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Underwater imagery is subject to distortion, and the presence of turbulence in

the fluid medium poses difficulties in accurately discerning objects. To tackle

these challenges pertaining to feature extraction, this research paper presents a

novel approach called the multi-scale aware turbulence network (MATNet)

method for underwater object identification. More specifically, the paper

introduces a module known as the multi-scale feature extraction pyramid

network module, which incorporates dense linking strategies and position

learning strategies to preprocess object contour features and texture features.

This module facilitates the efficient extraction of multi-scale features, thereby

enhancing the effectiveness of the identification process. Following that, the

extracted features undergo refinement through comparison with positive and

negative samples. Ultimately, the study introduces multi-scale object recognition

techniques and establishes a multi-scale object recognition network for the

precise identification of underwater objects, utilizing the enhanced multi-scale

features. This process entails rectifying the distorted image and subsequently

recognizing the rectified object. Extensive experiments conducted on an

underwater distorted image enhancement dataset demonstrate that the

proposed method surpasses state-of-the-art approaches in both qualitative

and quantitative evaluations.
KEYWORDS

underwater image distortion, distortion correction, multi-scale feature, turbulence,
underwater objective recognition
1 Introduction

With regard to the exploration and exploitation of marine resources, underwater

objective recognition serves as a crucial medium and representation method for

comprehending and perceiving the underwater realm. However, underwater

environments are complex and variable, and underwater objectives can suffer from

image degradation, distortion, or aberrations due to turbulence. More specifically,

turbulence is a common phenomenon in the underwater environment that can lead to

degradation, distortion, or deformation of underwater target images, causing features to
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deform, be lost, or become distorted, thereby significantly

increasing the difficulty of recognition. Therefore, addressing the

challenges brought by turbulence in the underwater environment to

enhance the accuracy and efficiency of underwater target

recognition is of paramount importance for in-depth exploration

of the ocean, conservation of marine ecosystems, and advancement

of sustainable development and utilization of marine resources.

To address these issues, many methods for underwater image

detection have been investigated. However, amphibious robots

suffer from feature loss when recognizing underwater objectives.

The current algorithms were usually solved using multi-scale

feature extraction (Zhao et al., 2021). In addition, underwater

turbulence leads to incomplete objective feature information.

There are limited features available for use in the underwater

detection and identification process. Meanwhile, there are large

differences in the scale of objective features of various types and

different distances underwater. It is impossible to accurately extract

the effective features of the objective for identification. Some

scholars used contextual feature learning modeling to enhance the

recognition of objectives with inconspicuous appearance features

(Pato et al., 2020). Other scholars used generative adversarial

learning to map low-resolution objective features into features

that are equivalent to high-resolution objectives (Deng et al.,

2021). These strategies can improve the algorithm recognition

performance to some extent, but they are less effective in

objective recognition caused by underwater turbulence.

In our work, we propose a multi-scale aware turbulence

network (MATNet) method to solve the aberrant object

recognition problem. It consists of two main phases: multi-scale

feature extraction and corrective identification of distorted

objectives. First, we perform feature extraction of objective

contour features and positional features for the distorted objective

feature information. Subsequently, correction of distorted images is

achieved by fusion processing based on the extracted features.

Finally, a loss function is introduced to accurately recognize the

distorted objective.

In summary, the key contributions of this article can be

highlighted as follows:
Fron
1. In this paper, we propose to construct a density linking

strategy and a location learning strategy for multi-scale

feature extraction using different learning strategies to

extract object texture and contour features from

underwater environments. Utilizing the dual strategy

learning module enables our module to be more perfect

for object feature extraction.

2. This paper proposes a contrast correction module, which

realizes object distortion correction by means of positive

and negative samples of multi-scale features, and the

module utilizes the extracted object features by using

the contrast method to complete the correction of

the distorted object.

3. This paper proposes a loss function to solve the object

recognition problem. This loss function effectively solves

the small sample category misclassification problem by
tiers in Marine Science 02
changing the sample category weights to accomplish the

accurate object recognition problem.
2 Related work

2.1 Multi-scale feature extraction

The accuracy of the extracted features directly affects the results

of network localization and recognition during the objective

recognition process. Huang et al. (2023) introduced a new hybrid

attention model (S-CA), a compact channel attention module (C-

ECA), and a streamlined target feature extraction network (S-FE) to

enhance the capture of positional feature information. Ye et al.

(2022) introduced a fusion multi-scale attention mechanism

network to address boundary ambiguity, utilizing a feature

refinement compensation module to minimize inter-class

disparities. Cai et al. (2022a) proposed a dynamic multi-scale

feature fusion method for underwater target recognition. Zhang

et al. (2022) introduced MLLE, an effective method for enhancing

underwater images. In this, Zhang and Dong (2022) proposed a

novel method that was introduced for enhancing underwater

images by combining a color correction technique inspired by

Retime with a fusion technique that maintains fine details. Zhang

et al. (2024) proposed a cascaded visual attention network

(CVANet) for single image superresolution, which is used for

feature extraction and detail reconstruction. Zhou et al. (2022)

proposed a restoration method that utilizes backscattered pixel

prior and color bias removal to enhance the contrast of

underwater images, effectively correcting color distortions and

preserving crucial image details through a fusion process. Yu

et al. (2022) proposed a dual predictive feature pyramid module

and a spatial channel attention mechanism module, which can

obtain multi-scale contextual information on a large scale and

improve the objective recognition rate. A dual prior optimization

contrast enhancement method was proposed by researchers. This

method employs distinct enhancement strategies for each layer,

aiming to enhance both the contrast and texture details of the

underwater image (Zhang et al., 2023a). Cai et al. (2022b) proposed

a multi-bit pose feature generation mapping network M-PFGMNet

for visual object tracking. Zhou et al. (2023) proposed a novel multi-

feature underwater image enhancement method based on the

embedded fusion mechanism (MFEF), which uses its decoder and

encoder to recover the underwater scene and thus complete the

image enhancement. Li et al. (2019) proposed an underwater image

enhancement algorithm, which constructs an underwater image

enhancement benchmark and trains an underwater image

enhancement network based on this benchmark. Hyun et al.

