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Detecting communities at high-
risk of IUU fishing: networks of
shadow encounters in Area 81 of
the Western Central Pacific
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1School of Criminology and Criminal Justice, California State University San Bernardino, San
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Introduction: Illegal, unreported, and unregulated (IUU) fishing is a serious

environmental crime with severe economic, social, and security implications.

Efforts to monitor IUU fishing could be enhanced by using patterns of at-sea

transshipment of fish to detect illicit subgroups.

Methods: Using data from Global Fishing Watch, this study investigates repeat

transshipment events among vessels observed to operate in the U.N. FAO Area 81

during 2015-2021. Ship-to-ship transfer networks mapping potential encounters

among 30 refrigerated cargo vessels (carriers) and 613 fishing vessels exhibit

distinct communities that extend beyond this region.

Results: Highly central, carriers associated with open registries (flags of

convenience) and exhibiting high operational deficiencies form networks that

shadow the activities of national fleets.

Discussion: Observed between group linkages among vessels draw attention to

these parallel trade currents embedding regional activity into the larger fishing

industry, providing a focus for monitoring and conservation efforts.
KEYWORDS

network analysis, IUU fishing, at-sea transshipment, refrigerated cargo carriers,
deficiencies, intra-supply chain interference, illicit community detection
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1 Introduction

1.1 IUU fishing

Illegal, unreported, and unregulated (IUU) fishing includes any

fishing and related activity conducted in contravention of national

and international laws and agreements. Illegal fishing involves a

range of activities, such as fishing in prohibited areas, fishing

without a license (or in violation of the terms of the license),

using prohibited gear or methods, and fishing in protected areas or

during a closed fishing season. Unreported fishing, in turn, refers to

non-reporting or misreporting of fish catches to relevant national

authorities or regional fisheries management organizations

(RFMOs). Lastly, unregulated fishing includes such activities as

fishing in the high seas without a nationality (i.e. without a flag), or

fishing within the convention area of an RFMO while flying the flag

of a country not party to the RFMO (FAO, 2001).

Estimated to generate up to $36 billion in annual losses, IUU

fishing is one of the most pressing issues of our time, with impacts

that reach beyond the economic sphere and encompass catastrophic

environmental and social impacts (Pauly and Zeller, 2016). For

example, IUU fishing vessels often encroach on sovereign states’

exclusive economic zones, and operators use environmentally

destructive methods (such as bottom trawling and blast fishing),

frequently conducting their illicit activities with forced labor

(McDowell et al., 2015; Urbina, 2015; McDonald et al., 2021).

Investigations also find that unregulated at-sea transshipment

enables other crimes, such as money laundering, as well as

trafficking in weapons, drugs, and wildlife (UNODC, 2011;

Boerder et al., 2018; Seto et al., 2020).

While a significant proportion of IUU fishing has historically

occurred within the economic zones of coastal countries, the

increasing overexploitation and subsequent depletion of the

fisheries resources in these territories have triggered the

expansion of fishing vessel operations beyond national

jurisdictions and into the high seas, putting additional pressures

on the oceans and escalating concerns about transnational

organized crime involvement (Swartz et al., 2010; Telesetsky,

2014; Petrossian, 2019; Belhabib and Le Billon, 2020; Selig et al.,

2022). Recent estimates suggest that over 30% of the global fish

stocks are biologically unsustainable, nevertheless, harvesting of

fisheries resources continues to grow, and there is no sign of

stopping the aggressive overexploitation of the oceans (FAO,

2020). One of the factors enabling the expansion of IUU fishing

is at-sea transshipment between fishing vessels and carriers, also

known as refrigerated cargo vessels or reefers (Agnew et al., 2009;

Kroodsma et al., 2017; Greenpeace, 2020).

The United Nations Food and Agriculture Organization defines

at-sea transshipment as “transferring the catch from one fishing

vessel to either another fishing vessel or to a vessel used solely for

the carriage of cargo” while at sea (FAO, 1996). Transshipping fish

while at sea makes fishing more operationally efficient by removing

the costs associated with making multiple port visits to off-load

catch (Interpol, 2014). Importantly, carriers not only transship fish

for fishing vessels, but they also exchange food, supplies, fuel, crew,
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and gear, all of which are essential for the vessels to maximize

earning potential (Petrossian et al., 2022). For these reasons, at-sea

transshipment has become a critical segment of the ocean-to-table

supply chain (Miller et al., 2021). Supply chains of perishable goods

connect activities that link the production or harvesting of raw

materials, to processing, and delivery to end consumers via retail

(bought at a grocery store) or manufacturing (e.g., used in a dish

served at a restaurant).

