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A machine learning approach
for protected species
bycatch estimation
Christopher A. Long1*, Robert N. M. Ahrens2, T. Todd Jones2

and Zachary A. Siders1

1Fisheries and Aquatic Sciences, School of Forest, Fisheries, and Geomatic Sciences, University of
Florida, Gainesville, FL, United States, 2Fisheries Research and Monitoring Division, Pacific Islands
Fisheries Science Center, National Oceanic and Atmospheric Administration, Honolulu, HI, United
States
Introduction: Monitoring bycatch of protected species is a fisheries

management priority. In practice, protected species bycatch is difficult to

precisely or accurately estimate with commonly used ratio estimators or

parametric, linear model-based methods. Machine-learning algorithms have

been proposed as means of overcoming some of the analytical hurdles in

estimating protected species bycatch.

Methods:Using 17 years of set-specific bycatch data derived from 100% observer

coverage of the Hawaii shallow-set longline fishery and 25 aligned environmental

predictors, we evaluated a new approach for protected species bycatch

estimation using Ensemble Random Forests (ERFs). We tested the ability of

ERFs to predict interactions with five protected species with varying levels of

bycatch in the fishery and methods for correcting these predictions using Type I

and Type II error rates from the training data. We also assessed the amount of

training data needed to inform a ERF approach by mimicking the sequential

addition of new data in each subsequent fishing year.

Results: We showed that ERF bycatch estimation was most effective for species

with greater than 2% interaction rates and error correction improved bycatch

estimates for all species but introduced a tendency to regress estimates towards

mean rates in the training data. Training data needs differed among species but

those above 2% interaction rates required 7-12 years of bycatch data.

Discussion: Our machine learning approach can improve bycatch estimates for

rare species but comparisons are needed to other approaches to assess which

methods perform best for hyperrare species.
KEYWORDS

ensemble random forests, fisheries management, protected species, marinemegafauna,
rare events
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Introduction

Fisheries bycatch, interactions with unused or unmanaged

species in commercial or recreational fisheries (Davies et al.,

2009), generates negative impacts on many species, including

mortality, making the reduction of bycatch a major focus in

marine conservation and fisheries management (Zhou et al., 2010;

Lewison et al., 2014; Komoroske and Lewison, 2015; Gray and

Kennelly, 2018; Nelms et al., 2021; Pacoureau et al., 2021). The

management relevance and urgency of conservation concerns are

amplified when bycatch includes protected species such as marine

mammals, sea turtles, sharks, and seabirds (Moore et al., 2009;

Wallace et al., 2013; Lewison et al., 2014; Komoroske and Lewison,

2015; Gray and Kennelly, 2018; Clay et al., 2019). Reducing bycatch

can improve the efficiency and effectiveness of commercial fishing

(Richards et al., 2018; NOAA Fisheries, 2022; Senko et al., 2022) and

limit risks of fishery closure as a result of high levels of protected

species interactions. However, estimating the levels of bycatch in a

fishery can be challenging given low interaction rates of most

bycaught species and the even rarer occurrence of protected

species interactions (McCracken, 2004; Amandè et al., 2012;

Martin et al., 2015; Stock et al., 2019).

Fisheries management plans and regulations typically require

estimating and monitoring the amount of bycatch of a given species

from a given fleet. Excessive bycatch, defined differently depending

on jurisdiction, can result in regulatory changes to fishing practices,

changes in fishing gear, restrictions of fishing activities, or whole-

fishery closures. Thus, the ability to accurately and precisely

determine levels of bycatch in a fishery is an critical component

of fishery management. In the United States, the Magnuson-Stevens

Fishery Conservation and Management Act (MSA), Endangered

Species Act (ESA), and Marine Mammal Protection Act (MMPA)

apply depending on the bycatch species and fishery and require

management agencies to monitor bycatch. Under the MSA (50 CFR

§ 600.350), bycatch is to be minimized or avoided while protected

species bycatch cannot exceed the allowable take under the ESA (50

CFR 216.3) or exceed the potential biological removal level under

the MMPA (16 U.S.C. 1362). Often, to achieve bycatch monitoring

goals, trained fisheries observers are placed on fishing vessels to

monitor for protected species interactions and document the catch

and bycatch (NOAA Fisheries, 2022) since much of this

information is not required to be recorded in logbooks.

These observer-collected data are used to estimate bycatch

levels in the fishery through various statistical or mathematical

means. In many situations, sample-based ratio estimators such as

the generalized ratio estimator or Horvitz-Thompson estimator can

provide unbiased estimates of bycatch (McCracken, 2000, 2019).

Model-based estimates, including generalized linear models

(GLMs), zero-inflated models, hurdle models, Bayesian models,

and generalized additive models (GAMs) have also been

implemented to account for the impact of a small number of

covariates on fisheries bycatch (McCracken, 2004; Martin et al.,

2015; Stock et al., 2019, 2020). Bycatch estimates from such

methods then feed into the process of establishing a priori limits

on bycatch of some species over a given period (typically one year)

(Moore et al., 2009), as well as other downstream products and
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management functions such as stock assessments, authorizations of

fisheries with protected species bycatch, species status reviews, and

population viability analyses.

However, most existing methods of bycatch estimation struggle

to accurately and precisely estimate bycatch for species with low

interaction rates. Ratio-based estimators assume a constant

interaction rate and the inherent linear extrapolation of such

methods can result in inaccurate and imprecise estimates,

especially as observer coverage decreases (Amandè et al., 2012;

Martin et al., 2015; Stock et al., 2019). Model-based methods can

relax the constant interaction rate assumption by establishing

parametric relationships between covariates and bycatch but these

relationships are nearly impossible to resolve for very rare events

(McCracken, 2004; Zuur et al., 2009; Martin et al., 2015; Stock et al.,

2019). This issue with existing methods is particularly acute for

protected species, who almost by definition tend to rarely interact

with fisheries but for whom even very low rates of interaction can be

a management concern given small population sizes.

