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Underwater small target
detection based on dynamic
convolution and
attention mechanism
Chensheng Cheng, Can Wang, Dianyu Yang, Xin Wen,
Weidong Liu and Feihu Zhang*

School of Marine Science and Technology, Northwestern Polytenical University, Xi’an, China
In ocean observation missions, unmanned autonomous ocean observation

platforms play a crucial role, with precise target detection technology serving

as a key support for the autonomous operation of unmanned platforms. Among

various underwater sensing devices, side-scan sonar (SSS) has become a primary

tool for wide-area underwater detection due to its extensive detection range.

However, current research on target detection with SSS primarily focuses on

large targets such as sunken ships and aircraft, lacking investigations into small

targets. In this study, we collected data on underwater small targets using an

unmanned boat equipped with SSS and proposed an enhancement method

based on the YOLOv7 model for detecting small targets in SSS images. First, to

obtain more accurate initial anchor boxes, we replaced the original k-means

algorithm with the k-means++ algorithm. Next, we replaced ordinary

convolution blocks in the backbone network with Omni-dimensional Dynamic

Convolution (ODConv) to enhance the feature extraction capability for small

targets. Subsequently, we inserted a Global Attention Mechanism (GAM) into the

neck network to focus on global information and extract target features,

effectively addressing the issue of sparse target features in SSS images. Finally,

we mitigated the harmful gradients produced by low-quality annotated data by

adopting Wise-IoU (WIoU) to improve the detection accuracy of small targets in

SSS images. Through validation on the test set, the proposed method showed a

significant improvement compared to the original YOLOv7, with increases of

5.05% and 2.51% in mAP@0.5 and mAP@0.5: 0.95 indicators, respectively. The

proposed method demonstrated excellent performance in detecting small

targets in SSS images and can be applied to the detection of underwater mines

and small equipment, providing effective support for underwater small target

detection tasks.
KEYWORDS

side-scan sonar, underwater target detection, YOLOv7, K-Means++, ODConv,
GAM, WIoU
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1 Introduction

Due to the distinctive attributes of the underwater environment,

optical imaging techniques face substantial limitations when

deployed underwater. Conversely, sound waves experience

minimal attenuation in water, rendering side-scan sonar (SSS) a

prevalent tool for underwater target detection.

Sonar target detection methods can be categorized into traditional

techniques and Convolutional Neural Network (CNN)-based

approaches. Conventional sonar image detection methods

predominantly employ pixel-based (Chen et al., 2014), feature-based

(Mukherjee et al., 2011), and echo-based (Raghuvanshi et al., 2014)

strategies. These methods utilize manually crafted filters founded on

pixel value characteristics, grayscale thresholds, or a priori information

about the targets for detection. However, underwater settings are

intricate, and sonar echoes contend with self-noise, reverberation

noise, and environmental noise. Consequently, sonar images exhibit

low resolution, blurred edge details, and significant speckle noise,

complicating the identification of dependable pixel traits and

grayscale thresholds. Furthermore, owing to the diminutive

illuminated regions and ambiguous target features in acoustic

images, even for the same target, discrepancies in the sonar’s

position, depth, and angle can lead to variations in the

morphological attributes of the target within sonar images. Hence,

existing conventional algorithms encounter notable constraints in

terms of technical feasibility, time requirements, and applicability

when confronted with intricate sonar target detection scenarios. A

pressing necessity exists for a detection algorithm that remains robust

against fluctuations in target morphology in sonar images, mitigates

erroneous detections and omissions induced by background noise

interference, and exhibits commendable generalization capabilities.

In comparison to traditional methodologies, deep learning

approaches rooted in CNN offer substantial advantages due to their

capacity to autonomously acquire and extract deep-level features from

images. The learned feature parameters often outperform manually

devised counterparts, resulting in significantly heightened detection

accuracy when applied to large datasets, as compared to traditional

methods. Presently, CNN-based object detection methodologies within

the domain of optical image processing have attained a mature stage of

development. Researchers have progressively extended the application

of these technologies to various inspection tasks, such as steel defect

detection (Yang et al., 2021; Zhao et al., 2021), medical image analysis

(Bhattacharya et al., 2021; Jia et al., 2022), marine life detection (Chen

et al., 2021; Wang et al., 2023c), radar image interpretation (Hou et al.,

2021; Zhang et al., 2021a), agricultural product inspection (Soeb et al.,

2023; Yang et al., 2023), and more. Significant achievements have been

made in each of these fields. Moreover, CNN-based methods can also

be employed for image enhancement to improve the quality of blurry

images and enhance the recognition of regions of interest (Chen et al.,

2023; Wang et al., 2023b), thereby enhancing the effectiveness of target

detection. Therefore, investigating how to apply CNN-based object

detection methods more efficiently to the field of underwater acoustic

image target detection is a highly worthwhile research endeavor.