The problem at hand is that while research shows that critical

segments of supply chains are vulnerable to interference by criminal

actors, it is difficult to observe interference directly [e.g (D’amato

and Papadimitriou, 2013; McElwee et al., 2017; Silvis et al., 2017;

Soon et al., 2019)]. This issue is particularly salient for IUU fishing,

as critical segments of the supply chain are nearly unobservable

(Telesetsky, 2014). For example, described as intra-supply chain

interference, covert criminal interactions can occur between actors

embedded within a legal infrastructure (Soon et al., 2019). In this

scenario, lawful and illegal transactions occur among legal actors

during regular operations, making it difficult to distinguish the

legality of actions. For instance, a licensed vessel may offload catch

taken during a run that strayed into a marine protected area,

thereby mixing legal cargo with fish procured inside a restricted

area (Boerder et al., 2018). Tangent to legal trade, inter-supply chain

interference occurs when illegal actors infiltrate the legal market

introducing their illicit goods postproduction (Soon et al., 2019). In

this instance, IUU activity is not defined by the fish, rather it is the

status of the harvester that alters the status of a catch, e.g., selling

illegal harvests through an intermediary or offloading fish from an

unregistered or licensed vessel, operating with fraudulent

documentation (Pedroza, 2013).

Addressing this investigative challenge, the current study

demonstrates an approach to detecting communities of vessels at

high-risk of IUU involvement. Building on the limited research in

this area (reviewed in Section 1), we adopt a social network

framework to identify potential intra-supply chain interference

during at-sea transshipment activities involving fishing vessels

and refrigerated carriers using publicly accessible data (described

in Section 2). Applying the dynamic multivariate protocol explained

in Section 3, this study shows that investigating the structure of

interactions exposes some of the social mechanisms that are likely

to underpin suspicious activity operating in the shadows at a critical

junction of the ocean-to-table supply chain. Then, after reporting

findings (Section 4), we discuss conservation research and policy

implications (Section 5).
1.2 Identifying IUU communities

Within any community of actors, it is possible to identify

subgroups with interaction patterns that exhibit distinctive

characteristics compared to the network in its entirety.

Discovering distinct subgroups of actors exposes some of the

complexity of large networks (Lancichinetti and Fortunato, 2009)

and investigations of criminal activity embedded within supply

chains often involves looking for subgroups of actors participating
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in both lawful and illegal operations [e.g (Basu, 2014; Bichler and

Malm, 2015; Magalingam et al., 2015; Manning et al., 2016;

Magliocca et al., 2021)]. Studies find that central actors are

instrumental to facilitating within group interconnectivity, as well

as linking to other subgroups of an illicit supply chain [e.g (Malm

et al., 2011; Pedroza, 2013; Bichler et al., 2017; Collins et al., 2021)].

Notably, the term illicit is commonly used to describe the mix of

deviant and criminal behavior commonly observed to interfere with

supply chains. Illicit is a broader term and its use is important as

some supply chain interference involves behavior deemed illegal in

some contexts but lawful in others (i.e., supplying fuel is lawful,

unless the supplier knowing abets an illegal operation in furtherance

of a crime).

Understanding the structure of criminal enterprise activity,

particularly linking different sectors of the supply chain in lawful

and illegal activity, is critical to developing effective disruption

strategies [e.g (Duxbury and Haynie, 2018; Keskin et al., 2022;

Anzoom et al., 2023; Hilend et al., 2023)]. Not all actors associated

with an illicit supply chain are engaged in illegal behavior, nor are

all segments in the chain equality compromised, thus, efforts to

identify subgroups with the aim of disrupting criminal interference

seek to uncover interactions among actors that directly support or

involve illegal activity. However, little is known about generative

social mechanisms and resulting substructures that are endemic to

IUU transshipment; to date, only four studies have approached this

challenge using encounter data.

Focusing on shipping lanes in the southern Indian Ocean used

to transit to and from Australia, Ford et al. demonstrate but do not

confirm, that centrality analysis could identify focal vessels at high-

risk for IUU involvement (Ford et al., 2018). The authors inferred

an encounter network among 181 unique vessels using 6 months of

AIS detected movement by linking vessels observed to pass within

10 km to other vessels on a given day. One tanker (ranked highest

on all measures) and four carriers were observed to be centrally

positioned in the network. While authors conclude that the

configuration of connections observed around highly central

vessels suggests that subnetworks may exist, they did not present

a community detection analysis.