Machine-learning algorithms present an opportunity to

improve upon existing model-based methods as many build

nonparametric covariate relationships and can use many

covariates without the risk of variance inflation due to correlated

explanatory variables (Thompson et al., 2017). In particular,

classification algorithms (e.g., Random Forest; Breiman, 2001)

have been used to identify environmental covariates of bycatch

(Eguchi et al., 2017; Hazen et al., 2018; Stock et al., 2019, 2020).

These tools have been applied in dynamic management strategies to

identify areas where bycatch is most likely and direct fishing vessels

away from these areas through data products sent to fishers (Howell

et al., 2008, 2015; Hobday et al., 2010; Hazen et al., 2018). Such

models can also be used to estimate bycatch and can exhibit

improved performance over other model-based estimators (Stock

et al., 2020; Carretta, 2023), but also may have lower performance

when predicting on new data (Becker et al., 2020). Although many

of these algorithms still struggle with the rare event nature of

protected species bycatch, new variants of machine-learning

algorithms, such as Ensemble Random Forests (ERF), have

exhibited improved performance for rare event bycatch (Siders

et al., 2020). As remotely sensed environmental and oceanographic

covariates have become widely available, there is an opportunity to

improve upon ratio-based or linear-model based estimators by

using machine learning to sift through the sea of potential

covariates and create predictive models for bycatch estimation.

Modeling rare-event bycatch using fishery-dependent data does

not come without costs, as fisher choices regarding where and when

to fish directly influence the sampling of protected species as well as

geographic and environmental space. Such environmentally-biased

sampling is likely to lead to less accurate predictions (Conn et al.,

2017; El-Gabbas and Dormann, 2018; Pennino et al., 2019; Karp

et al., 2023), especially for rarer species in a dynamic oceanographic

environment. One strategy to address these modeling challenges is

to attempt to correct the model’s predictions using Type I and Type

II error rates from the training data. Ascertaining when such

corrections are necessary and appropriate will establish key

guidance for future use of machine learning algorithms to

predict bycatch.
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Here, we test the ability of Ensemble Random Forests (ERFs),

developed to estimate rare event bycatch (Siders et al., 2020), to

estimate bycatch of protected species using data from the Hawaii

shallow-set longline (SSLL) fishery. This fishery has had 100%

observer coverage since 2005 allowing us to know true levels of

bycatch without having to simulate a simplified version of the

highly dynamic and stochastic nature of protected species bycatch

in pelagic environments. Using five protected species with varying

rates of bycatch, we assessed the performance of corrected and

uncorrected ERF predictions across three recommended thresholds

defining which sets were likely to generate a bycatch event or not.

We first sought to test the ability of the ERF-based bycatch

estimators to accurately predict “new” data using a leave-one-out

approach to iteratively build models while holding out one year’s

worth of data. We used this information to assess what rates of

bycatch required error correction to achieve accurate bycatch

estimation. Second, we sequentially added years of training data

to understand the amount of training data necessary to develop an

effective bycatch estimation framework. Finally, in order to fully

understand the costs and benefits of error correction for bycatch

estimation, we assessed environmental and effort-related sources of

bias in the model’s predictions. Overall, our goal was to understand

the benefits and drawbacks of using this new framework for bycatch

estimation, particularly for species that rarely interact with fisheries.
Materials and methods

Fishery description

The Hawaii SSLL fishery is a relatively small fishery (11-28

participating vessels per year during our study period) that

primarily targets swordfish (NMFS, 2004). These vessels fish in a

large area of the north central Pacific Ocean (roughly 20-40°N and

180-230°E), with a large proportion of fishing activity taking place

in the first quarter of the calendar year (Howell et al., 2008; Siders

et al., 2023). Since 2004, NOAA Fisheries has maintained 100%

observer coverage in the SSLL fishery as a result of previously high

levels of bycatch of loggerhead sea turtles (NMFS, 2004). We used
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SSLL observer data from 2005-2021 to obtain GPS locations for

longline sets and concurrent bycatch records for five

protected species.
General ERF framework for
bycatch estimation

Using GPS locations and dates of the SSLL set and haul

activities, we matched 25 environmental variables including moon

phase, bathymetry, and distance to nearest seamount, five primary

remotely sensed covariates (sea surface temperature, chlorophyll-a,

sea winds, ocean currents, and sea level anomaly), and 17 derived

secondary remotely sensed covariates (see the Supplementary

Material for more details on data sources and extraction). We

combined these data with the corresponding set’s bycatch of

Oceanic Whitetip Shark, Laysan Albatross, Black-footed

Albatross, Loggerhead Sea Turtle (hereafter referred to as

loggerheads), and Leatherback Sea Turtle (hereafter referred to as

leatherbacks), representing a range of protected species bycatch

rates (from higher to lower). The full dataset for the ERF-based

framework consisted of all sets for which we had paired bycatch

data and environmental covariates. Generally, implementing the

ERF framework consisted of first training an ERF with the paired

bycatch and environmental data from a set of training years, using

that ERF to predict the number of sets with bycatch in a new year of

data, delineating which sets had likely bycatch interactions using a

threshold cutoff, applying any Type I or Type II error corrections,

and, finally, multiplying by group size (Figure 1).
Training data selection

We selected training data for the ERF using two different

methods. To assess which species required error correction to

achieve effective bycatch estimation, we implemented a leave-one-

out process that held out one year (2005-2021) from the model’s

training data. This process ensured that ERFs used to predict

bycatch for each year were trained using roughly equal amounts
FIGURE 1

Flow chart depicting the general framework for deriving bycatch estimates using Ensemble Random Forests.
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of data. However, in a real-world implementation of ERFs as

