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ASTMEN: an adaptive
spatiotemporal and multi-
element fusion network
for ocean surface
currents forecasting
Xin Li1, Fusheng Wang1, Tao Song1*,
Fan Meng1,2* and Xiaofei Zhao1

1College of Computer Science and Technology, China University of Petroleum, Qingdao,
Shandong, China, 2Key Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources,
Beijing, China
Accurate forecasting of ocean surface currents is crucial for the planning of

marine activities, including fisheries, shipping, and pollution control. Previous

studies have often neglected the consideration of spatiotemporal

correlations and interdependencies among ocean elements, leading to

suboptimal accuracy in medium to long-term forecasts, especially in

regions characterized by intricate ocean currents. This paper proposes an

adaptive spatiotemporal andmulti-element fusion network for ocean surface

currents forecasting (ASTMEN). Specifically, we use an improved Swin

Transformer (Swin-T) to perform self-attention computation at any given

moment, enabling the adaptive generation of multi-element time series with

spatial dependencies. Then, we utilize a Long Short-Term Memory network

(LSTM) to encode and decode these series in the dimensions of temporal and

multi-element features, resulting in accurate forecasts of ocean surface

currents. This study takes the Kuroshio region in the northwest Pacific

Ocean as the study area with data from the ocean reanalysis dataset. The

experimental results show that ASTMEN significantly outperforms the

baseline model and the climate state method, and is the only model whose

correlation coefficient is still higher than 0.8 at day 12. In the experiments

during the summer, when the currents are most variable, ASTMEN provides

better forecasts at the sea-land interface and at the junction of different

currents, which has the potential to fill the gap of poor forecast performance

of previous methods for complex current fields.
KEYWORDS

ocean surface currents forecasting, adaptive information fusion, Swin transformer,
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1 Introduction

Ocean surface currents refer to the continuous directional

movement of surface water and have a great impact on human

activities such as maritime route planning, marine environmental

protection and marine fisheries. The huge kinetic energy carried by

the surface currents is directly related to the fuel consumption of

ships and the deployment of maritime pollution control (Chen

et al., 2015; Van Sebille et al., 2020). Additionally, the heat carried

by ocean surface currents affects the surrounding climate and the

distribution of marine organisms, indirectly influencing the choice

of fishing ground locations (Halpern et al., 2019; Peng et al., 2022).

However, ocean surface currents, as part of the ocean system, are

influenced by many factors such as sea surface height (SSH), sea

surface temperature (SST) and sea surface salinity (SSS), resulting in

complex spatiotemporal variations (Choi et al., 2021; Peng et al.,

2022). Therefore, real-time and accurate continuous forecasting of

ocean surface currents is a challenging task and holds

significant importance.

For many years, numerical models such as Regional Ocean

Modeling System (ROMS) (Shchepetkin and McWilliams, 2005),

Hybrid Coordinate Ocean Model (HYCOM) (Bleck, 2002), Finite

Volume Coastal Ocean Model (FVCOM) (Chen et al., 2006),

Modular Ocean Model (MOM) (Griffies et al., 2005), and

Princeton Ocean Model (POM) (Blumberg and Mellor, 1987)

have been widely used for forecasting ocean currents. However,

these models integrate various physical equations, including ocean

dynamics and thermal salt transport equations. Consequently, these

models necessitate intricate inputs, including boundary conditions

and assimilation of diverse observations such as satellite data. And

the computational demands are considerable, often relying on

supercomputers (Lermusiaux, 2006; Rozier et al., 2007; Noori

et al., 2017). As a result, these numerical models are difficult to

implement and do not allow for real-time forecasting, which limits

their applicability in many cases.

Rencently, data-driven models have become increasingly

popular in marine and atmospheric environmental forecasting

due to their ability to enable real-time forecasting, as well as

being computationally efficient and easy to implement (Bolton

and Zanna, 2019; Portillo Juan and Negro Valdecantos, 2022; Sun

et al., 2023). Machine learning models such as linear regression (LR)

(Sinha and Abernathey, 2021), random forest (RF) (Liu et al., 2023),

genetic algorithms (GA) (Remya et al., 2012) and support vector

regression (SVR) (Khosravi et al., 2018) are often used to solve time

series forecasting problems, where the goal is to predict continuous

numerical outputs by learning the relationship between input

features and output targets. Nowadays, the most popular time

series prediction methods are the ones based on deep learning,

such as gated recurrent unit (GRU) (Song et al., 2020; Meng et al.,

2021), LSTM (Graves and Graves, 2012; Bethel et al., 2022), and

other recurrent neural networks (RNN). The basic structure of an

RNN includes a recurrent unit, which takes as input not only the

current time-step’s data but also the hidden state from the previous

time-step. This design allows RNNs to incorporate past information

into the current computation when processing sequential data,

giving them the ability to remember. This memory characteristic
Frontiers in Marine Science 02
enables RNNs to perform well in tasks such as natural language

processing (NLP) and time series prediction (Elman, 1990; Medsker

and Jain, 2001; Cao et al., 2023a).

However, the existing researches that apply deep learning

methods to ocean currents forecasting tasks often focus more on

the deep learning models themselves, neglecting the correlation

between ocean currents and other marine elements, as well as the

spatial dynamics of ocean currents. As a matter of fact, the movement

of ocean currents is quite complicated, which is not only affected by

ocean elements but also by topography, seasons, and other factors.