Furthermore, this research can contribute to addressing the

challenges associated with underwater acoustic image target

detection difficulties.
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As of now, employing deep learning techniques for target

detection in SSS images still faces several challenges (Le et al.,

2020; Neupane and Seok, 2020; Hożyń, 2021). Firstly, current target

detection networks typically rely on anchor box initializations

derived from extensive optical datasets, which may not necessarily

be suitable for our unique SSS dataset. Consequently, there is a need

to re-cluster and generate anchor box initializations customized to

specific dataset. Secondly, factors such as sound wave propagation

loss, refraction, and scattering often result in acquired sonar images

exhibiting characteristics such as low contrast, strong speckle noise,

and blurry target edges. In comparison to conventional camera

images, sonar images significantly differ in terms of texture

diversity, color saturation, and feature resolution. Hence, it is

imperative to enhance the feature extraction capability of the

backbone network and apply appropriate attention mechanisms

to target features in sonar images, aiming to improve detection

accuracy. Lastly, due to the formidable challenges associated with

collecting SSS image data, obtaining a sufficient quantity of

thoroughly comprehensive and high-quality image data for

network training is challenging. This necessitates making the

most of all available data, including some lower-quality data, to

maximize the average detection accuracy.

In response to these challenges, this paper takes full

consideration of the unique characteristics of the SSS dataset.

Four improvements are made to the YOLOv7 network to

enhance its detection performance for small targets in SSS images.

The effectiveness of the proposed improvements is validated

through multiple experiments. The main contributions of this

paper are as follows:
1) We replaced the k-means algorithm with k-means++ to

recluster the annotated bounding boxes in the SSS dataset,

thereby obtaining initial anchor boxes that are more

suitable for the sizes of small targets in the dataset.

2) We replaced the static convolutional blocks in the backbone

network with Omni-dimensional Dynamic Convolution

(ODConv), considering the multi-dimensional information

of convolutional kernels. This substitution enhances the

feature extraction capability of the network without

significantly increasing the number of parameters.

3) In the neck network, five global attention mechanism

(GAM) modules are introduced, taking into account

global information and enhancing the capability to extract

target features. This addresses the challenge of feature

sparsity commonly found in SSS images.

4) In the loss function section, we introduced Wise-IoU

(WIoU) to address the issue of poor quality in SSS data.

Such an improvement can alleviate the adverse impact of

low-quality data on gradients, leading to higher data

utilization and, consequently, an improvement in the

detection accuracy of the trained model.
The remaining sections of this paper are structured as follows.

Section 2 elaborates on related research concerning underwater

acoustic target detection. In Section 3, we detail the methodology
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adopted in this study. The experimental procedure and outcome

presentation are outlined in Section 4. Finally, Section 5 provides a

summary of this paper and offers prospects for future work.
2 Related work

Extensive research has been undertaken in the domain of

underwater acoustic image target detection (Lee et al., 2018;

Zhang et al., 2021b; Kim et al., 2022; Tang et al., 2023). These

endeavors encompass the design of specialized functional modules

tailored to data characteristics or the adaptation and enhancement

of networks originally well-suited for optical data to underwater

acoustic data.