bycatch estimation tools, only data from previous years would be

available. To test how many years of data were necessary to

maximize predictive capability, we used a sequential addition

process. In this process, we trained an initial ERF on the first five

years (2005–2009), predicted on the next year of data (2010 in this

case), then repeated the process by sequentially adding one more

year to the ERF model training data and predicting on the data for

the upcoming year. We selected 2010 as a starting point for this

process so that all ERFs were trained on at least five years of data,

mimicking similar windows used for anticipated take limits in

Hawaii longline fisheries (e.g., McCracken, 2019). We compared

bycatch estimates from sequential addition results to corresponding

estimates from the leave-one-out analysis with the goal of finding

the year where differences were minimized between the two

analyses. The amount of training data used at the year where the

two estimates converge is an estimate of howmuch training data are

necessary to maximize estimate accuracy.

Lastly, because ERFs vary in their predictions for each model

run as a result of the inherent randomness of Random Forests and

because the training data used can have a large impact on model

predictions, we tested both of these factors simultaneously. Using

loggerhead bycatch in 2021 as a test case, we used seven different

versions of training data to train the ERFs: all years except for 2010,

all years except for 2014, all years except for 2017, all years except

for 2021, 2005-2009, 2005-2013, and 2005-2016. These are a subset

of the leave-one-out and sequential addition models, with the goal

of testing both changes in the content and amount of training data.

We created 10 ERF replicates using each of these training data sets,

and used them to conduct the bycatch estimation process for 2021

as outlined below.
Thresholds and error correction

We then used the trained ERF to predict which unobserved sets

from the test year had interactions with the focal protected species.

We assessed both the initial predictions on test year data, as well as

error-corrected predictions, for their performance in estimating

bycatch. In either case, the estimates derived from the ERF depend

heavily on the probability threshold chosen to classify predictions

into positives (i.e., predicted bycatch) and negatives (i.e., no

predicted bycatch). We assessed three strategies for choosing a

threshold: maximum sensitivity plus specificity (MSS), a common

threshold used in species distribution models (Liu et al., 2013,

2016); maximum accuracy (ACC) which used the threshold that

maximized the percentage of true predictions; and precision-recall

break-even point (PRBE) which selected the threshold where

precision (true positives/predicted positives) and recall (true

positives/actual positives) were equal. We used the R package

ROCR (Sing et al., 2005) to determine these metrics and their

associated Type I and Type II error rates. We applied each of these

thresholds to classify ERF predictions, either using the uncorrected

total as our prediction or proceeding into error correction.

When correcting these predictions, we used the Type I and

Type II error rates for training data as a measure of those same rates
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for test year data. In real-world implementation, this would be the

best available measure of model performance and error rates on

new data without fisheries observers. We used the positive

predictive value (PPV; i.e., P(Y = 1,   Ŷ = 1)=P(Ŷ = 1), # of true

positives/# of all predicted positives) and false negative rate (FNR;

i.e., P(Y = 0, Ŷ = 1)=P(Ŷ = 0), # of false negatives/# of all predicted

negatives) of the ERF at a given threshold to develop these

corrections using the following equation:

C = P(Ŷ = 1)*PPV + P(Ŷ = 0)*FNR

where C is the estimate of bycatch of a given ERF for a given species,

P(Ŷ = 1) is the threshold-delineated sets with predicted

interactions, and P(Ŷ = 0) is the threshold-delineated sets

without predicted interactions. This corrected prediction was our

measure of the number of sets with bycatch in the test year, which

we then multiplied by the group size to get a final prediction of the

number of interactions in the test year.

When assessing accuracy and bias of ERF-derived estimates

over the long-term, we refer to cumulative and absolute error.

Cumulative error in this context refers to the net difference over the

study period between ERF estimates and the actual bycatch total; in

other words, for this measure positively and negatively biased

results compensate for each other. In contrast, absolute error

refers to the summed absolute difference between ERF estimates

and the actual bycatch total, where negatively biased and positively

biased results do not compensate for one another.
Assessing ERF performance

We used three threshold-independent metrics to broadly assess

ERF performance on training and test year data, all of which were

calculated using the ROCR package in R (Sing et al., 2005). First, we

used the area under the curve (AUC), which refers to the receiver

operating curve plotting 1 - specificity against sensitivity at

thresholds ranging from 0 to 1. AUC values range from 0 to 1,

with values above 0.5 indicating a model performs better than

random. Second, we used root mean square error (RMSE),

calculated as follows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i  =  1(yi − ŷ i  )
2

N

s

Where ŷ i   is the model prediction for a set, yi is the true value,

and N is the total number of sets. Finally, we used the True Skill

Statistic, the maximum of the sum of the true positive rate (TPR)

and true negative rate (TNR) minus 1:

TSS = max(TPR + TNR − 1)
Assessing bias in ERF bycatch estimates

For each test year, ERF predictions may be biased as a result of

systematic bias in the model’s predictive capacity, spatial shifts in

the fishery area reducing model performance, or methodological
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biases related to error correction. In order to assess what may cause

bias in bycatch estimates and provide recommendations for future

use of the ERF framework, we correlated environmental, spatial,

and methodological covariates with estimate bias. As bycatch

predictions were produced on an annual basis, we compared the

annual mean of each potential covariate to the annual bias of ERF

estimates (bias in this context could be positive or negative). First,

we assessed the correlation of estimate bias with each of the ERF’s

25 environmental covariates (Table 1). Second, to assess effects of

the SSLL fleet’s spatial distribution on our estimates, we calculated

the centroid of fishing effort for each year and correlated the

latitudes and longitudes of these centroids with the bias in ERF

estimates. Finally, we correlated ERF estimate bias with the annual

rate of bycatch (number of interactions/set) for each focal species

and total sets by year to determine if bias was rooted in

the methodology.
Results

Summary statistics

In total, we used 18,933 Hawaii SSLL sets with arrival dates

from 2005 to 2021 paired with environmental data and observer

records (median = 1,172 sets per year). In total, these sets included

913 oceanic whitetip shark interactions (n = 667 sets with

interaction, mean group size = 1.37, mean interactions per year =

53.7), 567 Laysan albatross interactions (n = 417 sets, group size =

1.36, interactions per year = 33.4), 411 black-footed albatross

interactions (n = 354 sets, group size = 1.16, interactions per year

= 24.2), 221 loggerhead sea turtles (n= 204 sets, group size = 1.08,

interactions per year = 13), and 107 leatherback sea turtles (n = 105

sets, group size = 1.02, interactions per year = 6.3).
ERF performance and variable importance

The ERFs were highly successful at learning and predicting

bycatch in training years for all species but showed variable success

among species and years at predicting bycatch in test year data

(Table 1, variable importance in Supplementary Figure 2). Overall,

model performance by species correlated with overall bycatch rates

for the study period, with the best threshold-independent metrics

on test year data for oceanic whitetips and Laysan albatross.
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Notably, Laysan albatross on average exhibited better

performance than oceanic whitetips despite a lower bycatch rate.

Average performance when predicting black-footed albatross,

loggerheads, and leatherback in test years was markedly lower.

Among test years, model performance in predicting oceanic

whitetip bycatch was the most variable (see SD values for test

year columns in Table 1) as a result of extremely poor performance

in 2006 and 2018 but very good performance otherwise

(Supplementary Table 2 shows metrics by year). The other four

species showed similar levels of variability in test year performance.
Leave-one-out results

Uncorrected
The accuracy of uncorrected ERF-derived estimates (Figures 2A-E)

varied among species in a similar pattern to threshold-independent

metrics. Threshold choice substantially altered accuracy and bias of

bycatch predictions for individual years (Figure 2) and over the study

period (Table 2). Over the long-term for oceanic whitetips, Laysan

albatross and loggerheads, the precision-recall break-even (PRBE)

threshold produced the best uncorrected results; for Laysan albatross

and loggerheads, the maximum accuracy (ACC) threshold performed

similarly. Black-footed albatross and leatherback estimates were most

accurate over the long-term with the maximum sensitivity plus

specificity (MSS) threshold. We note that there are minor differences

in the best threshold choice when considering root mean square error

(RMSE) of annual estimates (Supplementary Table 3).

By cumulative error, there was a substantial decrease in accuracy

betweenblack-footedalbatross (n=411 interactions) and loggerheads (n

= 224 interactions) for most thresholds, potentially indicating a sample

size range where using uncorrected results becomes problematic. By

absolute error, there was at least one threshold for whitetips and Laysan

albatross near or below 50% error using uncorrected results, whereas

minimum error for the other three species by this metric was 69%,

indicating a necessary sample size somewhere between Laysan albatross

(n = 567 interactions) and black-footed albatross (n = 411 interactions).

Oceanic whitetip and Laysan albatross uncorrected estimates more

closely followed temporal trends over time (Figures 2A-E), an indication

that accuracy of long-term estimates for these species was more

influenced by the accuracy of individual test year predictions. In

contrast, uncorrected estimates from the best thresholds for black-

footed albatross, loggerheads, and leatherbacks showed mostly flat

trends with high variation over time. For black-footed albatross, this
TABLE 1 Mean ERF performance metrics from leave-one-out results (SD in parentheses).

Train AUC Train TSS Train RMSE Test AUC Test TSS Test RMSE Test Int. Rate

Oceanic Whitetip 0.99 (0) 0.91 (0) 0.26 (0) 0.82 (0.27) 0.7 (0.24) 0.25 (0.08) 0.032 (0.03)

Laysan Albatross 0.99 (0) 0.97 (0) 0.32 (0) 0.97 (0.09) 0.93 (0.16) 0.32 (0.02) 0.021 (0.01)

Black-footed Albatross 0.99 (0) 0.97 (0) 0.35 (0) 0.62 (0.14) 0.33 (0.18) 0.37 (0.03) 0.021 (0.02)

Loggerhead 0.99 (0) 0.95 (0) 0.36 (0) 0.65 (0.1) 0.38 (0.13) 0.38 (0.04) 0.017 (0.02)

Leatherback 0.99 (0) 0.99 (0) 0.40 (0) 0.48 (0.12) 0.26 (0.16) 0.4 (0.01) 0.005 (0)
Train columns indicate the performance of the ERF’s ensemble predictions of bycatch for all sets in the training years. Test columns indicate the ERF performance when predicting bycatch in test
years. AUC, Area Under the Curve; RMSE, Root Mean Square Error; TSS, True Skill Statistic.
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flat trend approximated mean bycatch levels over time, but it tended to

overpredict bycatch for loggerheads and underpredict bycatch

for leatherbacks.
Corrected
Corrected estimates over the long-term were generally, but not

always, more accurate for a given species and threshold (Figures 2F-

J, Table 2). When considering cumulative error, all species except

for black-footed albatross benefitted from error correction; by

absolute error, all species benefited. For oceanic whitetips and

Laysan albatross, the benefits of error correction were highest for

the MSS threshold; for Laysan albatross, the ACC and PRBE
Frontiers in Marine Science 06
estimates also benefited greatly. For loggerheads, estimates were

improved for all thresholds. Leatherback bycatch estimates were not

improved by error correction.