Stamato and Park illustrate the potential of using network

models to identify local patterns of vessel-to-vessel interactions

(Stamato and Park, 2020). Juxtaposing dynamic visualization

techniques, they demonstrate that while a network approach

integrating a vessel attribute (histories of IUU involvement) can

expose important patterns of connectivity among vessels with

known and unknown IUU involvement, graphs quickly become

obtuse when interactive media are not available; inadvertently they

highlight the need to de-clutter the analysis. In a subsequent

investigation of 10,000 potential transshipment encounters, these

authors used a community detection algorithm (Gephi’s Louvain

modularity method) to identify subnetwork patterns, uncovering 68

distinct communities of varying size and transshipment activity

(Park and Stamato, 2020). However, the authors did not focus on a

specific segment of the supply chain; this investigation used all
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encounter data involving one fishing, and one other vessel capable

of transporting fish over long distances (but not confirmed to be

a carrier).

Advancing this line of inquiry, Petrossian et al. examined global

at-sea transshipment between fishing and carrier vessels occurring

between 2015-2020 (Petrossian et al., 2022). These authors

discovered a set of 130 highly active (central) refrigerated cargo

vessels (22% of carriers) that accounted for 72% of the at-sea

transshipments involving 1,831 fishing vessels. Transshipment

activities were not evenly distributed among the 12 distinct

communities of actors identified; three subgroups accounted for

almost half of all transshipments. Taken together, while the studies

described here push IUU community detection research forward,

there is room for continued advancement.
1.3 Community detection analysis

Discovering subgroups of highly connected actors provides

insight into the complexity of large networks (Wasserman and

Faust, 1994; Albert and Barabási, 2002; Lancichinetti and

Fortunato, 2009). As such, most network software includes many

subgroup detection algorithms, also described as subgraph or

community detection methods, enabling researchers to search for

meaningful groupings for different types of networks. There are two

general approaches. Top-down methods perform functions on the

whole network, iteratively testing how to best split the network into

subgraphs, i.e., the Girvan-Newman algorithm finds structurally

important connections (edge-split points) that would fragment the

network into separate components. Bottom-up methods assemble

groupings or clusters by gathering actors (nodes) based on inclusion

rules, i.e., cliques require complete subgroup connectivity in that all

actors must be adjacent (meaning directly connected) to every other

actor in the group.

Both Park and Stamato and Petrossian et al. used Gephi’s

Louvain based modularity function (Park and Stamato, 2020;

Petrossian et al., 2022). This community detection method uses a

recursive bottom-up approach to identify distinct communities

based on hierarchical clustering (Blondel et al. , 2008;

Lancichinetti and Fortunato, 2009). First the algorithm assigns

actors to its own community, then a heuristic finds other

communities to merge with (collapsing sets of actors into a single

community) to generate the highest modularity score (best fit),

given algorithmic restrictions designed to optimize computational

efficiency (Glover, 1989; Glover, 1990). Modularity scores,

calculated with each configuration evaluated, range between −1

(no clustering observed) and 1 (fully distinct groupings identified).

Underpinning this process is density; within-group versus between-

group density drives the modularity value used to find the best

fitting solution. Density refers to the proportion of linkages

observed among members of the group, relative to what would

exist if all members were connected to each other. While the

modularity function has an advantage over other strategies
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because it identifies subgroups based on the strength (value of

interactions), it is not the optimal approach to apply to at-sea

transshipment networks.
1.4 Study objective

While community detection is an important descriptive exercise

that is well suited for exploring criminal enterprise (Morselli et al.,

2007; Bichler et al., 2013; Anzoom et al., 2023), not all subgroup

community detection algorithms are suitable for exploring specific

segments of a supply chain. First, prior research used algorithms

premised on the idea that the entire network is under investigation,

and that distinct subgroups will have greater within-group

connectivity than between-group connectivity based on density.

While within-group connectivity may be high for some stages of

illicit production, research shows that transshipment of illicit goods

tends to involve sparse networks of minimally connected actors; in

other words, smuggling and transshipment activities favor secrecy

afforded by minimal connectivity over the functional efficiency of

cohesive groups [e.g (Morselli et al., 2007; Basu, 2014)]. Thus, to

investigate sparsely connected sectors of illicit supply chains

researchers need techniques that are not sensitive to density (Van

Gennip et al., 2013).