(2021) proposed to introduce the correlation region suggestion

network to analyze the effect of regional convolutional neural

network (R-CNN) in image feature extraction applications. Zhang

et al. (2023c) proposed a novel imaging algorithm for multi-receiver

synthetic aperture sonar (SAS), which rephrases the range change

stage and range invariant stage.
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2.2 Image contrast restoration

In aberrant objective image processing research, underwater

images face quality degradation challenges in complex underwater

environments. Zhang et al. (2023b) proposed an underwater image

enhancement method that utilizes a weighted wavelet visual

perception fusion technique. Eigel et al. (2022) proposed a

framework using computational homogenization to enhance the

shape uncertainty to have fuzzy properties and, finally, to compute

its mean displacement boundary. Wang et al. (2023c) proposed an

intelligent protocol for underwater image enhancement, which

carried out intelligent configuration through protocol

reinforcement learning, and finally produced underwater image

enhancement results. Li et al. (2022c) proposed binocular

structured light to measure the geometric parameters of internal

threads as a vision system. It can achieve high-precision recovery

from 2D virtual image to actual image. Sun et al. (Sun et al., 2022)

construct a novel bidirectional recursive VSR architecture to

recover fine details by dividing the task into two subtasks and

directing the attention to a motion compensation module that

eliminates the effect of inter-frame misalignment. Cheng et al.

(Cheng et al., 2022) propose a dual generative adversarial network

patch model (DGPM) based image recovery for structural defects

detection. Jiang et al. (Jiang et al., 2022b) proposed two restart

nonlinear conjugate gradient method (CGM) with different restart

degrees to solve the problem of unconstrained optimization and

image restoration. Liu et al. (2023) proposed a multi-purpose haze

removal framework for nighttime hazy images. Kim et al. (2022)

propose a vehicle localization method that fuses aerial maps and

LiDAR measurements in an urban canyon environment. Image

restoration is accomplished by correcting the contours by

correcting the scale distortion of the projections. He et al. (2022)

investigate a new setup that aims to modulate the output effects

across multiple degradation types and levels. Li et al. (2022e)

proposed image Laplacian dark channel attenuation defogging

method. which can reduce the transmission value deviation in

different regions. Li et al. (2022d) introduced a novel multi-scale

feature representation and interaction network for underwater

object detection. While the methods mentioned above have

shown promising results in their respective fields, they mainly

focused on aberration correction or model optimization.

However, characterizing turbulence-induced aberration images

poses significant challenges due to their complex and

dynamic nature.
2.3 Image object recognition

The existing body of research has made significant progress in

the field of object recognition. Xu et al. (2020) introduced the SA-

FPN architecture, designed to extract underwater image features

and enhance the detection performance of marine objects. Chen

et al. (2023) proposed an adaptive hybrid attention convolutional

neural network (AHA-CNN) framework. Zhang et al. (2023)

proposed a generative adversarial-driven cross-perception
Frontiers in Marine Science 03
network (GACNet) for wheat variety identification and

authentication. Wang et al. (2023b) proposed reinforcement

learning with visual enhancement for object detection in

underwater scenes to gradually enhance visual images to improve

detection results. Guo et al. (2022) proposed a fully automated

model compression framework called 3D-Pruning (3DP), which

aims to achieve efficient 3D action recognition. Yang et al. (Yang,

2023) proposed a multi receiver synthetic aperture sonar (SAS) that

generates high resolution by coherently stacking continuous echo

signals. Lin et al. (2022b) proposed a system tailored for recognizing

and tracking underwater target objects. Li et al. (Li et al., 2021)

proposed an underwater image enhancement network guided by

mid projection, which utilizes multi-color space embedding and

physical model learning methods to effectively improve visual

quality. Palomeras et al. (2022) proposed what was called ATR,

which combines detectors and classifiers using a convolutional

neural network model. Li et al. (2022a) investigated first-person

hand movement recognition for RGB-D sequences with eight

classical pre-trained networks and one pre-trained network

designed to extract RGB-D features. Cai et al. (2022c) proposed

an enhanced dilated convolution framework for underwater blurred

target recognition. Yamada et al. (2021) proposed a novel self-

supervised representation learning method. The method allows

deep learning convolutional autoencoders to utilize multiple

metadata sourced to normalize their learning. Wang et al.

(2023d) proposed an adaptive attenuation channel compensation

method for optimal channel precorrection and a guided fusion

method for eliminating color deviation in RGB color space. Miao

et al. (2021) proposed a method for hull modeling and identification

of operational objectives based on 3D point clouds collected by a

laser measurement system mounted on a ship loader. Wang et al.

(2022) proposed an effective method for inertial feature recognition

of conical spatial objectives based on deep learning. Xu et al. (2022)

and others used YOLOv5s-improved algorithm to add a CA

attention module by suppressing complex background and

negative sample interference in the image. In traditional

aberration recognition, direct recognition of the objective without

correction can lead to reduced accuracy. Aberration correction

often involves constructing correlation aberrations, but

characterizing turbulence-induced aberrations with a fixed model

is challenging, especially in correcting distortion in underwater

images. The dynamic nature of turbulence makes establishing a

static model difficult, complicating the correction process. This

paper proposes a comparison correction method for distorted

objectives to enhance recognition accuracy.
3 Methodology

To solve the problem of objective aberration recognition caused

by turbulence, this paper proposes a multi-scale feature perception

module; the model architecture is shown in Figure 1. This paper

proposes a density linking module and a position learning module,

which are used for objective multi-scale feature extraction and in

the contrast correction module for the aberration correction of the
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aberration image. Our approach can be summarized into three

processes: multi-scale feature extraction, distortion correction, and

objective recognition.
3.1 Multi-scale feature extraction

Due to the complex underwater environment, feature data in

images may be difficult to extract. Object recognition poses a

significant challenge. Therefore, this article constructs a MATNet

network that integrates the DCEP module and SCA module. The

former uses density linking to cluster the dataset, ensuring multi-

scale feature extraction with high feature resolution, and can extract

a wider range of features at different scales. The latter adopts a

position learning strategy, utilizing the location information of the

data to enhance the learning ability and performance of the model,

which can better extract the detailed features of the object. The

MATNet network uses a combination of two modules to better

extract object features at different scales, which helps the network

achieve higher accuracy of the object.