Notably, cumulative estimates for all species and threshold

types were negatively biased (i.e., bycatch estimates were lower

than actual totals), although this bias was smaller for oceanic

whitetips and Laysan albatross. For oceanic whitetips, this

resulted from a strong tendency to underpredict bycatch in 2005

that was not compensated for in future years. Aside from this,

corrected bycatch estimates more closely tracked trends over time

for whitetips and Laysan albatross than they did for other species,

especially for the MSS threshold. Black-footed albatross and

loggerhead corrected estimates were more accurate in earlier

years, but were negatively biased from 2011 forward for black-

footed albatross and from 2015 for loggerheads. The benefits of

error correction were reduced or non-existent for black-footed

albatross and leatherbacks.

Threshold choice had a substantial impact on estimates for

individual years, as well as the long-term accuracy of the ERF

estimation process. The threshold types exhibited mostly consistent

trends relative to each other to produce higher or lower predictions,

with MSS typically higher than ACC or PRBE for all species.

However, the most accurate threshold varied among years. Using

oceanic whitetips as an example, the higher predictions produced by

using MSS results allowed for the most accurate whitetip bycatch

estimates in 2005, but among the worst predictions in 2009 and

2010. Similarly, for loggerheads, the ACC and PRBE thresholds had

the most accurate predictions before 2013, but afterwards the same

thresholds had the worst predictions.
Sequential addition results

Differences between corrected leave-one-out and sequential

addition ERF estimates for oceanic whitetips leveled off in 2012

and all other species aside from loggerheads leveled off in 2017. This

indicates that for our highest bycatch species, seven years (roughly

10,000 sets) was an appropriate level of training data. For three

other species 12 years (roughly 16,000 sets) of training data may be

an appropriate amount (Figure 3). In contrast, there were small

differences between corrected leave-one-out and sequential addition

results for loggerheads even with minimal training data, but these

continually declined over the study period for most threshold types.

Uncorrected estimates showed similar temporal patterns for most

species in the convergence between leave-one-out and sequential

addition bycatch estimates. Loggerhead uncorrected estimates from

the two analyses were initially very different when using the MSS

threshold, but these differences plateaued after adding only one

additional year of data.
Differences within and among training
data sets

When predicting loggerhead bycatch in 2021 with different

model runs using the same training data set, models showed small
FIGURE 2

Leave-one-out results by species for uncorrected (left) and
corrected (right) results. Species are oceanic whitetips (A, F), Laysan
albatross (B, G), black-footed albatross (C, H), loggerheads (D, I),
and leatherbacks (E, J). Line color indicates the threshold type
applied to ERF predictions for the test year data. Note that the y-axis
scale varies among species.
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variation in corrected results (mean CV = 12%, Supplementary

Figure 3) but high levels of variation in uncorrected results (mean

CV = 58%). Among training data sets, again variation was lower in

corrected results than uncorrected, but there was wide variation in

predictions even for corrected results (Supplementary Figure 3).

However, most of this variation was among models that did or did

not include 2021 data in the training data set. This indicates that

corrected estimates predicted similar levels of bycatch as long as the

model had seen similar data previously in the training set.
Correlated variables with ERF estimate bias

When using error-corrected estimates, the most notable and

consistent correlate of ERF estimate bias for all five species was

bycatch rate in the test year (Figure 4). In four of the five species,

correlation between bycatch rate and ERF estimate bias was highly

negative for all threshold types (range: –0.73 - –0.98). Laysan

albatross bias and bycatch rate were also negatively correlated,

but to a lesser degree (mean: –0.54). This tendency is likely a result

of error correction serving to regress estimates toward mean

interaction rates. When using uncorrected estimates, this

correlation with interaction rate was reduced for all species, but

to varying degrees. For Laysan albatross and oceanic whitetips,

correlation between bias and interaction rates was reduced to near 0

for the MSS threshold but this reduction was not present for the

other threshold types. For black-footed albatross and loggerheads,

correlation between bias and interaction rate was reduced but still

less than –0.58. Using uncorrected estimates did not substantially

change relationships between estimate bias and test year interaction

rates for any thresholds for leatherbacks. While environmental and

spatial variables were sometimes also correlated with estimated bias,

the variables exhibiting correlation with bias, the magnitude of that

correlation, and the consistency in the correlation among

thresholds varied greatly among species.
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Discussion

We developed and tested a framework for protected species

bycatch estimation using the predictions of Ensemble Random

Forest models trained on environmental and oceanographic data.

There are some general insights gained that are worth highlighting.

In the leave-one-out analysis, uncorrected estimates of bycatch were

relatively accurate (<50% error) in aggregate for at least one

threshold for oceanic whitetips, Laysan albatross, and black-

footed albatross, but no thresholds produced reliable results for

loggerheads and leatherbacks (Figures 2A-E, Table 2). This suggests

the number of interactions is most important for developing

accurate and precise models and can limit the use of model-based

estimators for hyper-rare bycatch species (Stock et al., 2019). After

error correction, nearly all annual predictions were improved for all

species (Figures 2F-J, Table 2); however, error correction also

introduces a tendency to estimate bycatch in the test year at a

rate similar to the training data (Figure 4). The threshold type and

resulting Type I and Type II error corrections used were highly

influential in the accuracy of predictions both for individual years

and over the long-term. Approximately 12 years of training data

were necessary for oceanic whitetip, Laysan albatross, and

leatherback estimates to converge with leave-one-out results

(Figure 3). In contrast, loggerhead estimates continually improved

with more training data and black-footed albatross showed no

trends in model improvements. As expected, uncorrected estimate

accuracy was positively correlated with model performance and

threshold choice was highly important for deriving the most

accurate estimates possible. Subjectively, our results indicate that

given the effort in the Hawai’i SSLL, a bycatch rate of approximately

2% is required for uncorrected estimates derived from the ERF to be

relatively accurate estimators of bycatch on an annual basis.