Second, linking fishing vessels to carriers could be graphed as

two-mode networks when each class of vessel is taken to represent a

separate category of actor and within-category linkages are not
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included. Two-mode networks are represented by bipartite graphs

(Wasserman and Faust, 1994). Bipartite graphs use an asymmetric

matrix to map the connectivity between two different types of actors

(subsets). The matrix is asymmetric because rows represent one

type of actor and columns represent the other type, and there is

likely to be a different number of actors in each subset. All ties

recorded between pairs (cells of the matrix) link actors from

different subsets. In this usage, at-sea transshipments, by default,

do not include interactions among fishing vessels or among carriers.

These interactions are missing. Thus, community detection

algorithms designed to identify the best fitting solution by

comparing relative density within and between groups for a one-

mode network (i.e., encounters among all vessels with no

differentiation between types of vessels) may not offer the best

solution for observed network mapping only fishing vessel

encounters with carriers as represented in a two-mode network

[applying (Borgatti and Everett, 1997)].

Third, to identify intra-supply chain interference researchers

must select sampling protocol that will reveal, not obscure,

embedding mechanisms. Specifically, using geographic boundaries

does not make sense when looking for communities of actors within

fishing networks. Interactions among focal vessels outside of the

target area function to embed these actors within a larger

community of relations; these interactions may offer greater

insight into IUU activities. For instance, a fishing vessel operating

in a focal study area may leave the area to transfer IUU fish to a

carrier. Rather than applying a spatially contrived boundary, studies
FIGURE 1

Two-step sampling protocol. The image illustrates sampling protocols for Step 1 encounters (black lines) among seed vessels with black symbols
and vessels identified in step 2 are represented by white symbols with encounters shown as dashed grey lines.
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that apply network analytics should use a conventional network

approach to sampling so not to distort social boundaries

(Bichler, 2019).

Considering the potential limitations of prior research and their

use of subgroup detection algorithms, we argue that alternate,

context-specific methods are needed to sift through relational

patterns to uncover functionally meaningful groups. Using

qualitative network-friendly methods in the detection of illegal

practices is pertinent and has potential because context-specific

applications of subgroup detection, when used in tandem with

dynamic multivariate analyses, deepens the enquiry revealing social

mechanisms that shape the formation of communities. It follows

that the primary objective of this study is to investigate the utility of

an alternate protocol for identifying subgroups of vessels at elevated

risk of IUU activity when encounter data map two-mode, sparse

networks for a single segment of the ocean-to-table supply chain.

Advancing Petrossian et al.’s (Petrossian et al., 2022) finding that

integrating positional analysis with characteristics of vessel

operations is critical to understanding the character of identified

subgroups (Petrossian et al., 2022), we also aim to integrate several

vessel attributes adopting a multivariate approach to explore the

importance of homophily (the tendency to form social relations

with others having similar characteristics). Responding to Park and

Stamato, we acknowledge that while graph visualization is an

essential tool for communicating findings, researchers must select

appropriate strategies, as not all layouts and techniques clearly

communicate results (Park and Stamato, 2020). Thus, we aim to use

comparative techniques in tandem to improve the readability of

analytic visualizations. Finally, we extend prior social network

studies by exploring relational tie strength (repeated

transshipments among pairs of vessels) to investigate the

importance of enduring relations among subgroups across
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observations in search of potential social mechanisms that may

facilitate the observed network structure. Four questions are

answered here: (1) Do identifiable communities include suspected

IUU fishing activities? (2) To what extent do the cross connections

link vessels to fishing activity outside of the study region? (3) What

are the characteristics of these groups and which vessels are most

active (e.g., flag of registration, deviance, relative position, enduring

relations)? (4) How does the relative position of carriers change

over time?
2 Mapping encounter networks

2.1 Data source

A publicly available dataset of commercial fishing activity was

obtained from the Global Fishing Watch (GFW) in March 2022.