The temporal variations of ocean currents are unstable, and their

spatial patterns of motion are dynamically changing as well

(Roemmich and Gilson, 2009; Chelton et al., 2011). Therefore,

combining methods suitable for handling two-dimensional spatial

information with RNN and integrating relevant ocean elements as

auxiliary information has become a viable approach for

spatiotemporal sequence prediction of ocean surface currents. Swin

Transformer (Swin-T) (Liu et al., 2021) is an enhanced version of the

Vision Transformer (VIT) model (Dosovitskiy et al., 2020), which

introduces hierarchical self-attentionmechanisms and window-based

attention mechanisms on top of VIT to reduce the computational

complexity of global attention (Vaswani et al., 2017; Li et al., 2022).

This characteristic of Swin-T allows it to efficiently capture

dependencies within the input data while reducing the

computational burden of global attention. Consequently, Swin-T is

well-suited to serve as a two-dimensional spatial information

processing module in spatiotemporal forecasting models.

In this paper, a hybrid of improved Swin-T and LSTM neural

network is developed to forecast ocean surface currents. Based on

multi-element data at a given time, Swin-T models ocean currents at

different scales from local to global through a shift window approach.

This method achieves adaptive spatial information fusion for both

different times in the same space and different spaces at the same

time. It also improves the computational efficiency of self-attention,

thereby expanding the spatial range and duration of ocean currents

forecasting (Liu et al., 2021). In addition, we propose a weight

selection module based on K-Nearest Neighbor (KNN) (Cover and

Hart, 1967) to improve Swin-T (KSwin-T), which improves the

accuracy and generalization of the model to capture the spatial

structure of ocean currents. In this study, the spatiotemporal

sequences generated by SST, SSS, SSH, eastward component of

currents (U), and northward component of currents (V) are input

into the LSTM for encoding and decoding. This allows for the

extraction of interdependencies and synergistic changes among

these elements to achieve accurate ocean currents forecasting.

In summary, our contributions are mainly in three aspects,

as follows:
(1) We propose a hybrid Swin-T and LSTM model for

spatiotemporal forecasting of ocean surface currents. The

spatial information fusion module and the temporal feature

extraction module together form a minimal network unit,

which can adaptively capture the spatiotemporal correlation

and interdependence between ocean surface currents and

other related ocean elements at different spatiotemporal

scales, achieving accurate and durable forecasts.
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(2) We propose an improved Swin-T based on the idea of

nearest neighbor (KNN). A weight selection module is

designed to post-process the self-attention weight matrix

in Swin-T, thereby retaining only the top K points with the

highest weights for spatial information fusion. This

improvement enables the model to obtain better

generalization ability.

(3) This study presents a novel approach to developing deep

learning-based models for predicting oceanic elements. We

integrate specific physical characteristics of ocean currents

to design methods, models, and experiments, enhancing

both the model’s performance and development efficiency.

Additionally, we employ oceanographic knowledge and

visualization methods to explain the specific roles of each

module in the deep learning model, thereby improving

model interpretability.
2 Related work

The most common methods used in currents forecasting studies

are numerical models which is based on physical processes and

kinetic laws. Moore et al. constructed a 4-dimensional variational

data assimilation system based on ROMS to forecast currents and

analyzed the effect of multiple observations on the prediction results

(Moore et al., 2011). Yu et al. analyzed the relationship between

wind stress and surface currents based on HYCOM reanalysis data

and proposed a method based on Ekman kinetics to predict warm

currents in the South China Sea (Yu et al., 2022). However, the

complex initial boundary conditions and the low forecasting

efficiency of these methods present a challenge.

A few studies have also used machine learning methods,

Kavousi-Fard et al. used SVR and Remya et al. used GA, but

these studies are only adapted to specific regions and scenes

which lack generalisation and are not suitable for spatiotemporal

forecasting (Remya et al., 2012; Khosravi et al., 2018).

Recently, deep learning methods have been widely used in

ocean currents forecasting. Immas et al. proposed two currents

forecasting models, LSTM and Transformer, for real-time in-situ

forecasting of currents at arbitrary locations (Immas et al., 2021).

However, these models can only make single-point forecasts, which

do not utilize spatial information around the sampling point and

are not suitable for forecasting the whole region.

With the development of data assimilation techniques, ocean

reanalysis data products are being improved and updated, and some

deep learning-based studies also pay more attention to the

spatiotemporal correlations of ocean currents. Thongniran et al.

used convolutional neural networks (CNN) and GRU to construct a

two-stage CNN-GRU model for spatial and temporal forecasting of

ocean currents (Thongniran et al., 2019). Liu et al. used a single-

stage ConvLSTM to fuse spatial information for ocean currents at

any given moment, and the forecast accuracy is better than the two-

stage approach (Liu et al., 2022). However, the fixed convolutional

kernel in CNNs makes it difficult for these methods to address
tiers in Marine Science 03
situations where different patterns of currents occur simultaneously

and the patterns of currents change over time (Özturk et al., 2018;

Gu et al., 2023). As a result, errors accumulate more quickly with

persistent forecasting.

Self-attention is used in some studies for spatiotemporal

forecasting of ocean currents. These methods can adaptively

capture the spatiotemporal relationships of ocean currents, but

lead to an increase in computational effort, thus reducing the

spatial extent and duration of the forecasts (Li et al., 2022). Swin-

T is a hierarchical self-attention method whose representation is

computed with shifted windows. The shifted windows scheme

brings greater efficiency by limiting self-attention computation to

non-overlapping local windows, while also allowing cross-window

connections. This approach has the flexibility to model at various

scales which is well suited to complex ocean surface currents

forecasting tasks (Liu et al., 2021).