(Jin et al., 2019) devised EchoNet, a deep neural network

architecture that leverages transfer learning to detect sizable objects

like airplanes and submerged vessels in forward-looking sonar

images (Fan et al., 2021). introduced a 32-layer residual network

to replace ResNet50/101 in MASK-RCNN, streamlining the

network’s parameter count while upholding object detection

accuracy. They also adopted the Adagard optimizer in place of

SGD and evaluated the detection accuracy of the network model

through cross-training with a collection of 2500 sonar images

(Singh and Valdenegro-Toro, 2021). conducted a comparison of

diverse target segmentation networks, including LinkNet,

DeepLabV3, PSPNet, and UNet, based on an extensive dataset of

over 1800 forward-looking sonar images. Their investigation

revealed that a UNet network employing ResNet34 as the

backbone, tailored for their sonar dataset, achieved the most

favorable outcomes. This network was subsequently applied to

the detection and segmentation of marine debris (Xiao et al.,

2021). addressed shadow information in acoustic images by

introducing a shadow capture module capable of capturing and

utilizing shadow data within the feature map. This module,

compatible with CNN models, incurred a modest parameter

increase and displayed portability. The incorporation of shadow

features improved detection accuracy (Wang et al., 2021). proposed

AGFE-Net, a novel sonar image target detection algorithm. This

algorithm extended the receptive field of convolutional kernels

through multi-scale receptive field feature extraction blocks and

self-attention mechanisms, thus acquiring multi-scale feature

information from sonar images and enhancing feature

correlations. Employing a bidirectional feature pyramid network

and an adaptive feature fusion block enabled the acquisition of deep

semantic features, suppression of background noise interference,

and precise prediction box selection through an adaptive non-

maximum suppression algorithm, ultimately enhancing target

localization accuracy. To address the issue of suboptimal transfer

learning results due to significant domain gaps between optical and

sonar images (Li et al., 2023a), introduced a transfer learning

method for sonar image classification and object detection known

as the Texture Feature Removal Network. They considered texture

features in images as domain-specific features and mitigated

domain gaps by discarding these domain-specific features,

facilitating a more seamless knowledge transfer process. This

innovative approach aims to bridge the gap between optical and
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sonar image analysis, enhancing the effectiveness of transfer

learning techniques.

Due to the YOLO series of networks’ excellent detection

performance and ease of deployment, they have found wide

application in the field of underwater target detection.

Additionally, researchers have made numerous enhancements to

the YOLO series networks, making them even more suitable for

object detection in underwater acoustic images. In order to address

the limitations in detection performance and low detection accuracy

resulting from multi-scale image inputs (Li et al., 2023b), proposed

an underwater target detection neural network based on the

YOLOv3 algorithm, enhanced with spatial pyramid pooling. The

improved neural network demonstrated promising results in the

detection of underwater targets, including shipwrecks, schools of

fish, and seafloor topography (Li et al., 2021). introduced an

enhanced RBF-SE-YOLOv5 network that reallocates channel

information weights to enhance effective information extraction.

This enhancement entailed refining the backbone network of the

original model and integrating it with RBFNet, thus improving the

network’s receptive field, feature representation, and capacity to

learn vital information. The study demonstrated that amplifying

perception information in high receptive fields and integrating

multi-scale information augments the efficacy of vital feature

extraction. The proposed algorithm notably enhances effective

feature extraction, comprehensively captures global information,

and mitigates prediction errors and issues of low credibility.

Addressing the deficiency in detecting small targets in underwater

sonar images (Wang et al., 2022), harnessed the YOLOv5

framework for marine debris detection. They introduced a multi-

branch shuttle network into YOLOv5s and replaced YOLOv5s’ neck

network with BiFPN to augment detection performance. The study

also analyzed the impact of uneven target data distribution and

network scale on model performance, thereby furnishing reference

solutions for ensuring accuracy and speed in target detection

(Zhang et al., 2022a), grounded in the YOLOv5 framework,

employed the IOU value between initial anchor boxes and target

boxes instead of YOLOv5’s Euclidean distance as the clustering

criterion. This refinement brought the initial anchor boxes closer to

true values, enhancing network convergence speed. Additionally,

they introduced coordinate information by appending pixel

coordinates of the image as extra channels to the feature map and

performing convolution operations, consequently amplifying the

accuracy of the detection module’s localization regression (Li et al.,

2023c). proposed MA-YOLOv7, a YOLOv7-based network that

incorporates multi-scale information fusion and attention

mechanisms for target detection and filtering in images. They also

introduced a target localization method to determine target

positions (latitude and longitude).

However, current research primarily revolves around

employing SSS to detect large targets such as airplanes and

sunken ships, or using forward-looking sonar to detect small

targets at close range. There remains a significant dearth of

research focused on utilizing SSS for wide-ranging detection of

small underwater targets. This paper constructs a small target SSS

dataset based on data collected during experiments and conducts a

comprehensive study on small target detection methods in SSS. The
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primary objective is to facilitate the advancement of the field of

small target detection in SSS.

3 Improved methods

YOLOv7, introduced in 2022, stands as a one-stage object

detection network (Wang et al., 2023a). It demonstrates

outstanding proficiency in both detection speed and accuracy

compared to other detection algorithms. In this study, we

improved the YOLOv7 model and, through multiple experimental

validations, identified four effective improvement points, as

illustrated in Figure 1. We applied these enhancements to small

target detection in SSS images, achieving notable improvements in

detection performance compared to the original YOLOv7, as

evidenced by significant enhancements in detection metrics.
3.1 K-means++

To enhance both efficiency and accuracy in detection, this study

employs the k-means++ (Arthur and Vassilvitskii, 2007) technique

to supplant the k-means approach, initially employed in YOLOv7,

for clustering anchor boxes within the dataset. In the conventional

k-means method, the first phase involves the random generation of

n cluster centers from the data samples. Subsequently, the Euclidean

distance between each sample and the cluster centers is computed,

and the sample is assigned to the cluster center exhibiting the

smallest Euclidean distance. In the subsequent phase, the cluster

centers are reevaluated, and samples are reclassified. This iterative

process is repeated until the cluster centers reach stability.