Error correction improved estimate accuracy for nearly all

species and threshold combinations. However, error correction

also introduces a negative correlation between estimate bias and
TABLE 2 Cumulative and absolute errors by species (columns) and threshold type (rows) across all test years in the leave-one-out analysis for both
error-corrected and uncorrected results.

Cumulative Error

Threshold OWS LAYS BLFA LOGG LEATH
OWS
uncorr

LAYS
uncorr

BLFA
uncorr

LOGG
uncorr

LEATH
uncorr

ACC -41.7 -23.2 -65.2 -58.7 -91.8 -74.7 -35.3 -89.8 -91.9 -97.1

MSS -3 -4.1 -42.2 -34.1 -74.8 82.5 64.3 17.8 119.7 -69.5

PRBE -33.1 -21.8 -66.2 -59.3 -92.8 -48.9 -33.1 -87.3 -86.6 -97.1

Absolute Error

Threshold OWS LAYS BLFA LOGG LEATH OWS uncorr LAYS uncorr BLFA uncorr LOGG uncorr LEATH uncorr

ACC 56.7 29.9 75.6 76.5 91.9 74.7 39.4 89.8 94.8 97.1

MSS 52.8 34.3 74.8 69.7 74.8 86.8 65.8 82.3 141.4 69.6

PRBE 52 31.7 76.3 74.9 93 50.7 37.3 88.3 90.4 97.1
Colors in top panel indicate distance and direction from 0% cumulative error, with red indicating over prediction, blue indicating under prediction, and color intensity indicating distance from
0%. In the bottom panel, intensity of green color indicates relative proximity to 0% absolute error. OWS, oceanic whitetips; LAYS, Laysan albatross; BLFA, black-footed albatross; LOGG,
loggerheads; LEATH, leatherbacks; uncorr, uncorrected ERF results.
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test year interaction rate, tending to regress estimated bycatch rates

toward mean rates from the training data. For the MSS threshold,

the increase in this correlation is related to overall bycatch rates;

rarer species such as leatherbacks and loggerheads exhibited high

bias-interaction rate correlations even without error correction.

This tendency to regress towards mean bycatch rates reduces

corrected estimates’ ability to account for especially high or low

bycatch years occurring as a result of random variation or

systematic changes in interaction rates due to changes in fisheries

or bycatch species’ distribution. However, error correction is

essential to producing reasonable estimates for very low bycatch

rate species, and managers looking to use machine learning

methods to estimate bycatch should weigh the costs and benefits

of error correction.
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The threshold used to classify ERF predictions at the set level

altered the resulting annual-level predictions and was highly

influential in determining estimated Type I and Type II error

rates. In addition, the best threshold varied among species and

years. In most cases, uncorrected estimates were best when using

the MSS threshold whereas the threshold producing the best

corrected estimates varied among species. Critically, the

effectiveness of any threshold depends on the degree to which

Type I and Type II error rates from training and test data

correspond with one another. The correspondence of training and

test error rates likely depends on sample sizes and interaction rates

in both training and test data. Type I and Type II error rates,

appropriate thresholds, sample sizes, interaction rates, and model

performance will differ among fisheries and should be thoroughly

examined if our framework is implemented in new fisheries.

Data requirements are an additional consideration for practical

implementation of our framework. We showed that for oceanic

whitetips (our highest bycatch species) ERF estimates derived from

the leave-one-out analysis (i.e., maximum available data) converged

with those from the sequential addition process around 2012,

indicating that approximately seven years and 10,000 fishery sets

of training data were necessary. For three other species, these values

were 12 years and 16,000 sets. t is unclear whether this convergence

reflects overall training sample sizes or the number of interactions

but it is highly likely that species with higher rates of bycatch will

require less training data in terms of years and sets. Additionally,

loggerhead sequential addition analyses continually benefited from

new data.Ensemble Random Forests are particularly adept at

learning and predicting very rare events like protected species

bycatch (Siders et al., 2020), and therefore are likely to require the

least amount of training data of available algorithms. Overall,

species-specific idiosyncrasies may alter data needs; in particular,

spatial clustering of interactions has been shown to play a role in

ERF predictive performance (Siders et al., 2020). Accurate

estimation will likely be highly dependent on training data sample

size, interaction rates, the stability of the interaction distributions,

spatial clustering, and detection probability.

The variation in our uncorrected results among model runs

highlights that very small changes in thresholds can lead to large

changes in predictions. Continuous probabilities can be more

informative (Vaughan and Ormerod, 2005) but for this

application using a probability threshold was necessary to classify

predictions and derive practical estimates for potential use by

managers. Using error corrections greatly reduced this source of

estimate uncertainty. Among training data sets, it was unsurprising

that the training data used had large effects on model predictions. A

general principle in machine learning is that the highest possible

levels of similarity between training and test data are desirable, as

extrapolation can result in errors due to a tendency to overfit to

training data (Christin et al., 2019; Stupariu et al., 2022; Pichler and

Hartig, 2023). Fluctuating rates of bycatch, changing fisher

behaviors, climate change, and noisy interaction data are all

challenges in this regard that may result in poor model

predictions if training data are not similar to test data.