The paper proposes a method of utilizing pyramid feature

transfer to better utilize target features, improve information

transmission rate between different layers, and facilitate the

correction and recognition of distorted images. The entire

backbone network includes multiple encoder branches, and both

encoder branches employ an identical structure for the restoration

and recognition of distorted images. The transition layer, serving as

a convolutional connector, is used to sample between each module.

Subsequently, the extracted features are fed as inputs into the
Frontiers in Marine Science 04
subsequent module, yielding multi-scale features of the object.

The process of the multi-scale perception pyramid model is

illustrated in Figure 2.

In this paper, we utilize the DCEP module to obtain multi-scale

features over a large area. Density links are utilized to extract

objective features in a larger range to obtain objective contour

feature information. A smaller size filter is set. Thus, the generated

features are discriminative for objective detection. Since the input

image is distorted and deformed due to turbulence, in the process of

feature extraction, in addition to considering the positional

information of the data, it is also necessary to store the relative

positions between features in a computational manner.

After extracting features through convolutional neural networks,

the size of the feature map often decreases, which requires upsampling

of the image. Using deconvolution for image feature processing

increases the receptive field of view, allowing subsequent convolution

kernels to learn more global information and obtain more accurate

sampling results. The feature map of the target is restored to its original

resolution. The reverse convolution kernel is applied to the input

feature map, and high-resolution output feature maps are generated

through convolution operations. The upsampling ratio is controlled by

adjusting the step size of the reverse convolution kernel. The step size is

set to 1 without applying padding according to Equation (1)

output ¼ i + 2p − k
s

+ 1 (1)

There, s is the stream, p is the padding, i is the input, and k is the

number offilters. The calculated output image size is 2 * 2. Next, the

input image is set to 2 * 2 and filled to 0, and a 3 * 3 convolution
FIGURE 1

Method for underwater distortion correction and target recognition based on multi-scale feature pyramid. This paper first extracts features from
input images using a dense connection strategy, then captures detailed features based on positional learning strategy, and processes features
through upsampling. Subsequently, the extracted features are merged, and the feature maps are compared for disparities. An approach involving
positive and negative sample comparison is used to correct images. Finally, the corrected images are utilized for target recognition using a
loss function.
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kernel is used with a step size of 1 to perform upsampling to an

output size of 4 * 4.

The multi-scale perception pyramid ft ( · ) utilizes the MATNet

network framework consisting of three DCEP modules and SCA

modules. By adding FSS, appropriate image features are transmitted

from shallow nodes to deep nodes, thereby avoiding inconsistency

in gradient calculation. The FSS is designed as Equation (2):

P0
k−1 = (Ak−1Qfnu(Ak))Qfnu(P

0
k) + Ck−1 (2)

where the intersection of Ak−1 and Ak can be computed by Q ,

fnu is the upsampling operation, P
0
k is the merged mapping of the k-

th layer, Ck−1 is the residual fast output of k −  1, and the FSS serves

as the scaling selection. FSS acts as a scaling option.

Based on semantic and multi-scale feature extraction, explore

the loss of image features caused by turbulence, and use deep

semantics to evaluate the quality of the affected images. This chapter

adopts the semantic contextual approach, using semantic

perception for different semantics-extracted feature parameters as

image restoration parameters, to repair the distorted image more

accurately. Semantic feature extraction is added to the

convolutional kernel network. The feature stream is generated

through the convolutional layer, and the DC feature stream

reshapes the output features through the convolutional layer to

get the deviation between the distorted features and the original

image features. The process can be represented as Equation (3):

bi = W(A(i), r) (3)

where W denotes the semantic-aware mapping function, A(i)

denotes the semantic features of the image, and r denotes the

semantic parameters.

Affected by the complex underwater environment, the image

feature differentiation is low, the feature data of the objective is less,

the features are not obvious, which causes the objective recognition

to be difficult, and the recognition accuracy is not high. In this

chapter, the original sample image is enhanced by twisting and

distorting the data, and the enhancement database is constructed to

store and put the sample image after data enhancement. The

original image of the same type of image and the different

enhanced image are set as a positive sample xi, and the image
Frontiers in Marine Science 05
affected by turbulence and its enhanced image is set as a negative

sample x−j . A multi-scale perception pyramid network, denoted as

ft ( · ), was trained using a set of samples X =   x1,x2,x3,…,xnf g.
The trained ft ( · ) can extract multi-scale salient features

from images.

The effect of the mapping function x( · ) for the turbulence-

induced distorted image features is verified by recoding the features

of each input image. Let the relative position–distance relationship

of the multi-scale features be Dn. The image multi-scale feature in-

plane distance difference can be expressed by the equation Equation

(4):

Dn f iq , f
j
p

� �
=o

i
xn ‖ f iq , f

j
p ‖

� �
log xn xis

� �� �� �
+ 1 − f jp xis

� �
log 1 − f iq xis

� �� �� �

(4)

where Dn(f iq , f
j
p) denotes the error of feature mapping to the

plane f iq with respect to f jp . The autonomous repair of aberrations is

achieved by reducing the spatial location of features in the objective

samples and the objective library. To improve the repair accuracy of

the features, find the way to reduce the error for optimal distortion

image feature correction. The computational Equation (5) is:

Rq→p f iq , f
j
p

� �
= argmin

f iq
Dn f iq , f

j
p

� �� �
  (5)

The multi-scale perception model obtains a series of feature

sub-vectors by processing the input image at different scales. These

sub-vectors can be used for feature comparison and extraction in

target detection tasks and for target detection and classification

through contrast learning. The features of the multi-scale

perceptual model of the object image can be represented by

Equation (6):

F = fq0(x), fq1(x), fq2(x), fq3(x), fq4(x)
� �

(6)

where x is the test image that is provided as input, and fqi(x)

is the multi-scale feature of the output of the input test image

capture target, which is obtained by training the encoder fq.