The k-means++ method represents an enhancement over the

conventional k-means approach. Unlike generating all cluster

centers randomly in a single instance, k-means++ generates one

cluster center at a time. It calculates the Euclidean distance D(x)

between all samples and the cluster center, subsequently deriving

the probability of each sample being chosen as the next cluster

center through the Equation 1.

P(x) =
D(x)2

ox∈XD(x)
2 (1)

Subsequently, the next cluster center is chosen via the roulette

wheel selection method. This sequence of steps is reiterated until n

cluster centers are generated. After this stage, the ensuing process

resembles that of the conventional k-means algorithm: the cluster

centers are updated, samples are reclassified, and these steps are

iterated until the cluster centers achieve stability. While the k-

means++ algorithm invests more time in selecting initial cluster
Frontiers in Marine Science 04
centers, once these initial centers are established, the convergence

speed accelerates, yielding cluster centers that hold greater

representativeness. This approach mitigates the challenge of

becoming trapped in local optima.
3.2 Omni-dimensional
dynamic convolution

In current neural networks, the majority typically employ static

convolutional kernels. However, recent research on dynamic

convolutions suggests calculating relevant weights based on the

input and linearly combining n convolutional kernels according to

these weights. This makes the convolution operation dependent on

the input, leading to a significant improvement in neural network

accuracy. The experimental results from (Li et al., 2022)

demonstrate that the use of ODConv enhances the detection

performance for small targets. Therefore, in this study, all

convolutional operations in the YOLOv7 backbone network are

replaced with ODConv to enhance the detection performance of

the network.

The core innovation of ODConv lies in its multi-dimensional

dynamic attention mechanism. Traditional dynamic convolution

typically achieves dynamism only in the dimension of the number

of convolutional kernels, by weighting and combining multiple

kernels to adapt to different input features. ODConv extends this

concept further by dynamically adjusting not only the number of

convolutional kernels but also three other dimensions: spatial size,

input channel number, and output channel number. This means

that ODConv can adapt more finely to the features of input data,

thereby improving the effectiveness of feature extraction.

Additionally, ODConv employs a parallel strategy to

simultaneously learn attention across different dimensions. This

strategy allows the network to efficiently process features on each

dimension while ensuring complementarity and synergy among the

dimensions. This is particularly beneficial for handling complex

features in SSS images. The network structure is illustrated

in Figure 2.

The output after ODConv can be expressed using the Equation 2.

y = (d1 ☉ c1 ☉ b1 ☉ a1 ☉W1 +… + dn ☉ cn ☉ bn ☉ an ☉Wn)*x (2)

where a represents the attention parameter for the spatial

dimensions of the convolutional kernel, b represents the attention

parameter for the input channel dimensions, c represents the

attention parameter for the output channel dimensions, d

represents the attention parameter for the convolutional kernel W.
3.3 Global attention mechanism

The incorporation of attention mechanisms within neural

networks draws inspiration from human visual attention,

enhancing feature extraction by assigning distinct weights to

various channels within neural network feature layers. This

strategy enables the model to concentrate on pertinent
FIGURE 1

Improvements made to YOLOv7.
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information while disregarding irrelevant data, leading to resource

conservation and augmented model performance. Several

mainstream attention mechanisms, such as SE-Net (Hu et al.,

2018), ECA-Net (Wang et al., 2020), BAM (Park et al., 2018),

CBAM (Woo et al., 2018) and GAM (Liu et al., 2021), have been

demonstrated to enhance the detection performance of models.

The GAM represents a form of global attention mechanism that

curtails information loss and amplifies interactions across global

dimensions. Consequently, the neural network’s aptitude for

extracting target features is bolstered. The schematic depiction of

the GAM module structure is presented in Figure 3.

GAM employs a sequential channel-spatial attention

mechanism with the aim of amplifying global inter-feature

interactions while reducing information dispersion. In the

channel attention submodule of GAM, a three-dimensional

configuration is employed to preserve tridimensional information.

The input feature map undergoes dimensional transformation and

subsequently undergoes an MLP operation. The result is then
Frontiers in Marine Science 05
reverted to the original dimension, and a sigmoid function is

applied to produce the final output.

In the spatial attention submodule, aimed at intensifying focus on

spatial information, two convolutional layers facilitate spatial data

fusion. Initially, a convolution employing a kernel size of 7 is

executed to diminish channel count and computational complexity.

Subsequently, another convolution with a kernel size of 7 enhances the

number of channels while maintaining uniform channel consistency.

The resulting output is then processed through a sigmoid function.