Despite their effectiveness for some of our study species, using

Ensemble Random Forests or other machine learning frameworks
FIGURE 3

Absolute differences between sequential addition and leave-one-out
results by species for uncorrected (left) and corrected (right) results.
Species are oceanic whitetips (A, F), Laysan albatross (B, G), black-
footed albatross (C, H), loggerheads (D, I), and leatherbacks (E, J).
Line color indicates the threshold type applied to ERF predictions for
the test year data. Note that y-axis scale varies among species.
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to estimate bycatch is not a panacea, even when combined with

error correction. For particularly rare species (e.g, loggerheads and

leatherbacks), there simply are not enough data to effectively

identify environmental correlates of bycatch and error-corrected

estimates regress towards mean interaction rates that are more

easily determined from ratio estimators. The spatially and

environmentally-biased sampling inherent to fisheries-dependent

data likely exacerbate sample size issues, reduce our ability to

predict the spatial distribution of bycatch, and decrease

uncorrected estimate accuracies, as has been demonstrated for

many other applications of species distribution modeling (Conn

et al., 2017; El-Gabbas and Dormann, 2018; Yates et al., 2018;

Rufener et al., 2021; Baker et al., 2022; Karp et al., 2023). Fisheries

managers looking to implement similar methods should remain

mindful that our approach, like any bycatch estimator, has

limitations and that there is no one-size-fits-all approach to

threshold selection, necessary training data, or bycatch estimation.

There is an inherent analytical and philosophical spectrum in

assessing spatial patterns of species occurrence (Merow et al., 2014)

that also broadly applies to bycatch estimation, ranging between

unbiased but under fitted ratio estimators (e.g., Horvitz-Thompson

or generalized ratio estimators; McCracken, 2000, 2019) to potentially

biased but more predictive model-based methods like those we

outlined in this paper. More research is needed to compare across

this spectrum (but see Stock et al., 2019 for one such comparison) and

the methods we outlined here borrow from both ends of the

spectrum. Similar to ratio estimators, we assume a constant group

size but relax assumptions related to constant interaction rates; our

estimates may be improved by implementing regression tree methods

(e.g., Carretta, 2023) to explicitly estimate group size, particularly for

those species with higher variation in group size among interacting

sets (e.g., oceanic whitetips). Other model-based methods (e.g., zero-

inflated, hurdle, Bayesian, GAMs; Mullahy, 1986; Lambert, 1992;
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Zuur et al., 2009; Martin et al., 2015; Stock et al., 2019; Karp et al.,

2023) also relax assumptions regarding linear relationships and, in

some cases, group size. However, such models may not produce

effective estimates of protected species bycatch due to class

imbalances (Li et al., 2019), dynamic relationships between

covariates and bycatch that may limit the effectiveness of any single

covariate, and interrelated covariates that either necessitate excluding

correlated predictors or risk high levels of variance inflation that limit

the model’s predictive ability on new data (Thompson et al., 2017).

Our ERF-based approach addresses some of these concerns to

develop effective bycatch estimates for species above 2% interaction

rates, and error correction improved these estimates and those of

loggerheads. With that said, we stress once more that no existing

bycatch estimation method is a cure-all in estimating or predicting

extremely rare events in a highly dynamic system.

Although we have demonstrated that the ERF framework can be

effective for some species at estimating bycatch in new years of data,

real-world implementation would involve observer coverage and

using the ERF to predict bycatch levels for unobserved trips. A

crucial consideration is how the accuracy and precision of ERF

estimates compares to existing ratio-based and model-based

estimators in these real-world scenarios. Given the wide variation

that can occur using ratio-based methods to estimate protected

species bycatch (Carretta and Moore, 2014; Martin et al., 2015) and

previous findings that show machine learning-based methods to be

more accurate than other model-based methods (Stock et al., 2019,

2020), we expect that the ERF estimates would be more precise and

potentially more accurate, particularly at low observer coverage

levels. In turn, machine learning methods may aid both managers

and fishers by achieving bycatch monitoring and estimation goals

while reducing observer coverage needs. It should be noted that no

matter the estimation method, some level of observer coverage will

always be necessary to provide information about observed levels of
A B

D E

C

FIGURE 4

Relationships for each focal species (ordered A-E from highest to lowest bycatch rates) between test year interaction rate and difference between
error-corrected bycatch estimate and actual bycatch in that year. Colors indicate threshold type applied to ERF predictions for test year data; note
that ACC results are often obscured by the other points and lines. Axis titles are shared between all plots.
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bycatch and environmental correlates of these interactions to

inform model-based bycatch estimators; observer coverage needs

are higher to achieve these bycatch detection goals for rare and/or

protected species (Curtis and Carretta, 2020). In addition, although

observer coverage would reduce estimate bias due to directly

documenting some portion of the fleet’s bycatch, corrected

estimates would retain some portion of the biases we saw in our

results at the annual level. Therefore, comparing our estimates to

those derived from other methods for multiple species and fisheries

is key to understanding precision-bias trade-offs under different

observer coverage scenarios, assessing downstream benefits and

drawbacks of using ERF-derived estimates, and improving bycatch-

related fisheries management.
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(2022). Machine learning in landscape ecological analysis: a review of recent
approaches. Landsc. Ecol. 37, 1227–1250. doi: 10.1007/s10980-021-01366-9

Thompson, C. G., Kim, R. S., Aloe, A. M., and Becker, B. J. (2017). Extracting the
variance inflation factor and other multicollinearity diagnostics from typical regression
results. Basic Appl. Soc Psychol. 39, 81–90. doi: 10.1080/01973533.2016.1277529