LSTM has been widely adopted in the ocean domain and has

achieved excellent performance in time-series prediction tasks

(Meng et al., 2022). Additionally, many hybrid methods which

add a spatial information fusion module to the LSTM are widely

used for ocean elements forecasting (Jrges et al., 2021). Therefore,

the hybrid method based on Swin-T and LSTM has great potential

for spatiotemporal forecasting of ocean surface currents.
3 Study area, dataset
and preprocessing

3.1 Study area and dataset

Figure 1 shows the study area of this paper, with a geographical

range of 20°N-30°N and 120°E-130°E. This area is close to land and

in the path of the Kuroshio, which is the most influential warm

current in the world, resulting in significant fishing activity. The

Kuroshio carries great kinetic energy and heat, which has a huge

impact on the surrounding climate change and ocean currents, so it

is of great importance to carry out research in this area (Chu, 1974;

Warren, 1974; Hsin et al., 2008; Jin et al., 2010).

This study uses the CORA2.0 reanalysis dataset from the

National Marine Information Center(http://cora.nmdis.org.cn/).

CORA2.0 includes five ocean elements, U, V, SST, SSS and SSH,

of which U and V are the eastward and northward components of

the ocean surface currents velocity, respectively. And the spatial

resolution of the data is 0.1° × 0.1° with a time interval of one day,

presented in daily average format.

Although CORA2.0 is a reanalysis dataset, there are still missing

data in the land area. Therefore, data preprocessing was conducted in

this study. Firstly, the missing data from the land areas were filled with

zeros to reduce interference from the land areas during the prediction

process. Subsequently, the ocean currents and other related ocean

elements data were concatenated and max-min normalised in the

feature dimension. Finally the original data were divided into time

series samples according to time step T. Additionally, the data from

2015-01-01 to 2018-12-31 were used as the training set, and the data

from 2019-01-01 to 2019-12-29 were used as the test set.
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3.2 Data preprocessing

Part (a) of Figure 2 provides an overview of the data

preprocessing operation, which consists of three main components:
Fron
(1) In the feature dimension, multiple ocean elements are

concatenated, resulting in a data shape of (N,H,W,C),

where N represents the total number of days of data, H

and W represent the spatial dimensions, and C represents

the number of features.

(2) Each feature of the data is normalized individually, and the

data is scaled to a range of 0 to 1 to facilitate model training.

(3) The original data is divided into fixed-length time series

based on the time step T. This results in a data shape of (M,

T, H, W, C), where M represents the number of samples

obtained after dividing the time series, and N = M × T.
4 Methods

4.1 The improved Swin-T based on
KNN idea

In this study, KSwin-T was adopted as a spatial information

fusion module for ocean currents. Swin-T is a hierarchical self-

attention method whose representation is computed with shifted

windows (Liu et al., 2021). As illustrated in Figure 3, Swin-T divides

the input data into multiple non-overlapping sub-regions in layer k

and shifts the position of the windows in the next layer, to achieve
tiers in Marine Science 04
self-attention computation between different sub-regions. The

shifted windows scheme limits the range of spatial information

fusion, and this characteristic makes it particularly suitable for

modeling complex and variable ocean surface currents at

various scales.

In order to identify the spatial structure of ocean currents more

accurately, this study adopts the KNN idea to improve Swin-T.

Specifically, we eliminate the interference of weakly correlated

points by selecting only the top K neighboring points with the

highest weights for spatial information fusion with the target point.

As shown in Figure 4, D4 is used as the target point, and the weight

matrix represents its attention weights with all points. When K is 5,

KSwin-T selects the top 5 most relevant neighboring points B2, C3,

B4, C4, and D4 for spatial information fusion.
4.2 Forecasting models based on KSwin-T
and LSTM

Recurrent neural networks(RNN) modeling sequential data

have proven successful in areas such as natural language

processing and time series prediction. While the normal neural

network only establishes weighted connections between layers,

RNNs also establish weighted connections between neurons

(Elman, 1990; Medsker and Jain, 2001). However, the issue of

gradient vanishing or exploding frequently arises when computing

connections between distant nodes (Pascanu et al., 2013). LSTM is a

specialized variant of RNN whose hidden layer operates on matrices

using a combination of several non-linear activation functions. The

introduced memory cell in LSTM acts as an accumulator of state
FIGURE 1

Geographical location information of study area.
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information which selectively passes time series information, input

gate information, and forget gate information together, thus

preventing gradient vanishing or exploding (Graves and Graves,

2012). Therefore, we use LSTM as the basic component of the ocean

surface currents forecasting model.

In this study, an encoder-decoder model based on hybrid

KSwin-T and LSTM is proposed for ocean surface currents

forecasting, where neurons of the hybrid KSwin-T and LSTM are

used as encoder while the decoder is constructed through LSTM
Frontiers in Marine Science 05
only. Figure 5 illustrates the structure of the hybrid KSwin-T and

LSTM neuron. Firstly, KSwin-T concatenates the input xt at time t

and the hidden state ht−1 from the previous time step in the feature

dimension using the fconcat function. Subsequently, KSwin-T utilizes

the fpartition function to divide the data into multiple sub-regions of

shape (S,S) in the spatial dimension, and modified self-attention

computation is performed within each sub-region. The window

partitioning is shifted across the multi-layer network, enabling the

fusion of information between different sub-regions. Finally,
FIGURE 3

An illustration of the shifted window approach for computing spatial self-attention in Swin Transformer. In layer k (left), a regular window partitioning
scheme is adopted, and self-attention is computed within each window. In the next layer k +1 (right), the window partitioning is shifted, resulting in
new windows. The self-attention computation in the new windows crosses the boundaries of the previous windows in layer k, providing
connections among them.
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multiple sub-regions are concatenated and restored through the

freverse function. Mathematically, this process can be represented by

Equations 1–4.