Additionally, during the objective feature extraction process,

the relative positional relationships among various features are

simultaneously preserved.
FIGURE 2

Multi-scale feature pyramid network, capturing and integrating richer feature information in each convolutional module by utilizing transpose
convolutions between them to better process object images.
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3.2 Underwater distorted image correction

During objective detection, distorted images can pose challenges

to recognition by causing the loss of crucial feature information. The

extracted object features are fused so that the extracted features

interact with each other with information to obtain more

information about the object features under the influence of

turbulence, which is more conducive to the aberration repair of

the object. In this chapter, the multi-scale comparison correction

method is used to correct the similar feature positions by comparing

the input objective image features with the clear image feature

information. The distorted image is fused with the input features

to get an output image with richer feature information, which is then

compared with the samples, and feature encoding and decoding are

used to achieve the repair of distorted images. The process of

constructing a distortion correction model requires adjusting the

image features of the distorted image. This can be done by using the

following Equation (7):

Na→g = ς+a , ς
−
g

�� ��, ς+a andς−g   ∈  Nd (7)

where ς+a is the feature vector of positive samples under the

influence of turbulence, and ς−g is the feature vector of image under

the influence of turbulence of negative samples with similar

distance. ·k k denotes the correction calculation of the positive and

negative samples, which achieves the autonomous repair of the

aberration by reducing the position of the feature space between the

positive and negative samples.

Positive and negative samples based on task objectives are

determined: the target to be recognized as positive samples and

set categories that do not belong to the target category as negative

samples is set. The data was preprocessed and organized to ensure

its quality and validity. Positive and negative sample data were

selected for annotation of the original data, ensuring the

comparability and consistency of the samples throughout the

entire dataset. During data augmentation, sufficient consideration
Frontiers in Marine Science 06
and processing of the data are carried out to ensure the accuracy

and reliability of the data results.

The model learns by comparing positive and negative samples.

The obtained features are gradually feature-biased toward positive

samples with the expression Equation (8) as follows:

Y(x, x+i )⋙Y(x, x−i ) (8)

where Y (x, xi) represents the degree of similarity between the

samples, and the difference between the positive and negative samples

is changed by contrast learning, and the difference between feature

similar samples is gradually reduced. The contrast module is used to

correct the distorted image so that the image is recovered close to the

original image. The positional deviation of the feature map is calculated

by comparing the multi-scale object feature distance difference between

the source and object feature domain maps. Comparative learning for

feature extraction and correction is shown in Figure 3:

By introducing a combination of distance and pre-selected

similarity to improve the similarity between samples, the

performance and stability of the model can be improved, while

also better adapting to the characteristics of different types of data.

Let xis→t(I, q) denote the learned training features for a batch of

samples in the source domain S and distorted image samples in the

objective domain T. Construct N positive sample pairs (xis(I, q),
xis→t(I, q)) and N − 1 negative sample pairs (xjs(I, q), xjs→t(I, q)).
The loss of domain contrast from the source domain to the abstract

feature space is Equation (9):

LIS(q) = 1
No

n

i
log sim xis(I, q), x

i
s→t(I, q)

� �
*Dn

� �
+
1
No

n

j
log

sim xjs(I, q), x
j
s→t(I, q)

� �
− Dn

� �

+ 1 − sim xis(I, q), xis→t(I, q)
� �� �

(9)

where sim() denotes the corresponding cosine similarity

relationship between the global feature vectors of the two views. xis
(I,  q) denotes the feature of a convolutional layer of the sample

image, and t denotes the temperature parameter.
FIGURE 3

Corrected plot of features extracted by contrast learning. Correction of the positional deviation of feature points in the feature maps between the
source domain and the object domain.
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To improve the restoration accuracy of the features, find the

way to reduce the error for optimal distorted image feature

correction. The computational Equation (10) is as follows:

Ra→g (ς
+
a , ς

−
g )ar gmin(Na→g ) (10)

After correction, the calibrated image is obtained. The corrected

image features are represented as Fq→ p, and the modified image is

reconstructed using a decoder. The calibration process is illustrated

in Figure 4.
3.3 Loss function

In this paper, we propose an underwater aberration objective

identification method with multi-scale features to construct a multi-

target scale monitoring network. The method solves the object

aberrations caused by turbulence by training the multi-scale loss

function to accomplish the accurate detection and identification of

the object. In order to reduce the impact caused by redundancy on

model detection, orthogonality loss is utilized to impose

orthogonality in the feature space to maintain feature separation

between different categories and feature aggregation in the same

category and thus to the repaired aberrant object recognition.

Non-maximum suppression (NMS) for eliminating duplicate

boxes is used to select the enclosing box for objective detection and

suppress its neighboring boxes. Anchor points are utilized to

generate bounding boxes, and redundancy is eliminated by

suppression method. When establishing the bounding box, the

predicted box is utilized as a reference.

In the process of network feature extraction construction, the

image features of the distorted region are set as relevant semantics

and their encoder counterparts, and the network classification loss
Frontiers in Marine Science 07
function is calculated as shown in Equation (11):

Lcls pi, p*i
� �

= bi −Wik k2+ Dn −Wdk k2 (11)

where Wi denotes the number of relevant features, and Wd

denotes the feature space corresponding to the relevant features.

