copepods physiological outcomes (acclimation) during

our experiment.

According to our GLM analysis, the population*pH-condition

did not significantly affect EPR during acclimation experiments

(Figure 5). Although observed phenotypic variation tended to be

higher in the estuarine population in agreement with genetic

diversity and plastic variations to field pH conditions, only a

single cohort (CIII) of this population exhibited a significantly

different performance during acclimation experiments.

Environmental conditions observed during the sampling of the

CIII in the estuarine habitat were significantly less variable than that

affecting other cohorts of the local population (Supplementary

Figure 2). The environmental conditions, involving mean values,

fluctuations and extreme events, experienced seasonally across the

development of the cohort can induce changes in the phenotypic

plasticity and tolerance to environmental perturbations in Acartia

species (Sasaki and Dam, 2019). Such a plasticity does not

necessarily imply adaptive plasticity nor local adaptation. In both

cases, transgenerational experiments are required to remove

environmental influence on and elucidate adaptive plasticity and

genetic components of phenotypic plasticity (Brennan et al., 2022).

In order to assess the extent to which this phenotypic variation and

plasticity are influenced by genetic components, potentially linked

to local adaptation, a different experimental approach will be

required using common garden conditions.
Conclusions

Distant and genetically structured A. tonsa populations are

exposed to specific natural variability regimes, which also implies

different extreme low pH conditions (high pCO2 conditions).

Coincident with more frequent extreme low pH events in the
Frontiers in Marine Science 12
estuarine system, the local population showed higher genetic and

phenotypic variation. This was not consistent with acclimation

experiments in which both populations showed similar

phenotypic variation. It is still unclear if the observed pattern in

phenotypic plasticity is determined by the level of genetic variation

or the local environmental variability. Further long-term studies are

needed to understand the effect of local extreme environmental

variation (frequency, intensity and duration) modulating the

phenotypic variation in natural populations.
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TABLE 4 Effect of fixed (F) and random (R) factors on EPR plasticity during acclimation experiments according to the linear mixed effects model (full
model adj. R2 = 0.78).

Effect Effect
(F/R)

d.f. MS Error
MS

F p

Temperature F 1 10.8 12.4 0.87 0.36

Salinity F 1 93.7 12.4 7.58 0.01*

Body size F 1 80.1 12.4 6.48 0.02*

Experiment R 2 77.7 7.4 10.5 0.66

pH-condition F 1 867.0 5.2 166.0 0.001*

Population F 1 146.0 12.9 11.4 0.003*

Exp*pH-condition R 2 4.5 51.4 0.09 0.92

Exp*Population R 2 27.0 30.6 0.88 0.50

pH-condition*Population F 1 0.7 42.5 0.02 0.91

Exp*pH-condition*Population R 2 46.0 12.4 3.72 0.04*
The pH-condition denotes control and extreme low pH treatments. Significant terms *.
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