Xt = fconcat(ht−1, xt) (1)

Xr
t = fpartition(Xt , S) (2)

Fr
t = ftopk(X

r
t ,K) (3)
Frontiers in Marine Science 06
Ft = freverse(F
r
t , S,H,W) (4)

where fconcat denotes the feature concatenation function, fpartition
represents the sub-region division function, r represents the r-th

subregion, ftopk indicates a self-attention computation based on the

KNN idea, and freverse represents the sub-region integration

function. The above steps are all identified in Figure 5, and the

subdivided sub-regions are shown by the red solid line boxes in it.

The data processed by the KSwin-T are fed into the LSTM to

obtain the memory cell ct and the hidden state ht at the present
FIGURE 5

Schematic diagram of the hybrid KSwin-T and LSTM .
FIGURE 4

An illustration of the spatial information fusion in KSwin-T. The mask is obtained by calculating the kth weight value. The weak correlation weights
are set to 0 and the high correlation weights are retained according to the mask.
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moment. This process is repeated and eventually results in the

hidden state hT at the last time step T. The hidden state hT serves as

the initial input for the decoder LSTM, and the prediction results for

the next T time steps are output during the iterative process. This

process can be expressed by Equations 5–10.

it = s (Ft) (5)

ft = s (Ft) (6)

ot = s (Ft) (7)

~ct = tanh  (Ft) (8)

ct = ft ☉ ct−1 + it ☉~ct (9)

ht = ot ☉ tanh  (ct) (10)

where s represents the sigmoid function, tanh denotes the

hyperbolic tangent function, and ȯ signifies the operation of

multiplying by elements, i.e. Hadamard product. The forget gate,

input gate, and output gate are ft, it, and ot respectively. The

memory cell at the previous and current moments are denoted as

ct−1 and ct, respectively.

In Figure 5, the feature dimension sizes of the previous time

step’s hidden state ht−1 and the current input xt represent the

number of ocean elements. After concatenation, they form Xt with a

feature dimension size twice the number of ocean elements. In the

process of self-attention computation, KSwin-T extracts features

from Xt through multiple linear layers, thereby achieving the fusion

of different ocean elements.

As shown in Figures 2 and 5, the fusion of ocean elements and

spatial information occurs at each time step. During spatial

information fusion, KSwin-T recalculates the weight matrix based

on the current input Xt to capture the current spatial relationships

of ocean currents. In this mechanism, the spatial self-attention

weight matrix is different at different time steps and dynamically

related to the current input Xt. Therefore, this is a dynamic

spatiotemporal information fusion process.

Part (b) of Figure 2 depicts the spatiotemporal forecasting

process, wherein the time series data xt is sequentially fed into the

encoder for encoding. The hidden state hT at the final time step

serves as the input to the decoder, which generates prediction

results for the next T days.

During the model training, the mean absolute error (MAE)

between the predictions and the labels is employed as the loss

function, and the model parameters are updated through a

backward process. When performing inference, this method

applies denormalization to the model output to obtain accurate

prediction results.
5 Experiments

This study employs three commonly used statistical and

regression metrics to evaluate the performance of our proposed
Frontiers in Marine Science 07
model: MAE, root mean square error (RMSE), mean normalized

root mean square error (nRMSE), and correlation coefficient (r).

The nRMSE captures the proportional relationship between the

RMSE and the true values, thus evaluating the effectiveness of the

predictions. The mathematical expressions for these evaluation

indicators are shown in Equations 11–14.

MAE =
1

H �Wo
H

i=1
o
W

j=1
xij − yij
�� �� (11)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

H �Wo
H

i=1
o
W

j=1
(xij − yij)

2

s
(12)

nRMSE =
RMSE

�x
(13)

r = oH
i oW

j (xij − �x)(yij − �y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oH

i oW
j (xij − �x)2oH

i oW
j (yij − �y)2

q (14)

where xij represents the true value, yij represents the predicted

value, �x denotes the mean of the true value, �y denotes the mean of

the predicted value, while H and W indicate the shape of the

predicted region.
5.1 Hyper parameters

The encoder-decoder model based on hybrid KSwin-T and

LSTM contains several crucial hyperparameters, namely the time

window length T, the size of the self-attention window S, the

number of layers in KSwin-T L, and the number of neighboring

points chosen by KSwin-T K. In this study, we explored different

values for these hyperparameters, including T ∈ {5,10,15}, S ∈
{5,10,20}, L ∈ {2,3,4}, and K ∈ {5,10,15}. It was observed that

larger values of T improved long-term forecasting performance

while sacrificing short-term forecasting accuracy. After

experimenting, T = 15 was determined to strike a balance

between short-term and long-term forecasting accuracy.

Additionally, the combination of S = 20, L = 2, and K = 10

yielded the best performance.