During the network training process, a loss function is used

to measure the error between the predicted values and the true

values of the objective detection. This Equation (12) can be defined

as follows:

LOSS = lc
1
Ncls

o
i
Lcls(pi, p*i ) + ln

1
Nrpu

o
i
Lrpu(ci, c*i ) + ll

1
Nloc

o
i
Lloc(ti, t*i )

(12)

where i is the anchor, pi is the predicted probability of the anchor,

p*i is the true anchor probability, Lloc is the loss for predicting the

coordinates, and ti and t∗i denote the predicted bounding box and the

vector associated with the anchor, respectively. Lrpu is the loss of

distinguishing between foreground background and fine-tuned

anchors. ci and c*i , the true confidence interval and the prediction

confidence interval, are denoted to represent different aspects. Lcls is the

category loss. The three termsNloc,Nrpu, andNcls are the normalization

parameters. The model in this chapter sets lc =  0:3, ln =  0:5, and

ll =  0:2. Among ln is the weight loss of the confidence interval lc +
ln + ll =  1. The weight of the entire loss is equivalent to one unit. The

objective of the loss function is to minimize the difference between the

predicted and true values of the model, and the coefficient parameters

determine the importance of each loss term in the overall loss. For

specific loss items that require more attention and attention, their

weight in the overall loss can be increased or decreased by adjusting the

coefficient parameters. Different loss terms may have different

measurement units and magnitudes, and their importance may also

vary. A coefficient parameter of 1 in the loss function indicates that
FIGURE 4

Correction process. Calculates the similarity between positive and negative sample pairs using cosine similarity and utilizes the features of positive
and negative samples for image restoration.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1301072
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhou et al. 10.3389/fmars.2024.1301072
each loss term has different weights, which is useful for balancing the

importance of different loss terms. Adjusting the coefficient parameters

can better reflect the importance and contribution of each loss term,

thereby achieving better model performance.

To ensure its robustness, an appropriate convergence interval is

defined during the iterative calculation process, and a threshold is

set as the convergence condition. When the parameter changes

during the iteration process do not affect the objective function

value, the algorithm has converged. By controlling the step size of

each iteration, the stability of the algorithm is ensured and

instability caused by parameter updates that are too fast or too

slow is avoided. By setting an appropriate learning rate to enable the

model to converge quickly, optimizing the prediction results by

changing the learning rate, and gradually reducing the learning rate

as training progresses, the model can converge quickly during

training and update parameters more stably in the later stages of

training. It also helps the model to output more stable probability

values during prediction, thereby improving the accuracy and

reliability of the model. The Equation (13) is as follows:

e = e0 · 1 −
t
T

� �p
(13)

where e0 represents the initial learning rate, p is power, t

represents the number of training epochs, and T is the total

number of training epochs.
4 Experimental results and analysis

4.1 Experimental setup

4.1.1 Experimental environment
In this experiment, training, validation, and testing are

performed on a small server with Intel(R) Core (TM) i7-1165G7

CPU, RTX 3090 GPU, and 64G RAM. In the comparison

experiments, to reflect the objectivity of the proposed method, it

is implemented using PyCharm deep learning tool.

4.1.2 Datasets
The main research problem addressed in this paper is the

challenges posed by distorted underwater object images and the

approach to address them using a multi-scale feature attention

method. The datasets used in this paper are two datasets categorized

by the publicly available underwater target identification datasets

CADDY, NATURE Central. These datasets contain a total of 3,215

images, which are used to train the multi-scale salient feature

extraction model. To ensure the effective training of the proposed

objective aberration image correction recognition network under

turbulence, a data augmentation technique is employed to expand

the dataset by a factor of four. Consequently, the dataset is increased

to 12,860 images, with 9,002 images used for training, 2,572 for

testing, and 1,286 for the validation set, maintaining a ratio of 7:2:1.

4.1.3 Learning rate and training settings
In this chapter, the recognition means accuracy rate (MAP) and

frame rate (FPS) are chosen as the evaluation metrics for the
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proposed algorithm as well as the comparative performance of

the algorithms. The parameters of the proposed algorithm are set as

follows: momentum is set to 0.9, weight decay is set to 0.0005, initial

learning rate is set to 0.01, batch size is set to 24, and the algorithm

iterates 200 epochs throughout the training process.

4.1.4 Assessment of indicators
Experimental validation was performed to evaluate the object

recognition performance of the model when subjected to

turbulence, the mean accuracy (MAP), distortion parameter,

frames per second (FPS), and evaluation metrics for object

detection under the influence of turbulence including MAP and

FPS. MAP is used to evaluate the accuracy of object detection, while

FPS is used to evaluate the real-time processing speed of the model.

Higher MAP and FPS values represent better detection and faster

processing. The calculation Equations (14)–(16) is as follows:

MSE =
1
ml o

m−1

k=0
o
l−1

u=0
½I(k, u) − K(k, u)�2 (14)

I is the image under the influence of turbulence, the K is the

corrected image, and ml is the input image size.

SSIM(x, y) =
(2mxmy + c1)(2sxy + c2)

(m2
x + m2

y + c1)(s 2
x + s 2

y + c2)
(15)

µ is the mean, s is the variance, and c is a constant.

MAP ¼o
i=1
n−1(ri+1 − ri)pinter p(ri+1)

K
(16)

K is the category, and ri is the identification value of each point.
4.2 Results and analysis

4.2.1 Objective distortion correction
In this paper, six sets of experiments are conducted to verify the

effectiveness and accuracy of the proposed method in repairing

turbulence-induced image distortion and performing multi-scale

perceptual object recognition. To showcase the effectiveness of the

method proposed in this paper, several algorithms including

CEEMDAN-Fast (Lin et al., 2022a), COCO (Mensink et al.,

2021), yolov4 (Xu et al., 2022), and Scaled-yolov5 (Scoulding

et al., 2022), Yolov7 (Wang et al., 2023a), TOOD (Feng et al.,

2021), Boosting R-CNN (Song et al., 2023) as well as comparative

validation with the algorithms proposed in this paper have been

employed. This comprehensive approach enables a thorough

evaluation and comparison of the proposed method with existing

algorithms to highlight its performance and efficacy.

In the turbulence distortion image correction experiments, we

focus on correcting and reconstructing input images that have

turbulence-induced aberrations. Specifically, we select submarine,

fish, diver, and AUV as the aberration objects. The results of these

experiments are illustrated in Figure 5. The first column in Figure 5

displays the original aberration images. The subsequent four

columns represent the results after different correction iterations.

Each column corresponds to a specific correction iteration. Finally,
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the last column shows the output of the corrected image, which can

be used for subsequent object detection.