GFW is a non-governmental organization dedicated to observing

transparency in commercial fishing. It aims to advance ocean

governance by influencing policies and practices that will protect

biodiversity while promoting commercial fishing (https://

globalfishingwatch.org). In furtherance of this aim, GFW

collaborated with Oceana, SkyTruth, and Google to develop an

automated vessel monitoring system (AIS) detection tool that uses

satellite technology to identify likely transshipments between

vessels. Given the lack of available transshipment data, GFW used

information about potential vessel-to-vessel interactions as a proxy

measure of vessel encounters (Masroeri et al., 2021). GFW defines

an encounter as a continuous interaction between a carrier and

fishing vessel lasting over two hours. The automatic detection

algorithm classifies vessels as interacting when they are positioned

within 500 meters of each other and are at least 10 kilometers from a
FIGURE 2

Study region. The blue region identifies the Western Central Pacific Fisheries Commission Convention area, and the hash lines depict the focal study
area, UN Food and Agriculture Organization Area 81.
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coast. Despite the potential for missing data (Masroeri et al., 2021;

Kumar et al., 2022; Masroeri et al., 2022), GFW AIS data is arguably

one of the most complete sources of information used at local and

global scales to investigate potential IUU fishing and at-sea

transshipments [e.g (Mazzarella et al., 2014; Miller et al., 2018;

Purivigraipong, 2018; Welch et al., 2022)].
2.2 Sampling protocol

Figure 1 illustrates the 2-step sampling protocol we used to

extract seven years (2015–2021) of potential vessel-to-vessel

encounters from the commercial activity detected by the GFW

AIS. Step 1 involved identifying all encounters between 21 carriers

and 141 fishing vessels observed to interact within the FAO Area 81

during the study period.

We selected FAO Area 81 (Figure 2), a subregion under the

auspices of the Western and Central Pacific Fisheries Commission

(WCPFC) because the WCPFC experiences one of the highest

proportions of transshipment, which is partially due to the

presence of the world’s important tuna fisheries within its

convention area (Borgatti and Everett, 1997). Over 50% of global

tuna catches occur in this area; estimated at about $22 billion at the

final point of sale, it is a critical sector of the supply chain (Galland

et al., 2016; Seto et al., 2020). In addition, we selected this region

because the WCPFC is also one of the few RFMOs with relatively

robust management plans in place, suggesting the highest potential

for data availability (Ewell et al., 2017). The 162 vessels observed in

the study region constitute the seeds of the sampling strategy. In

total, these vessels had 392 qualifying encounters.

To situate these potential transshipments within the larger

community of commercial fishing, we traced other encounters

involving the 162 seed vessels occurring elsewhere during the

study period. Returning to Figure 2, this second step identifies

fish transfers involving additional vessels that encountered seed

vessels (e.g., fishing vessels number 3-6 and carrier 3). Carriers were

observed to be involved in 3,604 additional transshipments, and the

fishing vessels were observed to be involved in 397 additional

encounters outside of area 81. Combining encounters identified in

both steps is critical to understanding how focal fishing activity is

embedded in a larger network, and this may advance efforts to

identify the vessels involved in bridging lawful and IUU fishing

activity. This initial set included 4,393 vessel encounters.
2.3 Exclusion criteria

Two exclusion criteria were applied to focus on potential intra-

supply chain interference; that is, encounters among legal actors

potentially engaged in illegal activity. First, we excluded encounters

involving unidentifiable vessels. This means that all encounters

must involve vessels with an IMO (International Maritime

Organization) or MMSI (Maritime Mobile Service Identity)

identification number because these numbers were used to

generate attribute information described below (Section 3.1). Due

to missing vessel identification data, the initial sample was reduced
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to 3,594 encounters. Then, given that this investigation aims to

detect subgroups within the larger fishing community, we also

applied an encounter threshold to remove pendants. In network

terms, pendants are actors with only one connection to anyone in

the network. We reasoned a single at-sea transshipment in a seven-

year period was not sufficient to establish “membership” in a

community. To be included in the study, fishing vessels must

have been involved in two or more encounters with carrier vessels

during the study period. This criterion left us with 3,307 total

encounters representing 1,657 unique combinations (or pairs) of

vessels. The sample is comprised of 30 carriers and 613 fishing

vessels, of which 70% of carriers and 23% of fishing vessels were

observed to participate in at-sea transshipments in the focal

study area.
2.4 Network generation

Eight networks were generated by connecting fishing vessels to

carriers in a directed arc. One network mapped all activity observed,

and seven mapped annual networks. Arcs are ties or linkages that

denote the direction of fish offload, with fishing vessels transferring

their catch to carriers. While both sets of vessels engage in fishing

activity, these vessels participate in distinct functions within the

supply chain, thus, the resulting networks could be considered two-

mode networks. As explained previously, two-mode networks

represent interactions between two distinct types of actors using a

bipartite graph. Networks were valued by the number of encounters

observed each year.
3 Detecting illicit communities and
influential actors

3.1 Identifying vessels at high-risk of
IUU activity

3.1.1 Record of detentions and violations
The first proxy measure of IUU activity was a record of

detentions and violations of international maritime conventions.