The significance of S in ocean surface currents forecasting

pertains to the size of the sub-region, while L represents the

distance of information fusion between different sub-regions. In

the spatial information fusion module, optimal direct fusion occurs

for each sub-region when S closely matches the spatial scale of the

currents. Meanwhile, L indirectly influences spatial information

fusion by globally constraining the sliding range of the attention

window. Considering the spatial accuracy of the data as 0.1°, setting

S = 20 implies that the longitude and latitude span of the self-

attention window is 2° × 2° in real geographic space. Furthermore,

with L = 2, the indirect spatial information fusion is limited to

neighboring sub-regions.

Figure 6 shows the spatial distribution of ocean surface currents

speed in the study area. The blue area with the larger speed is the

Kuroshio, which undergoes huge flow changes in eastern Taiwan
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and reveals a large difference in current speed from other areas

(Chu, 1974; Hsin et al., 2008). In the figure, the sub-regions labeled

as ①, ②, ③, and ④ represent the four adjacent regions divided by

KSwin-T when S=20. These four regions exhibit different motion

patterns at this specific time. The first layer of KSwin-T effectively

divides them to mitigate mutual interference during direct spatial

information fusion. In addition, the second layer of KSwin-T

further divided the region into a new sub-region labeled as ④,

which is positioned at the junction of the four regions. This enables

the fusion of spatial information about the eddy current present at

this particular junction.

In addition to the aforementioned key hyperparameters, there

are several other essential hyperparameters that must be configured

for our model. To balance the generalization performance and the

prediction performance of the model, the dropout layer’s rate in the

network is set to 0.2. The learning rate during model training is set

to 0.001, and the batch size is set to 8.
5.2 Ablation study

5.2.1 The effectiveness of the KSwin-T
To verify the effectiveness of KSwin-T, we conducted a

comparison experiment with the normal Swin-T. Specifically, we

compared the differences between the two during training and

testing, respectively. Except for this part, the parameter settings of

the model were kept consistent.

The loss curves during the training process for KSwin-T and

Swin-T, as depicted in Figure 7A, indicate that Swin-T exhibits a faster

decrease in loss during training, and the final converged loss is

significantly smaller than that of KSwin-T. This strongly suggests

the superior fitting ability of Swin-T to the input ocean flow data.

However, examining the Mean Absolute Error (MAE) curves for the

U and V directions in the test set, as shown in Figures 7B, C, reveals

that despite Swin-T’s better fitting performance during training, it

experiences larger errors. This implies that, in comparison to Swin-T,
Frontiers in Marine Science 08
KSwin-T demonstrates better generalization ability, while Swin-T

exhibits signs of overfitting.

In order to observe the spatial information fusion effect of

KSwin-T, we visualized the self-attention weights of sub-region ① in

Figure 6 while performing spatiotemporal forecasts. Figure 8A

shows the enlarged display of sub-region ①, where the target

point (22°N,122.4°E) is at the junction of the left northward

Kuroshio and the right eddy, which is jointly influenced by both

sides. Figure 8B shows the weight matrix corresponding to the five

self-attention heads of the sub-region in the multi-head self-

attention process. Since the shape of sub-regions is (20, 20), the

corresponding weight matrix is shaped as (400,400), where the i-th

row indicates the weight of the i-th point with the 400 points of the

whole region.

The weights corresponding to the target point in Figure 8A, i.e.,

the 384-th row of the weight matrix, are reshaped to the weight

matrix in Figure 8C. It can be found that the number of highly

correlated points in the weight matrix is small, and most of the

points are weakly correlated points, and these weakly correlated

points will introduce interference information in the process of

spatial information fusion.

Therefore, we only take the top K points with high correlation

for spatial information fusion, and the retained points are shown in

Figure 8D. It can be observed that the K fusion points retained by

Head1 are mainly concentrated in the far end of the Kuroshio

Current, indicating that Head1 pays more attention to the impact of

the Kuroshio on the target points during self-attention

computation. Similarly, we can see that Head2 and Head3 focus

more on the impact of the convergence area between the Kuroshio

and eddies on the target points, while Head4 and Head5 are more

concerned with the influence of the eddy region on the right side on

the target points. The different attention heads, along with the

retained K points, effectively cover the spatial patterns of ocean

currents in this scenario.

Furthermore, KSwin-T serves as a spatial information fusion

technique for the input currents field at any given time. As the input
FIGURE 6

Self-attention window partitioning of the study area by KSwin-T at S=20.
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currents field changes, the self-attention weights adjust accordingly.

Consequently, KSwin-T emerges as an adaptive spatial information

fusion method, showcasing exceptional performance in capturing

the dynamic spatial relationships within ocean currents.

5.2.2 Analysis of multi-element feature fusion
As shown in Table 1, experiments were set up based on five

elements, including U and V components of ocean surface currents,

SST, SSS, and SSH. The best forecasting results were achieved when

all five elements were input into the model simultaneously for

multi-element fusion. Surface currents are influenced by many

factors, of which temperature and salinity influence the three-

dimensional ocean circulation by changing the density of

seawater (Willmott, 2016). Due to the large amount of heat

transported from the tropics to the mid-latitudes by the Kuroshio

(Qiu and Chen, 2010), temperature plays a dominant role in

affecting the ocean currents while salinity seems to be non-

negative (Qu and Lukas, 2003; Chen et al., 2022). The

experimental results show that the combination of SST or SSS has
Frontiers in Marine Science 09
a lower forecast error, which is consistent with the above

conclusions. In addition, SSH is also one of the relevant elements

of ocean surface currents which can reflect the movement of surface

currents. The altimeters are also commonly used to estimate surface

currents (Lagerloef et al., 1999; Bonjean and Lagerloef, 2002;

Johnson et al., 2002; Cao et al., 2023b), so the forecasting effect is

significantly enhanced by adding SSH.