In order to enhance the detection performance of the detection

network, we introduced GAM modules at five distinct locations in

the neck network. The architecture of the YOLOv7 network with

added GAM modules, as well as the specific structures of individual

sub-modules within the network, are illustrated in Figure 4.
3.4 Wise-IoU

The bounding box regression function holds a pivotal role in

object detection by enhancing object localization accuracy,

accommodating objects of varying scales, rectifying object

orientations and shapes, and bolstering algorithmic robustness.

This collective functionality contributes significantly to the

advancement of object detection algorithms.

However, the majority of current research on Intersection over

Union (IoU) (Yu et al., 2016) assumes that the training data consists

of high-quality samples, with their primary focus being on

enhancing the fitting capability of bounding box regression loss

functions, such as Generalized-IoU (GIoU) (Rezatofighi et al.,

2019), Distance-IoU (DIoU) (Zheng et al., 2020), Complete-IoU

(CIoU) (Zheng et al., 2020), and Efficient-IoU (EIoU) (Zhang et al.,

2022b), as shown in Table 1, where their advantages and

disadvantages are compared. Yet, when dealing with datasets that
FIGURE 2

The architecture of the ODConv module.
FIGURE 3

The structure diagram of the GAM module.
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contain a significant amount of inaccurately annotated low-quality

data, blindly intensifying the fitting ability of the bounding box

regression loss function can have detrimental effects on the model’s

learning process.

In SSS imagery, targets are highly susceptible to noise

interference in the generated images, which presents significant

challenges for annotation. In the process of manual annotation,

inaccuracies inevitably arise, as illustrated in Figure 5. If the
Frontiers in Marine Science 06
annotation boxes are initially flawed, when an excellent detection

model generates high-quality anchor boxes for low-quality sample

data, the loss function LIoU will have a relatively large value, leading

to a substantial gradient gain. In such cases, the model will learn in

an unfavorable direction. This phenomenon is particularly relevant

in the context of scientific research and analysis for SSS imagery.

To address the issue of poor quality in underwater SSS data, we

introduce the WIoU (Tong et al., 2023) as the bounding box loss
FIGURE 4

The network architecture diagram of the improved YOLOv7.
TABLE 1 Comparison of the advantages and shortcoming of different IoU methods.

Overlapping Center
Point

Aspect
Ratio

Advantage Shortcoming

IoU ✓ × × Taking into account scale invariance and
non-negativity.

If two boxes do not intersect, it cannot reflect the distance
and cannot accurately reflect the degree of overlap

between the two boxes.

GIoU ✓ × × Addressing the issue where the loss equals zero
when there is no overlap between the detection

box and the ground truth box.

When there is containment between the detection box and
the ground truth box, GIOU degenerates into IOU, and
when the two boxes intersect, convergence is slow in both

the horizontal and vertical directions.

DIoU ✓ ✓ × Directly regressing the Euclidean distance
between the centers of the two boxes to

accelerate convergence.

Considering the aspect ratio of bounding boxes during the
regression process, there is still room for further

improvement in accuracy.

(Continued)
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function. This aims to alleviate the impact of low-quality anchor

boxes generated during annotation. The WIoU function employs a

dynamic non-monotonic focus mechanism that evaluates anchor

box quality through outliers, instead of IoU. This approach

furnishes a judicious gradient allocation strategy, curbing the

competitiveness of high-quality anchor boxes while attenuating

detrimental gradients arising from low-quality instances.

Consequently, WIoU prioritizes anchor boxes of moderate

quality, ameliorating detector performance overall.

The symbols defined in WIoU are illustrated as shown in

Figure 6. In this figure, the blue box represents the smallest

bounding box, and the red line represents the line connecting the

centers of the true box and the predicted box, where the union area

is denoted as Su = wh + wgthgt −WiHi.

The WIoU methodology, founded on distance metrics,

incorporates a two-tier attention mechanism known as WIoU v1.

WIoU v1 can be represented by Equations 3, 4.

LWIoUv1 = RWIoULIoU (3)

RWIoU = exp 
(x − xgt)

2 + (y − ygt)
2

(W2
g +H2

g Þ*

 !
(4)
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where LIoU ∈  ½0, 1�, Wg and Hg are the dimensions of the

minimum bounding box, (x, y)and (xgt , ygt) represent the center

coordinates of the predicted box and the ground truth box.

Subsequently, building upon WIoU v1, the incorporation of

outliers is achieved through the Equation 5.

b =
L*IoU
LIoU

∈ ½0, +∞) (5)

Finally, a non-monotonic focus coefficient b is formulated and

integrated into WIoU v1. As a result, we obtain Equation 6.