While shipowners/operators are responsible for complying with

international maritime conventions and flag states must monitor

compliance, many vessels operate at a distance from home ports,

making routine inspection difficult. Harmonized inspection

programs fill the void, using port state authority to board and

inspect vessels operating outside of their flag’s jurisdiction. These

coordinated efforts facilitate greater transparency of fleet operations

at a regional level without having to contact each port state for a

data request. FAO Area 81 falls within the Tokyo MOU.

Aiming to promote maritime safety and conservation, the

Tokyo MOU established the Port State Control Committee in

1993. This international collaboration among 21 maritime

administrations coordinates a harmonized vessel inspection

program to establish greater oversight of shipping activities in the

Asia-Pacific region. Working to eliminate substandard shipping
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and safeguard working and living conditions on board ships, the

Port State Control Committee provides public access to the results

of inspections, including deficiencies and violations detected, ship

risk level, and detentions along with vessel identification (IMO

number, Ship name, Callsign, MMSI, and Flag) and other

inspection details (type of inspection and date of inspection).

Looking up the IMO, ship name and operator, we used this data

source to record the number of detentions, violations, and

inspections occurring within the study period (https://

www.tokyo-mou.org; went offline July 2022, back online

September 2022); 162 vessels were listed in the Tokyo MOU

database, of which, 101 were detained. During the period

observed 43% of the carriers had violations, with the number of

deficiencies cited ranging from 8 to 322 (mean = 148, SD =93).

3.1.2 Flags of convenience
The second proxy for potential IUU involvement was flag of

convenience (FOC) registration. FOC registration occurs when

ships are operated or taxed under the laws of a country different

from its home country to save money. The International Transport

Workers’ Federation (ITF) maintains a list of vessel registries

reputed to have open policies, meaning they will accept vessels

for registration (a.k.a. ascribe nationality to), without requiring a

local presence. Historically, these registries have minimal oversight

and are routinely criticized as permitting substandard ships to

operate. The ITF is an international trade union federation of 670

transport workers’ unions representing over 18 million transport

workers from some 147 countries (https://www.itfseafarers.org/en/

focs/current-registries-listed-as-focs). At the time of the study, four

countries represented in the encounter data were classified as FOCs

by the ITF’s Fair Practices Committee. We modified the list,

discounting Vanuatu as this registry is located within FAO Area

81, and the three vessels in question were operating within the

vicinity of their flag state.
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We extracted vessel registration information from IHS-Markit

(https://news.ihsmarkit.com; accessed March 2022-May 2022).

IHS-Markit provides commercial shipping information, analytics,

and solutions for governments and financial markets. We extracted

flag, MMSI, type of vessel, name of the vessel, group owner,

operator, and registered owner. As reported in Table 1, about

91% of fishing vessels are registered with Asian nations, and FOC

represents about 53% of carrier vessels.
3.2 Subgroups with faction analysis

Commonly used community detection algorithms identify

subgroups by patterns of connectivity. Fundamentally, most

approaches rely on cohesion (Borgatti et al., 2018). Using

different thresholds of connectivity, approaches drill down to or

build up subgroups of actors with greater within-group connectivity

than between-group connectivity for one-mode graphs. Because our

sparse graph does not readily lend itself to this type of analysis, we

opted for a faction analysis (Borgatti and Everett, 1997).

Faction analysis does not require a threshold level of connectivity.

Instead, the algorithm optimizes a cost function that measures the

degree to which a partition consists of connected clique-like

structures using a block modeling process. Starting with an

objective of finding two partitions in the graph (two factions), the

algorithm arbitrarily assigns every actor to a group, then proceeds

through an iterative process moving actors between partitions in a

search for the best fitting solution. The number of missing ties within

each group and observed ties between the groups are counted as

errors or costs to the solution. In other words, the cost represents the

sum of differences in the number of actors and links between the

adjacency matrices of two graphs. The solution selected is the one

that minimizes cost (e.g., lowest Hamming distance).