This paper demonstrates the evolution of the reference frame

during the distortion process. The results of the image quality

evaluation of the reference frame at each iteration of the algorithm

are shown in Table 1, where the gap between the estimated and real

values of the parameter frames is decreasing as the number of

iterations increases. The quality difference between the reference

image and the parameter frame is gradually decreasing. The

structural similarity between the parameter frame and the

reference image gradually increases. As the number of iterations

increases, the image quality of the parameter frames gradually

improves. The MSE continues to decrease, and the PSNR and

SSIM continue to increase, indicating that the gap between the

estimated and true values of the parameter frames is decreasing, the

quality difference between the reference image and the parameter

frames is gradually decreasing, and the structural similarity is
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gradually improving. The image quality of the parameter frame is

improved. By comparing the input images with the output images,

it can be observed that the algorithm proposed in this paper

effectively corrects underwater distorted images with specific

distortion characteristics. The correction of these distorted images

helps reduce the impact of environmental factors on objective

recognition. In other words, the algorithm mitigates the negative

effects of distortions, resulting in improved image quality and more

accurate recognition of objects in underwater environments.

To evaluate the detection performance of the method proposed

in this paper, several experiments were conducted. We recognize

the original image and compare the recognition results with the

above-cited literature. The specific recognition results are shown in

Figure 6. The results show that the recognition accuracy is

improved compared with the traditional recognition, and each

method shows a relatively stable detection confidence.

From Table 2, this paper’s algorithm has good recognition

accuracy that is highest for frogmen and submarines, which is

0.9310 and 0.9027, respectively. CEEMDAN-Fast performs better

on most of the categories, especially on the fish and frogmen

categories with high detection accuracy. However, its MAP is low

and the frame rate is slow. The COCO method achieved high

detection accuracy on all categories and had high MAP values.

Yolov4 showed high detection accuracy on most categories,

especially on fish. It has a high MAP and a fast frame rate relative

to the other methods. Scaled-yolov5 exhibits high detection

accuracy on AUV categories but slightly decreases on other
FIGURE 5

Correction and reconstruction results of distorted images.
TABLE 1 Image quality evaluation results of the parameter frames.

Iteration MSE PSRN SSIM

1st 0.01421 20.1934 0.4864

2nd 0.0122 21.4257 0.6170

3rd 0.0120 22.4323 0.6854

4th 0.0010 22.5986 0.7475
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categories. It has a relatively high MAP and certain frame rate.

Yolov7 achieved relatively high performance scores in the fish,

diver, and AUV missions but performed slightly lower in the

submarine mission. The TOOD achieved relatively high

performance scores in the diver task but performed poorly in the

other tasks. The method in this paper shows high detection

accuracy on most of the categories, especially on the diver and

submarine categories. It also shows relatively good MAP and frame

rate. Overall, in terms of MAP and FPS metrics, our method

performs best in submarines and frogmen, while the CEEMDAN-

Fast method performs relatively poorly. The other methods have

their own advantages and disadvantages, and their performance

varies in different tasks.

4.2.2 Image distortion correction recognition
Part of the effect of the algorithm proposed in this paper is

shown in Figure 7, from which the effect of objective recognition

under the influence of turbulence can be seen. This paper’s

algorithm is for divers and submarines in several categories of
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recognition of high confidence. This paper’s algorithm for the

recognition of the objective aberration caused by the turbulence

confidence remains relatively stable, and in the recognition of the

aberration of underwater objectives it is excellent.

This algorithm recognizes the objective image without

distortion correction, so the average accuracy and number of

frames recognized by the algorithms in this chapter and the

comparison algorithms are shown in Table 3, where the entries in

bold black font are the best data.

From Table 3, the highest recognition accuracies for submarines

and divers in this chapter are 0.9201 and 0.8905. COCO shows high

detection accuracy on most categories, which has high MAP values

and fast frame rates, showing a strong objective detection. Yolov4

shows high detection accuracy on most categories, especially on the

fish category with high accuracy. It has a high MAP and a certain

frame rate. Scaled-yolov5 shows high detection accuracy on most

categories, with high accuracy on the AUV category. It also shows

relatively good MAP and frame rate. Our method shows high

detection accuracy on most categories, especially on the
A B D E F GC

FIGURE 6

Underwater multi-scale objective image recognition results. (A) CEEMDAN-Fast, (B) Coco, (C) Yolov4, (D) Scaled-yolov5, (E) Yolov7, (F) TOOD, and
(G) ours.
TABLE2 Results of underwater distortion original image identification.

Method Submarine Fish Frogman AUV MAP FPS

CEEMDAN- Fast 0.8314 0.8572 0.8347 0.8716 0.8487 25.3

COCO 0.9011 0.8539 0.9013 0.8916 0.8869 41.7

Yolov4 0.8851 0.9327 0.8651 0.8739 0.8892 38.1

Scaled-yolov5 0.9213 0.9013 0.8534 0.9015 0.8943 30.4

Yolov7 0.8724 0.9261 0.8425 0.8364 0.8693 35.1

TOOD 0.8135 0.8341 0.8371 0.8211 0.8264 30.2

Ours 0.9310 0.9014 0.9027 0.8891 0.9060 32.7
The bold part represents the optimal value.
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submarine and frogman categories. It also performs relatively well

in terms of MAP and frame rate. Yolov7 achieved high performance

scores in the fish task but performed poorly in the other tasks.

TOOD is more stable across task recognition. In summary, based on

the MAP and FPS metrics, the methods in this paper perform

relatively well in all tasks, especially in submarines and frogmen

with high recognition rates. The other methods have their own

strengths and weaknesses, and their performance varies from task

to task.

4.2.3 Recognition result of distorted objective
Figure 8 demonstrates some of the effect diagrams of the

algorithms in this chapter for aberration recognition. From

Figure 8, the proposed algorithms in this chapter have the highest

confidence level of 0.8523 and 0.8517 for the recognition of frogman

and submarines, which is higher than other algorithms, and has a

better recognition ability compared to other algorithms.

From Table 4, it can be seen that our method demonstrates a

certain level of detection accuracy in most categories, especially
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excelling in the submarine and diver categories, achieving accuracy

values of 0.8517 and 0.8523, respectively. In comparison,

CEEMDAN-Fast performs well in most categories, particularly

showing high detection accuracy in the fish and diver categories.