LWIoU = rLWIoUv1, r =
b

dab−d (6)

A reduced outlier score implies a higher quality anchor box,

yielding a diminished gradient gain assigned to it. Consequently,

the bounding box regression concentrates on anchor boxes of

intermediate quality. In contrast, anchor boxes exhibiting larger

outlier scores are allocated lesser gradient gains, effectively

curtailing the generation of significant harmful gradients from

low-quality instances. Notably, as LIoU remains dynamic, the

categorization threshold for anchor boxes’ quality also remains

adaptive. This adaptability empowers WIoU to judiciously allocate
B C D

E F G H

A

FIGURE 5

Low quality annotated samples. (A–D) are low-quality samples with inaccurate annotations, while (E–H) have accurate annotations.
TABLE 1 Continued

Overlapping Center
Point

Aspect
Ratio

Advantage Shortcoming

CIoU ✓ ✓ ✓ Introducing loss terms for the scale of the
detection box, as well as for its length and
width, which makes the predicted box better

match the ground truth.

The aspect ratio describes relative values, introducing
some degree of ambiguity and not considering the balance

of difficulty levels among samples.

EIoU ✓ ✓ ✓ Calculating differences in width and height
instead of aspect ratio, while also incorporating
Focal Loss to tackle the problem of imbalanced

difficulty levels among samples.

More attention is given to high-quality anchor boxes, with
insufficient focus on low-quality anchor boxes.
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gradient gains that are suitable for real-time scenarios, enhancing its

effectiveness in each instance.
4 Experiments

4.1 Experiment platform

The experiments presented in this study were carried out on an

Ubuntu 20.04 system, serving to corroborate the efficacy of the

proposed enhanced detection algorithm. Detailed configuration

parameters of the system are provided in Table 2.
4.2 Model evaluation metrics

When evaluating the detection performance of the improved

YOLOv7, we employed evaluation metrics including Recall (R),

Precision (P), Average Precision (AP), and mean Average Precision

(mAP). The calculation methods of these four indicators can be

expressed by Equations 7–10 respectively.

R = TP=(TP + FN) (7)

P = TP=(TP + FP) (8)

AP =
Z 1

0
P(R)dR (9)

mAP =o
N

i=1
APi=N (10)

Within the array of evaluation metrics mentioned, True Positive

(TP) signifies the tally of correctly identified positive samples, False

Positive (FP) corresponds to the count of erroneously identified

negative samples, and False Negative (FN) stands for the tally of

positively labeled samples that remain undetected. The variable N

represents the overall number of detected categories.
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4.3 Dataset preparation

In the data acquisition phase, we deployed objects of two

types, namely cylindrical and conical structures, as detection

targets in the experimental marine area. We utilized the SS3060

dual-frequency SSS as the detector for data collection. The SSS

and detection targets are illustrated in Figure 7. The size of the

SSS is 100mm in diameter and 1250mm in length, with a weight of

25kg in air and 12kg in water. And the performance parameters of

SSS are presented in Table 3. For the experiment’s execution, the

SSS was affixed beneath an unmanned boat. The utilization of

GPS signals emanating from the unmanned boat enabled the

verification of congruence between features visible in the SSS

images and the physically predetermined targets. This

methodology thereby facilitated the creation of a dataset

characterized by high quality.

After deploying the targets, to ensure the diversity of the collected

dataset, we employed two different survey paths in the target water area

to perform a comprehensive scan of underwater targets. The placement

of the targets and the scanning paths are illustrated in Figure 8. In the

figure, the lateral distance between the targets is approximately 50

meters, and the longitudinal distance is approximately 100 meters. Due

to the influence of underwater currents, some degree of deviation in

this distance is inevitably present.

Due to the complex and variable underwater environment, as

well as the susceptibility of images to noise interference, the images

acquired using SSS also exhibit significant variations, as shown

in Figure 9.

Discerning distinct target features within SSS images presents a

formidable challenge. Manual annotation subsequent to data

collection is arduous, making on-site, real-time labeling the

optimal strategy. To attain the real-time processing of SSS images,

we adopt a tactic wherein image segments are extracted from the

sonar waterfall plot at intervals of 30 seconds, illustrated in

Figure 10. This approach facilitates the annotation of targets on

SSS images in real-time, while accounting for the field environment

and GPS coordinates.

Furthermore, the targets occupy a minuscule proportion within

the complete SSS image. Training the network directly with large-

scale SSS images would generate an excessive number of negative

samples, potentially impeding the training process and squandering

computational resources. Moreover, considering practical

applications, the network needs to be deployed on resource-
FIGURE 6

The symbol definitions in WIoU.
TABLE 2 Experimental environment settings.