Figure 9 shows the analysis of variance for each point in the

time dimension. It can be seen that U’s variance is larger than V’s

variance in the time dimension, indicating that U varies more

dramatically overtime at T = 15 days. This finding is consistent with

the experimental results in Table 1 where the forecast error for U is

always higher. Even so, ASTMEN achieves excellent forecasting

performance through the fusion of multi-element information. The

ablation study of multi-element fusion demonstrates that SST, SSS,

and SSH have a synergistic changes with ocean currents, which is

consistent with previous oceanographic studies. Therefore it is

necessary to fuse other relevant ocean elements in the process of

forecasting ocean surface currents.
Multi-headed 
Self Attention

Reshape to
(S,S)

Weights Matrix

Row 384 of the 
weight matrix

Sub-region ①

Final weight matrix of  target point with all points
Head 1 Head 2 Head 3 Head 4 Head 5

Weight matrix of target point with 
all points

Target Point
(Index: 384)

Head 2
Head 1

Head 3
Head 4

Head 5

Head 2
Head 1

Head 3
Head 4

Head 5

A B

D

C

FIGURE 8

(A) The enlarged display of sub-region ① in Figure 6. (B) Weight matrix for sub-region ① obtained by multi-headed self-attention. (C) Weight matrix
of target point in Figure 8A with all points in the sub-region ①. (D) The matrix of weights retained after the Top K selection operation.
A B C

FIGURE 7

(A) Loss variation curves of the spatiotemporal forecasting model using KSwin-T with Swin-T during the training process. (B) U-component velocity
MAE for lead times of 1 to 15 days during the test. (C) V-component velocity MAE for lead times of 1 to 15 days during the test.
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5.3 Baseline algorithm

In order to evaluate the performance of ASTMEN in forecasting

ocean surface currents, five algorithms are compared, of which

LSTM, CNN-GRU and ConvLSTM have been shown to be effective

for spatial and temporal forecasting of ocean surface currents

(Thongniran et al., 2019; Immas et al., 2021; Liu et al., 2022).

This study also adds the climate state calculated from the CORA 2.0

reanalysis dataset during 2015-2018 as a comparison, to verify the

effectiveness of ASTMEN. All models in this study are implemented

using python 3.8 and PyTorch (Paszke et al., 2019), and our

experimental and validation environment is built as follows: Intel

(R) Xeon(R) Silver 4210 CPU @ 2.20GHz with GeForce RTX 2080

Ti GPU, 64G RAM, and Ubuntu 18.04.
6 Results and analysis

6.1 Performance study

Table 2 presents the performance of ASTMEN compared with

the baseline model based on four key statistical indicators at days 1-

15, respectively, and the best model is marked in bold. The results

show that ASTMEN has a lower MAE, RMSE, and nRMSE, as well

as a higher correlation coefficient over the 15 days of continuous

forecasting. It can also be observed that the advantage of ASTMEN

is not obvious on the first day, but the rate of error accumulation of

ASTMEN is much smaller than that of other methods so the

advantage becomes obvious after three days. This is because the

changes of ocean currents in the short term are simpler and can be

well captured by methods with weak spatial information fusion or

methods without spatial information fusion such as LSTM. In

short-term currents forecasting, spatial information can become a

noise that leads to sub-optimal predictions, and as the duration of

the forecast increases, current changes become more complex.

Therefore, ASTMEN which has excellent spatial information

fusion capability shows better forecast performance in continuous

forecasting and still achieves a correlation coefficient of 80% on the

12-th day of the forecast.

The variations of nRMSE for different prediction models over a

forecast lead time of 1-15 days are detailed in Figure 10. From the

graphs, it can be observed that ASTMEN exhibits a significantly

lower rate of error accumulation over the entire 15-day forecasting

process compared to the baseline model. This provides strong

evidence for the outstanding effectiveness of adaptive

spatiotemporal information fusion in ocean surface currents

forecasting. Additionally, it can be noted that for the fifteenth

day, ASTMEN is the only model with an nRMSE value less than

1, indicating that the RMSE at this point is lower than the mean

speed of the ocean currents. The effectiveness of the proposed

method is also further confirmed by comparison with climate

state predictions.

Figure 11 depicts the distribution relationship between the

predicted values and the true values in the test set. Specifically,

the scatter plots show the predicted and the true current velocities of

ASTMEN and ConvLSTM for days 1, 3, 5, 7, 10 and 15 of the
T
A
B
LE

1
M
A
E
re
su

lt
s
fo
r
d
iff
e
re
n
t
co

m
b
in
at
io
n
s
o
f
o
ce

an
e
le
m
e
n
ts

as
in
p
u
ts

to
A
S
T
M
E
N

fo
r
th
e
U
-
an

d
V
-c
o
m
p
o
n
e
n
t
o
f
o
ce

an
cu

rr
e
n
t
ve

lo
ci
ty
.