The COCO method achieves high detection accuracy in all

categories and has a higher mAP value. Yolov4 shows high

detection accuracy in most categories while also having higher

mAP and faster frame rates compared to other methods. Scaled-

yolov5 performs well in the AUV category but slightly decreases in

other categories. Boosting R-CNN has high detection accuracy,

especially in the fish category, but has the lowest frame rate. Our

method demonstrates high detection accuracy in most categories,

particularly excelling in the diver and submarine categories, while

also performing relatively well in terms of mAP and frame rate.

4.2.4 Ablation study
Ablation experiments are performed to verify the effectiveness

of the feature extraction module and distortion correction module

of the target image in the method proposed in this paper. The
TABLE 3 Results of underwater distorted images.

Method Submarine Fish Frogman AUV MAP FPS

CEEMDAN- Fast 0.7921 0.8716 0.8244 0.8371 0.8313 27.6

COCO 0.8847 0.8342 0.8901 0.8611 0.8675 45.3

Yolov4 0.8842 0.9214 0.8231 0.8514 0.8699 40.8

Scaled-yolov5 0.8914 0.8724 0.8264 0.8623 0.8631 33.4

Yolov7 0.8513 0.9017 0.8375 0.8102 0.8501 34.1

TOOD 0.8003 0.8235 0.8251 0.8024 0.8128 31.8

Ours 0.9201 0.8736 0.8905 0.8357 0.8799 32.5
The bold part represents the optimal value.
A B D E F GC

FIGURE 7

Underwater distortion uncorrected objective image recognition results. (A) CEEMDAN-Fast, (B) Coco, (C) Yolov4, (D) Scaled-yolov5, (E) Yolov7,
(F) TOOD, and (G) ours.
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experiment was performed on a publicly available dataset. The

densest network was used as the baseline for the ablation

experiment. The results of the experiment are shown in Table 5,

and the images are shown in Figure 9.

The feature extraction pyramid module and the distortion

correction module correct and recognize the image object by

making the object features more visible, i.e., highlighting the

contours and textures of the object. The image object can be

made clearer and thus easier for object detection and recognition.

The object feature information is extracted by multi-scale features

of the object image, and the dense link and position strategy is used

to compare to realize the distortion image repair. The combination

of the two modules not only repairs the distorted image but also

provides help in the recognition of the distorted image.

From Table 5, it can be observed that the recognition accuracies

for submarine, fish, diver, and AUV in the network are 0.7199,

0.7537, 0.7741, and 0.7368, respectively. With the addition of the

multi-feature extraction module to the network, the recognition

accuracies for submarine, fish, diver, and AUV all improved to

0.8341, 0.7954, 0.8363, and 0.7961, respectively. Similarly,
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incorporating the distortion correction module into the network

also resulted in improved recognition accuracies for submarine,

fish, diver, and AUV, which were 0.8372, 0.7911, 0.8325, and

0.7905, respectively. When both the multi-feature extraction

module and distortion correction module were added to the

network simultaneously, significant improvements were observed

in all categories. The recognition accuracies for submarine, fish,

diver, and AUV were 0.8517, 0.8037, 0.8523, and 0.8014,

respectively. Overall, the performance of the network improved

when both modules were added compared to when only one of

them was included.

To prove the effectiveness of each module for our MATNet for

distorted object identification, we performed ablation studies on the

proposed dataset, namely: our MATNet without autoencoder(w/a),

our MATNet without pyramid model (w/PM), our MATNet

without feature extraction (w/FE), and our MATNet without

distortion correction (w/DC).

Table 6 exhibits the submarine fish frogman and AUV scores

corresponding to the ablated models. Which can be shown that our

MATNet (full model) has the best score compared with other
TABLE 4 Results of underwater distorted objective identification.

Method Submarine Fish Frogman AUV MAP FPS

CEEMDAN-Fast 0.7372 0.8572 0.7864 0.8216 0.8006 22.3

COCO 0.8510 0.7467 0.8470 0.8418 0.8216 42.5

Yolov4 0.8307 0.8824 0.8154 0.8039 0.8251 39.2

Scaled-yolov5 0.8213 0.8143 0.7965 0.8451 0.8193 32.7

Yolov7 0.8341 0.8712 0.8113 0.7942 0.8249 31.4

TOOD 0.7871 0.8031 0.8023 0.7835 0.7940 32.7

Boosting R-CNN 0.8124 0.8835 0.8012 0.7911 0.8221 20.1

Ours 0.8517 0.8037 0.8523 0.8014 0.8272 31.8
The bold part represents the optimal value.
A B D E F G HC

FIGURE 8

Objective distortion recognition diagram. (A) CEEMDAN-Fast, (B) Coco, (C) Yolov4, (D) Scaledyolov5, (E) Yolov7, (F) TOOD, (G) Boosting R-CNN, and
(H) ours.
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modules. Additionally, it also proves that each module has a

positive effect on our MATNet.
5 Discussion

With the increasing research on the ocean, the complexity and

variability of the marine environment make it challenging to

explore the ocean. Light produces color-bias degradation during

transmission and reconstruction of images to achieve image

enhancement (Li et al., 2022b). This study investigates the effect

of turbulence on the performance of marine object recognition,

where feature extraction and recognition of objects become

challenging in turbulent environments. Underwater image

features are usually affected by contrast degradation, low

illumination, color bias, and noise (Mishra et al., 2022). Marine

deep learning methods still have high recognition accuracy and
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robustness in turbulent environments. Although turbulence causes

distortions and warping of images and data, deep learning can

better overcome these disturbances. A better understanding of the

impact on object recognition under the influence of turbulence is

essential to improve the performance of marine object detection

and recognition systems. These findings are useful for improving

object recognition in marine environments and optimization of

ruthless learning algorithms to adapt to turbulence disturbances. A

deeper understanding of the effects of turbulence on object

recognition have important deed applications as well.