Component Specification

Operating system Ubuntu 20.04(64-bit)

Deep learning framwork Pytorch 1.11

Programming language Python 3.9

GPU accelerated environment CUDA 11.3

Graphics Card (GPU) Nvidia GeForce RTX 3090

Processor (CPU) Platinum 8255C CPU @ 2.50GHz
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constrained underwater autonomous vehicles, making it imperative

to restrict the image size fed into the detection network. To address

these challenges, we partitioned the images into diminutive patches

with dimensions of 200 × 200. Each patch features a 50-pixel

overlap to prevent the loss of target characteristics. From these

patches, we selectively identified those containing targets for

training, significantly reducing the generation of irrelevant

negative samples stemming from extraneous background

information. Similarly, during the detection phase, we performed
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the same cropping operation before inputting the complete image

into the detection network.

Finally, we filtered out unusable data and conducted data

augmentation using high-quality data, yielding a total of 975

sample images. These images include 293 Cones, 318 Cylinders,

and 364 Non-target instances. (“Non-target” refers to miscellaneous

items on the seafloor, such as rocks or accidentally dropped artificial

objects, which were not intentionally deployed by us. Despite not

being the primary focus of the experiment, these Non-target items

share certain similarities with the intentionally deployed targets.

Including them in the dataset is essential, as their presence could

potentially impact our ability to detect the deployed targets.) These

samples were then randomly divided into training, validation, and

test sets in a 7:1:2 ratio, with the specific number of samples for each

set as shown in Table 4.
4.4 Experiment results

To validate the effectiveness of the algorithm proposed in this

study for detecting small targets in SSS imagery, we tested the
BA

FIGURE 7

The SSS and preset targets. (A) SSS. (B) preset targets.
TABLE 3 Performance parameters of the SSS.

Frequency 300kHz 600kHz

Maximum range 150m 100m

Maximum slope distance 230m 200m

Horizontal beam width 0.5° 0.26°

Vertical beam width 50° 50°

Horizontal resolution 1.3m 0.45m

Vertical resolution 2.5m 1.25m
BA

FIGURE 8

The target deployment locations and scanning paths. (A) Scanning path 1. (B) Scanning path 2.
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algorithm on a real dataset collected during our sea trials. The

variations in various loss functions and accuracy metrics during the

training process are illustrated in Figure 11.

To ensure that all the introduced modifications exerted a

positive influence on the network, a sequence of ablation

experiments was carried out. The results of these experiments are

presented in Table 5. In the table, mAP@0.5 represents the average

precision at an IoU threshold of 0.5, while mAP@0.5: 0.95

represents the average of mAP values at IoU thresholds ranging

from 0.5 to 0.95. It is apparent that the integration of k-means++,

ODConv, GAM, and WIoU enhancements has resulted in an
Frontiers in Marine Science 10
improved detection performance of the original YOLOv7 model

on our assembled SSS dataset. The comparison of Precision-Recall

(PR) curves on the test set between the improved YOLOv7 network

and the original YOLOv7 network is shown in Figure 12, while the

comparison of confusion matrices is shown in Figure 13. From

Figure 12, it can be observed that the improved YOLOv7 network

achieved an average precision improvement of 5.05% on the test set.

From Figures 12, 13, it can be observed that the improved

YOLOv7 network demonstrates a noticeable enhancement in the

detection performance of Non-target objects. In Figure 12, the PR

curve of the enhanced YOLOv7 network for the Non-target
B

C

D

A

FIGURE 9

Acquired Sonar Images. (A) Background Images. (B) Images with Targets. (C) Target Images in Complex Environments. (D) Interfered Images.
FIGURE 10

Preprocessing of SSS images. We partitioned the images into diminutive patches with dimensions of 200×200. Each patch features a 50-pixel
overlap to prevent the loss of target characteristics.
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category shows a value of 0.909, which represents an improvement

of 0.095 compared to the original network’s 0.814. In Figure 13,

within the improved YOLOv7’s confusion matrix, the Non-target

category registers a value of 0.94, as opposed to the original

network’s 0.92, marking a 0.02 improvement.

In addition, our experimental results provide evidence of the

enhanced network’s superior performance in detecting Non-target

objects, as depicted in Figure 14. The original YOLOv7 network

misclassified Non-target objects as Cylinder and Cone, whereas the

improved YOLOv7 network can accurately identify Non-target

categories. This advancement has reduced the false detection rate
Frontiers in Marine Science 11
for Non-target, which holds significant practical significance in

engineering applications. During the search process, it prevents

wasting time on Non-target objects.

Furthermore, a comparative analysis was conducted between

our enhanced detection algorithm and prominent detection

networks to validate the efficacy of the proposed methodology.

The comparative visualization of detection outcomes is illustrated

in Figure 15. Detailed detection metrics are presented in Table 6.