O
u
tp
u
t

In
p
u
t

1
d

2
d

3
d

4
d

5
d

6
d

7
d

8
d

9
d

10
d

11
d

12
d

13
d

14
d

15
d

U

U
,V

U
,V
,S
ST

U
,V
,S
SS

0.
07
50

0.
07
43

0.
07
61

0.
09
17

0.
08
82

0.
08
83

0.
09
87

0.
09
64

0.
09
45

0.
10
40

0.
10
26

0.
09
99

0.
10
88

0.
10
79

0.
10
48

0.
11
30

0.
11
23

0.
10
93

0.
11
67

0.
11
59

0.
11
30

0.
12
07

0.
11
99

0.
11
72

0.
12
38

0.
12
30

0.
12
07

0.
12
64

0.
12
57

0.
12
38

0.
12
88

0.
12
79

0.
12
66

0.
13
11

0.
13
01

0.
12
91

0.
13
35

0.
13
22

0.
13
18

0.
13
54

0.
13
37

0.
13
38

0.
13
72

0.
13
51

0.
13
57

U
,V
,S
SH

0.
07
13

0.
08
49

0.
09
14

0.
09
66

0.
10
13

0.
10
57

0.
10
94

0.
11
34

0.
11
66

0.
11
94

0.
12
19

0.
12
41

0.
12
63

0.
12
79

0.
12
94

U
,V
,S
ST

,
SS
S,
SS
H

0.
06
51

0.
08
06

0.
08
75

0.
09
30

0.
09
80

0.
10
25

0.
10
63

0.
11
03

0.
11
37

0.
11
67

0.
11
94

0.
12
18

0.
12
45

0.
12
67

0.
12
87

V

U
,V

U
,V
,S
ST

U
,V
,S
SS

0.
05
74

0.
05
71

0.
05
73

0.
06
93

0.
06
80

0.
06
84

0.
07
59

0.
07
36

0.
07
31

0.
08
10

0.
07
84

0.
07
77

0.
08
57

0.
08
30

0.
08
22

0.
08
98

0.
08
72

0.
08
62

0.
09
32

0.
09
08

0.
08
98

0.
09
72

0.
09
49

0.
09
38

0.
10
02

0.
09
81

0.
09
69

0.
10
28

0.
10
10

0.
09
98

0.
10
50

0.
10
35

0.
10
22

0.
10
67

0.
10
56

0.
10
44

0.
10
83

0.
10
75

0.
10
62

0.
10
96

0.
10
91

0.
10
78

0.
11
09

0.
11
07

0.
10
95

U
,V
,S
SH

0.
05
65

0.
06
70

0.
07
29

0.
07
76

0.
08
21

0.
08
61

0.
08
95

0.
09
33

0.
09
64

0.
09
92

0.
10
15

0.
10
35

0.
10
52

0.
10
68

0.
10
84

U
,V
,S
ST

,
SS
S,
SS
H

0.
05
63

0.
06
67

0.
07
28

0.
07
76

0.
08
22

0.
08
61

0.
08
95

0.
09
32

0.
09
63

0.
09
91

0.
10
14

0.
10
35

0.
10
55

0.
10
72

0.
10
90

T
he

be
st
re
su
lts

ar
e
m
ar
ke
d
in

bo
ld
.

frontiersin.org

https://doi.org/10.3389/fmars.2023.1281387
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Li et al. 10.3389/fmars.2023.1281387
TABLE 2 Performance results of ASTMEN and baseline models on the U- and V-components of the ocean current velocity, with different lead times.

1 d 2 d 3 d 4 d 5 d 6 d 7 d 8 d 9 d 10
d

11
d

12 d 13
d

14 d 15 d

MAE

LSTM
CNN-GRU
ConvLSTM
ASTMEN

0.05
0.07
0.06
0.07

0.08
0.09
0.08
0.08

0.09
0.11
0.10
0.09

0.10
0.14
0.11
0.09

0.11
0.16
0.12
0.10

0.12
0.18
0.12
0.10

0.13
0.20
0.13
0.11

0.14
0.22
0.14
0.11

0.15
0.25
0.15
0.11

0.16
0.27
0.15
0.12

0.17
0.30
0.16
0.12

0.18
0.32
0.17
0.12

0.19
0.35
0.17
0.12

0.20
0.38
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0.13

0.21
0.41
0.19
0.13

RMSE
U
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FIGURE 9

The time-dimensional variance of the ocean surface current velocity at each point in space over T days, where T is the length of the time window
for the inputs and outputs of the model, i.e. T = 15.
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continuous prediction process. The horizontal axis of the scatter

plot represents the true flow velocity of the samples in the test set,

while the vertical axis represents the predicted flow velocity of the

samples in the test set. As shown in the graph, the closer the points

are to the diagonal line, the better the prediction, indicating a closer

alignment between the predicted values and the actual values. The

distribution of points for ASTMEN is more concentrated around

the diagonal line, whereas ConvLSTM exhibits a large number of

scattered points deviating from the diagonal line after the first day.

The horizontal coordinates of most of these scattered points are

close to 0, indicating that forecast errors are instead higher at points

with lower actual current velocities. Based on previous

oceanographic studies and the distribution of the current field in

Figure 6, the currents in the regions with higher velocities tend to be

more stable and have a single pattern, while the currents in the

regions with lower velocities show more complex patterns and more

turbulent current directions. The conclusions indicate that

ConvLSTM is less effective in these regions with unstable

currents. In contrast, ASTMEN shows superior performance in

areas with complex and variable ocean currents.
6.2 Case study

Figure 12 shows the daily spatial dimensional variance for the

different seasons, obtained by calculating the average of the daily

variance over the period 2015-2018. It can be observed that the

spatial dimensional variance is much higher in summer than in

other seasons, implying that the spatial patterns of ocean currents

are more complex and more difficult to be forecasted in summer. To

evaluate the performance of the model under the complex

variability of ocean currents, we conducted experiments

specifically for the summer currents. We used the ocean currents

data from June 1, 2019, to June 15, 2019, as input and performed

continuous forecasting of the ocean currents from June 16, 2019, to

June 30, 2019. The experimental setup remained unchanged to

ensure consistency.