Repeating the estimation with an increasing number of factions

(or decreasing if you start with a high number) will change the cost

of the solution (i.e., change of the Hamming distance). When the

value ceases to show meaningful change with the addition of

another faction (or reduction in specified factions), the optimal

solution is thought to be achieved. As implemented in UCINET

(Borgatti et al., 2002), the faction analysis we used optimizes the

search for partitions using a tabu heuristic, where actors (nodes)

checked for fit are only assessed once (Glover, 1989; Glover, 1990),

making this a relatively efficient option for subgroup detection in

large networks (de Amorim et al., 1990).
3.3 Dynamic positional analyses

The social mechanisms underpinning how relations form

among actors have implications for operational success of the

network. Thus, augmenting subgroup detection analysis, this

study includes dynamic and multivariate positional analyses to

begin an investigation into several social mechanisms widely

shown to shape social relations, deviant or otherwise—tie strength

and homophily, activity, and preferential attachment [e.g

(Bichler, 2019)].
TABLE 1 Vessel registration.

FLAG OF
VESSEL REGISTRATION

FISHING
(N=613)

CARRIER
(N = 30)

TOTAL
(N
= 643)

Asian Nations 90.73% 33.33% 88.06%

CHN 32.85% 6.67% 31.63%

TWN 35.12% 10.00% 33.95%

KOR 14.47% 16.67% 14.57%

JPN 8.13% 0.00% 7.75%

THA 0.16% 0.00% 0.16%

Regional Nations*
(VUT, FJI, NZL, NRU)

8.29% 13.33% 8.53%

FOC
(PAN, LBR, SYC)

0.98% 53.33% 3.41%

Total 100.00% 100.00% 100.00%
* Vanuatu is commonly considered a FOC. For the purposes of this research, this flag was
classified as regional because the nation is in FAO Area 81 and commercial activity
was expected.
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Writing about the role that ties of varying durability play in

generating strong, resilient networks, Granovetter (Granovetter,

1973; Granovetter, 1983) noted that strong, enduring ties tend to

form among actors with the same characteristics (homophily).

Homophily, often measured as actor attributes, may represent the

same nationality or ethnicity, age cohort, or social status. Relational

tie strength is considered a function of factors like the frequency,

duration, and intensity of contact. Applied to at-sea transshipments,

subgroups with many strong ties (repeat encounters) are more likely

to be observed among vessels with similar characteristics, such as

national flag [e.g., extrapolating from (Petrossian et al., 2022) and

(Park and Stamato, 2020)]. It follows, that if deviant carriers are

more strongly connected than national carriers within the

subgroup, it might be reason to suspect that these vessels have a

greater influence in shaping the subgroup culture.

Carrier activity is also a key factor. Measured with the in-degree

centrality metric, we calibrated carrier activity using the number of

transshipments received. In-degree centrality is one of the ways of

operationalizing central positioning, permitting researchers to rank the

importance of actors. In-degree centrality ranks the relative position of

actors based on in-coming ties, i.e., transshipments received (Freeman,

1979). Highly central actors are generally interpreted as being

influential or important within the network. In a valued network

capturing all encounters, a carrier with high indegree centrality might

receive a lot of offloads from a small number of fishing vessels or

infrequent transshipments from many fishing vessels.

In this context, carriers that are more active could be construed

as having greater operational success. More successful carriers are

likely to play critical roles in embedding the subgroup within the

larger community [extrapolating from (Burt and Merluzzi, 2014;

Burt, 2015)]. While strong ties are important for generating and
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sustaining group norms and supporting the formation of a shared

culture, weak ties, those infrequent ties to different sets of actors

(i.e., different factions), support the acquisition of new information

and promote flexibility and network resilience; weak ties are critical

for organizational survival and success in a changing market

environment (Burt, 1992). If so, these central actors may play a

vital role in cross-group linkages of illicit supply chains [e.g

(Morselli et al., 2007; Bichler et al., 2017; Duxbury and Haynie,

2018; Bright et al., 2019)]. Adding a dynamic context, preferential

attachment, the tendency of prominent, popular actors with many

connections to attract more relations at a higher rate than less

connected actors, may emerge as a critical social mechanism

generating communities of actors (Barabási and Albert, 1999)

with implications for network disruption efforts (Diviák, 2023).