These findings collectively furnish compelling evidence for the

superior performance of the approach proposed in this paper

within the domain of small target detection using SSS.
TABLE 4 The actual dimensions of underwater targets and the final dataset sample size.

Category
Target Dataset

Diameter Height Number Train Val Test Total

Cone 0.30m/0.50m 0.60m 4 205 29 59 293

Cylinder 0.50m 1.00m 4 223 31 64 318

Non-target / / / 255 36 73 364
FIGURE 11

The loss function and relevant metrics during the training process of the improved YOLOv7. The horizontal axis in the figure represents the number
of training epochs.
TABLE 5 Ablation experiment.

Model K-means++ ODConv GAM WIoU mAP@0.5(%) mAP@0.5: 0.95(%)

× × × × 90.73 49.78

✓ × × × 91.77(1.04↑) 50.39(0.61↑)

YOLOv7 ✓ ✓ × × 93.28(2.55↑) 51.17(1.39↑)

✓ ✓ ✓ × 94.49(3.76↑) 51.79(2.01↑)

✓ ✓ ✓ ✓ 95.78(5.05↑) 52.29(2.51↑)
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BA

FIGURE 12

The PR curve on the test set. (A) initial YOLOv7 network. (B) improved YOLOv7 network.
BA

FIGURE 13

The Confusion Matrix on the test set. (A) initial YOLOv7 network. (B) improved YOLOv7 network.
B CA

FIGURE 14

Comparison of Non-target category detection results between the improved YOLOv7 and the original YOLOv7 networks. (A) Labels. (B) Initial
YOLOv7 network. (C) Improved YOLOv7 network.
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The results illustrated in Figure 15 provide empirical

validation of the efficacy of the approach introduced in this

research. As demonstrated in columns (2), (3), and (4) of

Figure 15, some mainstream detection networks often exhibit
Frontiers in Marine Science 13
mis-detections when accurately distinguishing between the

categories of cylindrical and conical objects. In contrast, the

proposed method in this paper demonstrates accurate detection

for objects that are challenging to differentiate, with higher
FIGURE 15

Comparison of detection results between our method and other detection networks. The first row in the figure represents the ground truth labels
for different target categories, while the second to fifth rows depict the detection results of various algorithms.
TABLE 6 Comparison of detection metrics between our method and other detection networks.

Method Precision(%) Recall(%) mAP@0.5(%) mAP@0.5: 0.95(%)

SSD 88.31 89.76 89.28 48.24

Faster-RCNN 85.33 83.91 87.19 46.73

YOLOv5 88.72 90.46 89.98 49.80

YOLOv7 93.56 89.12 90.73 49.78

Our method 92.99 89.10 95.78 52.29
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probability values assigned. This highlights the superiority of the

algorithm presented in this paper.

Nonetheless, it is important to note that the enhanced network

in this study does exhibit certain limitations. For example, as

depicted in column (6) of Figure 15, all networks misclassify a

Non-target as a Cone. This misclassification arises due to the

distinct shadow surrounding the Non-target and the similarity in

the size of the bright spot to the Cone category, resulting in a false

positive detection. At present, there is a lack of definitive solutions

for scenarios in which acoustic image features exhibit extremely

high similarity, yet the actual objects belong to different categories.

Using a higher-precision device to acquire images with increased

resolution may be beneficial for addressing this issue.
5 Conclusions

This study collected a dataset of small target SSS images during

sea trials and proposed an enhancement method based on the

YOLOv7 model for detecting small targets in SSS images. The

method utilizes the k-means++ algorithm to obtain more accurate

initial anchor box sizes. Subsequently, it employs ODConv to

replace static convolution modules in the YOLOv7 backbone

network and integrates a GAM attention mechanism into the

YOLOv7 neck network, thereby enhancing the feature extraction

capabilities of the detection network. In the loss function section, a

WIoU loss function is introduced to balance the impact of high-

quality and low-quality anchor boxes on gradients, enhancing the

network’s focus on average-quality anchor boxes. Experimental

results demonstrate the effectiveness of the proposed YOLOv7-

based enhancement algorithm, with mAP@0.5 and mAP@0.5: 0.95

metrics reaching 95.78% and 52.29%, respectively, representing

improvements of 5.05% and 2.51% over the original YOLOv7

network. Furthermore, comparisons with mainstream underwater

detection networks confirm the superiority of the proposed method

in small target detection in SSS images.

The proposed method can be applied to autonomous target

detection in Unmanned Underwater Vehicles (UUVs) and

Unmanned Surface Vehicles (USVs), enhancing the autonomous

operational capabilities of unmanned autonomous ocean observation

platforms. In the future, we plan to collect more diverse small target

data and continue researching SSS-based small target detection

methods to further contribute to underwater exploration.
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