Based on the experimental results, the study area can be divided

into the four sub-regions presented in Figure 1 for discussion, which

are the East China Sea, the Kuroshio, the Ryukyu Islands and the
Frontiers in Marine Science 12
Philippine Sea. Figure 13 presents the residual maps of ASTMEN

and the baseline model for the dates June 16, June 18, June 20, June

22, June 25, and June 30. The results of the climate state forecasts

have low errors in the East China Sea and high errors in the other

three sub-regions, which implies that the inter-annual changes of

the surface currents in the East China Sea are small, while the

surface currents in the other three regions are more variable.

In addition, several methods exhibit high forecast errors,

especially CNN-GRU, in the eddy region of the Philippine Sea

and along the coasts of the Ryukyu Islands and Taiwan Islands. This

is because CNN-GRU uses a two-stage structure with separate

spatial information fusion and temporal feature extraction, which

cannot dynamically fuse spatial information according to temporal

changes during the continuous prediction, resulting in high forecast

errors for complex ocean currents. It can also be found that

ConvLSTM shows high anomalies at the junction of land and sea,

such as the east coast of Taiwan, where the Kuroshio is blocked by

land and turns, resulting in large changes in both the velocity and

direction of the currents. However, the fixed size and parameters of

the convolution kernel of the ConvLSTM are unable to make

adaptive changes for a particular current pattern, which leads to

worse prediction results. On the contrary, due to the high stability of

the inter-annual variability of the Kuroshio, the LSTM achieves

better forecasting results here.

Meanwhile, according to Figure 9, it can also be found that the

time dimension variance tends to be large in the regions with larger

errors. However, ASTMEN achieves lower forecast errors than

other methods, in the East China Sea and in the Kuroshio, where

currents are stable, and in the eddy and land-sea interface regions,

where changes are intense. In some special current conditions, such

as the Kuroshio turning under the influence of land, ASTMEN is

still able to capture this change adaptively and achieve a more

accurate and continuous forecast.
7 Conclusions

In this paper, we propose a surface currents forecasting model

based on the adaptive spatiotemporal information fusion and multi-

element fusion neural network, and this model effectively solves the
FIGURE 10

The nRMSE curves for ASTMEN and baseline models over a 15-day continuous prediction period.
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A

B

FIGURE 11

Scatter plot of predicted current velocities and true current velocities. The predicted Ucomponent and V-component results of ASTMEN and
ConvLSTM at 1, 3, 5, 7, 10, and 15 days ahead are shown, respectively. (A) The U-component scatter plot. (B) The V-component scatter plot.
FIGURE 12

Daily spatial dimensional variance curves for the study area in different seasons. Variance values are averaged over the period 2015-2018.
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problems of the complex and variable spatial structure of ocean

currents, which are affected by various oceanographic factors and

make it difficult to improve forecast accuracy. And the sea area of

eastern China with complex spatial structure was selected as the

study area, while experiments and analyses were conducted on the

CORA2.0 reanalysis dataset. Benefiting from the adaptive spatial
Frontiers in Marine Science 14
information fusion and multi-element feature fusion of KSwin-T,

ASTMEN has a clear advantage in error reduction during the

continuous forecasting process over the baseline model, as well as

in the forecasting of the ocean-land interface and regional edges.

For forecasts 15 days ahead, the average nRMSE of ASTMEN is still

less than 1.0, which has high validity and provides a better
A

B

FIGURE 13

Residual heat map of the predicted and real ocean currents. The U-component and V-component residual results for ASTMEN and baseline models
at 2019.06.16, 2019.06.18, 2019.06.20, 2019.06.22, 2019.06.25 and 2019.06.30 are shown, respectively. (A) The U-component residual results.
(B) The V-component residual results.
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prediction method for offshore activities. By visualizing the forecast

results of the ocean surface currents in the study area for the period

2019.06.16-2019.06.30, it is visually noticed that ASTMEN is more

effective at the interface between ocean and land and in the eddy

region where the currents pattern is more complex. In addition, the

comparison with climate state prediction also demonstrates the

effectiveness of ASTMEN for ocean surface currents prediction. The

limitations of ASTMEN are the complexity of the model and

multiple hyperparameters that need to be determined by

experiment. Moreover, ASTMEN has less advantage in the short

term, which we believe is due to the small variability of ocean

currents over short periods of time, which is overestimated by

ASTMEN, thus reducing forecast performance. Therefore, future

work will address the complexity of the model. Furthermore, we did

not explore the specific interaction principles between different

ocean elements in detail, which may overlook some physical

relationships that have been quantified, and the effectiveness of

multi-element fusion can be improved in future studies by

introducing these specific physical parameters. Notably, this study

is based on a single area and uses a reanalysis dataset with a more

complete initial field, which is slightly different from the ocean data

observed in real-time, but ASTMEN can extract sufficient potential

information from the data so that it is theoretically applicable to

real-time observations as well as to other areas, which we will verify

in future work.
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