Vaughan, I. P., and Ormerod, S. J. (2005). The continuing challenges of testing
species distribution models. J. Appl. Ecol. 42, 720–730. doi: 10.1111/j.1365-
2664.2005.01052.x

Wallace, B. P., Kot, C. Y., Dimatteo, A. D., Lee, T., Crowder, L. B., and Lewison, R. L.
(2013). Impacts of fisheries bycatch on marine turtle populations worldwide: Toward
conservation and research priorities. Ecosphere 4, 1–49. doi: 10.1890/ES12-00388.1

Yates, K. L., Bouchet, P. J., Caley, M. J., Mengersen, K., Randin, C. F., Parnell, S., et al.
(2018). Outstanding challenges in the transferability of ecological models. Trends Ecol.
Evol. 33, 790–802. doi: 10.1016/j.tree.2018.08.001

Zhou, S., Smith, A. D. M., Punt, A. E., Richardson, A. J., Gibbs, M., Fulton, E. A., et al.
(2010). Ecosystem-based fisheries management requires a change to the selective
fishing philosophy. Proc. Natl. Acad. Sci. 107, 9485–9489. doi: 10.1073/
pnas.0912771107

Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., and Smith, G. M. (2009). “Zero-
truncated and zero-inflated models for count data,” in Mixed effects models and
extensions in ecology with R Statistics for Biology and Health. Eds. A. F. Zuur, E. N.
Ieno, N. Walker, A. A. Saveliev and G. M. Smith (Springer, New York, NY), 261–293.
doi: 10.1007/978-0-387-87458-6_11
frontiersin.org

https://doi.org/10.1111/2041-210X.12803
https://doi.org/10.1016/j.fishres.2020.105493
https://doi.org/ 10.1016/j.marpol.2009.01.003
https://doi.org/ 10.1016/j.marpol.2009.01.003
https://doi.org/10.1111/fog.12181
https://doi.org/10.1111/ecog.03149
https://doi.org/10.1007/s11160-018-9520-7
https://doi.org/10.1007/s11160-018-9520-7
https://doi.org/10.1126/SCIADV.AAR3001
https://doi.org/10.1111/j.1365-2419.2010.00540.x
https://doi.org/10.1111/fog.12092
https://doi.org/10.3354/esr00096
https://doi.org/10.1111/faf.12711
https://doi.org/10.3389/fmars.2015.00083
https://doi.org/10.2307/1269547
https://doi.org/10.1073/pnas.1318960111
https://doi.org/10.3934/fods.2019016
https://doi.org/10.1002/ece3.1878
https://doi.org/10.1111/jbi.12058
https://doi.org/10.1111/jbi.12058
https://doi.org/10.1890/14-0059.1
https://repository.library.noaa.gov/view/noaa/4441
https://repository.library.noaa.gov/view/noaa/4441
https://repository.library.noaa.gov/view/noaa/3399
https://repository.library.noaa.gov/view/noaa/3399
https://doi.org/10.25923/2PSA-7S55
https://doi.org/10.1111/ecog.00845
https://doi.org/10.1016/j.marpol.2008.09.003
https://doi.org/10.1016/j.marpol.2008.09.003
https://doi.org/10.1016/0304-4076(86)90002-3
https://doi.org/10.3354/esr01115
https://www.federalregister.gov/documents/2004/04/02/04-7526/fisheries-off-west-coast-states-and-in-the-western-pacific-western-pacific-pelagic-fisheries-pelagic
https://www.federalregister.gov/documents/2004/04/02/04-7526/fisheries-off-west-coast-states-and-in-the-western-pacific-western-pacific-pelagic-fisheries-pelagic
https://www.federalregister.gov/documents/2004/04/02/04-7526/fisheries-off-west-coast-states-and-in-the-western-pacific-western-pacific-pelagic-fisheries-pelagic
https://www.fisheries.noaa.gov/international/bycatch/national-bycatch-reduction-strategy
https://www.fisheries.noaa.gov/international/bycatch/national-bycatch-reduction-strategy
https://doi.org/10.1038/s41586-020-03173-9
https://doi.org/10.1002/ece3.4789
https://doi.org/10.1111/2041-210X.14061
https://doi.org/10.1016/j.fishres.2018.07.006
https://doi.org/10.1002/eap.2453
https://doi.org/10.1016/j.cub.2021.12.050
https://doi.org/10.1016/j.biocon.2023.109912
https://doi.org/10.3354/esr01060
https://doi.org/10.1093/bioinformatics/bti623
https://doi.org/10.1093/bioinformatics/bti623
https://doi.org/10.1139/cjfas-2018-0281
https://doi.org/10.1093/icesjms/fsy153
https://doi.org/10.1007/s10980-021-01366-9
https://doi.org/10.1080/01973533.2016.1277529
https://doi.org/10.1111/j.1365-2664.2005.01052.x
https://doi.org/10.1111/j.1365-2664.2005.01052.x
https://doi.org/10.1890/ES12-00388.1
https://doi.org/10.1016/j.tree.2018.08.001
https://doi.org/10.1073/pnas.0912771107
https://doi.org/10.1073/pnas.0912771107
https://doi.org/10.1007/978-0-387-87458-6_11
https://doi.org/10.3389/fmars.2024.1331292
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

	A machine learning approach for protected species bycatch estimation
	Introduction
	Materials and methods
	Fishery description
	General ERF framework for bycatch estimation
	Training data selection
	Thresholds and error correction
	Assessing ERF performance
	Assessing bias in ERF bycatch estimates

	Results
	Summary statistics
	ERF performance and variable importance
	Leave-one-out results
	Uncorrected
	Corrected

	Sequential addition results
	Differences within and among training data sets
	Correlated variables with ERF estimate bias

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