The research field of object recognition based on underwater

images does face many challenges, but many scholars have actively

conducted research and proposed various solutions. One of the

novel imaging algorithms is the use of multi-receiver synthetic

aperture sonar (MSSA) technology, which aims to provide high-

resolution images of underwater objects. This algorithm utilizes

coherently superimposed continuous echo signals to generate high-
A B DC

FIGURE 9

Experimental effect of turbulence-induced ablation of distorted images: (A) no module added, (B) MFM added, (C) DC added, and (D) both
modules added.
TABLE 5 Quantitative evaluation of turbulence-induced distorted image ablation experiments.

MFM DC Submarine Fish Frogman AUV MAP FPS

0.7199 0.7537 0.7741 0.7368 0.7461 30.7

√ 0.8341 0.7954 0.8363 0.7961 0.8154 30.5

√ 0.8372 0.7911 0.8325 0.7905 0.8128 31.4

√ √ 0.8517 0.8037 0.8523 0.8014 0.8272 32.5
The bold part represents the optimal value.
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resolution images. The signals are fused and processed by multiple

receivers, and a signal scene model is constructed. At the same time,

single–multiple interactions are introduced for sampling, and

ultimately multiple signals are processed to obtain high-resolution

images of underwater objects. This technique can improve the

resolution and clarity of object recognition in underwater images,

allowing researchers to analyze and identify underwater targets

more accurately. However, it should be noted that the complexity

and specificity of underwater environments still pose some

challenges, such as light attenuation, noise interference, and

changes in the shape of objects. Therefore, researchers are still

working to improve the algorithms and techniques and to explore

more efficient methods for object recognition in underwater images.

Prior research on this topic has carried out some significant

work in marine object recognition and deep learning, providing an

appropriate context for the development of this thesis. Many

previous studies have proposed a variety of object recognition in

marine environments, such as traditional methods combining

feature extraction and classifiers (Jiang et al., 2022a), model-based

methods, and deep learning methods (Abeysinghe et al., 2022).

These studies have provided a certain foundation for marine object

recognition in terms of marine organisms, marine environment,

and seabed targets. In the research on turbulence, turbulence is one

of the important disturbances in the marine environment, but

previous studies have focused on understanding the effects of

turbulence on distortion and distortion of images and data.

Through simulations and experimental analyses, the researchers

discuss the effects of turbulence on the performance of object

recognition algorithms and propose corresponding processing

methods and improvement strategies. Previous studies have made

some progress in the field of marine object recognition and deep

learning, but relatively limited research has been conducted on

object recognition in turbulent environments. Therefore, the

findings in this thesis further explore the impact of turbulence on

marine object recognition and propose improvement strategies for

deep learning methods in turbulent environments. This research

fills the research gap in the related field while providing new

understanding and solutions for object recognition in turbulent

environments with significant novelty. Although the research in this

thesis has made important findings, there are still potential

drawbacks and limitations in terms of experimental condition

limitations, dataset selection, and comparison between deep

learning models and real scenes. Future research should further

remedy these limitations to improve the credibility and applicability

of the study.
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The findings of this thesis suggest that deep learning models are

robust in turbulent environments and can achieve high recognition

accuracy. Based on this observation, future research can further

improve the deep learning model to better adapt to different types

and intensities of turbulent disturbances—for example, new

network structures or optimization algorithms can be explored to

improve model robustness and object recognition performance.

Consider the fusion of multimodal information: in addition to

image data, marine object recognition may involve other sensors or

data sources, such as sonar, LiDAR, etc. Future research could

consider fusing multimodal information for object recognition,

considering the effect of turbulence on multiple sensor data, and

investigating how to optimize the fusion algorithm to improve the

performance of object recognition. With regards integration with

scene perception, object recognition is often affected by complex

background disturbances in real marine environments, such as

waves, sea spray, and so on. Future research can combine object

recognition with scene perception technology to improve the

performance of object recognition through the perception and

understanding of environmental features. The interrelationship

between turbulence and background features may become an

important direction for future research to promote the

applicat ion of object recognit ion in complex marine

environments. In future research, the following hypothesis can be

tested: it is assumed that the effect of turbulence on object

recognition is influenced by the scale and shape of the target

object. Smaller-scale and irregularly shaped objects may be more

susceptible to turbulence, whereas larger-scale and regularly shaped

objects may have better robustness. To test this hypothesis,

experiments can be designed and collected on the recognition

accuracy of objects with different scales and shapes under

different turbulence intensities. By comparing the performance of

different object types, the relationship between object properties

and the effect of turbulence on object recognition can be further

explored to provide more in-depth theoretical support for the

optimization of object recognition algorithms.
6 Conclusions

This paper presents a MATNet aberration correction

recognition method. The method in this paper considers the loss

of objective features and the difficulty of feature extraction caused

by the underwater environment in image recognition. In this paper,

two learning strategies are used for multi-scale feature extraction,
TABLE 6 Results of ablation studies of different modules (optimal: red; suboptimal: blue).

Method Submarine Fish Frogman AUV MAP FPS

-w/a 0.8374 0.7921 0.8331 0.7923 0.8136 32

-w/PM 0.8380 0.7947 0.8369 0.7957 0.8163 33

-w/FE 0.8372 0.7911 0.8325 0.7905 0.8128 31.4

-w/DC 0.8341 0.7954 0.8363 0.7961 0.8154 30.5

MATNet (full model) 0.8517 0.8037 0.8523 0.8014 0.8272 32.5
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location learning strategy and density linking strategy, which are

invoked to efficiently extract underwater objective features.

Contrast correction of the distorted objective by the extracted

multi-scale features restores a sharper image. The corrected image

is subsequently employed to train the objective network for

recognition. During the training process, a loss function is

utilized to optimize the network parameters and ensure precise

recognition of distorted objects. Extensive evaluation experiments

on a variety of scenes show that our method is effective for image

recognition due to aberrations and achieves good results in image

restoration and object detection in complex scenes. Despite the

superior performance of the method proposed in this paper in

recognizing distorted images, it is still unsatisfactory for recognizing

underwater objective images in dim and blurred environments, and

we take this challenge as a problem that needs to be solved in

the future.
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