Maximal disruption of illicit supply chains may result from strategic

efforts to target deviant carriers exhibiting preferential attachment,

that is, those observed to have increased in-degree centrality

over time.
4 Results

4.1 Observed network

Figure 3 presents a multivariate illustration of the full encounter

network. Immediately evident, refrigerated carriers differ in their

centralization and level of deficiency. While FOC carriers are spread

throughout the network, subgroups of vessels tend to cluster by flag;

Chinese, Taiwanese and Korea fishing fleets occupy different

regions of the network. Carriers appear to cluster in sectors that

include at least one highly deficient vessel.
FIGURE 3

Illustration of study data, all encounters 2015-2021. Symbol size varies by overall in-degree centrality, and rim width contrasts carriers by the number
of deficiencies recorded. As used here, indegree centrality ranks carriers by the relative volume of transfers received, with larger symbols indicating
greater activity. Line width differs by the number of encounters between pairs of vessels and symbol color represents the flag state. The graph layout
represents geodesic distance with socially proximate vessels (similar patterns of connectivity) positioned nearer to each other.
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FIGURE 4

Hamming distance scores. Hamming distance scores indicate the dissimilarity between matrices. Lower values indicate more similarity. The grey
region highlights large improvements in fit observed with each successive introduction of additional factions and the orange region highlights where
the inclusion of additional factions does not materially improve the fitness of the solution.
A B
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FIGURE 5

Visualization of partitions. Panels (A‐F) depict factions with symbol size indicating carrier centrality, rim variation representing defficencies, and
tabular inserts reporting within- and between-faction ties. The largest set of between-group transshipments is indicated; for example, (A) the
two-factor solution results in 168 at-sea encounters from fishing vessels classified as Faction 1 to carriers allocated to Faction 2. This represents
10.1% of the unique vessel pairings observed.
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4.2 Faction identification

Starting with a two-factor solution, we identified factions by

increasing the number of factions to a maximum of 30 (the number

of carriers in the data), or until the Hamming Distance failed to

show substantive change. As indicated in Figure 4, there was a

substantive improvement in fitness until the five partitions solution,

with minor gains until 8 partitions. Fitness plateaued with

successive estimations.

Examining the between-faction encounters provided a deeper

comparison of solutions (see Figure 5). Setting a threshold for

maximal between-factions encounters at<5%, we sought to identify

the most parsimonious solution with the lowest concentrations of

cross-faction activity. This means that the largest number of unique

between-faction ties must constitute less than 5% of all unique ties.

Unique ties represent all observed pairs, temporarily ignoring

repeat encounters. Recall that the sampling procedure involved a

two-step selection process extending outside of the initial focal

region and that 30% of the carriers included in the were not

observed to engage in at-sea transfers in this region even though

they interacted with focal seed fishing vessels during the study

period. Thus, some cross-faction activity is expected because these

carriers are not observed in the study region during this time.

Evident by the volume of cross-faction linkages reported in the

diagonals of the insert tables (black text), the volume of between-

faction encounters reduces with the inclusion of additional factions

up to a point. The first solution observed to meet the<5% criterion is

the solution with five factions. Notably, at a five-factor solution,

groups were generally partitioned into national fleets with some

transshipment involving FOC flagged carriers; 67% of all

interactions were within faction.
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Focusing on Panel D, the five-factor solution, the largest faction

(Faction 1) includes 402 of the at-sea within group transshipment

interactions (red text); due to repeated encounters, this represents a

total of 1,052 of all encounters observed. Calculating the row and

column marginals reveals that the carriers in Faction 1 (dominated by

Chinese vessels) receive transfers from 85.5% fishing vessels within

their faction, but this constitutes 72.7% of the vessels they interact

with. Turning to the off diagonals, we observe the largest between-

group interaction to involve 69 fishing vessels from Faction 4 (largely

Taiwanese and Korean vessels) transferring cargo to carriers in

Faction 1, whereas only two fishing vessels from Faction 1 offloaded

to carriers in Faction 4; a clear direction of influence is observed.
4.3 Faction characteristics

To better understand the faction characteristics and strength of

relations within and across factions, Figure 6 illustrates the

between-group connectivity for the valued graph, given a five-

factor solution arranged by faction (X-axis) and in-degree

centrality scores indicating relative potential transshipments of

fish (Y-axis). Recall that in a valued graph, connections between

pairs of vessels are weighted by the number of encounters observed.

The graphs depict factions, named by the dominant non-FOC

carrier’s flag, shown alongside a second analysis, where vessels are

arranged by geodesic distance using node repulsion and equal

distance bias. We use the number of encounters to indirectly

measure the strength of potential relations between fishing vessels

and carriers. This analysis aims to investigate whether a two-

pronged approach, focusing on repeated encounters over time,

can enhance the detection of distinct, enduring subgroups.
A B C

FIGURE 6

Comparative visualization of valued encounter networks. Figure shows the full network with all encounters (A), vessels involved in two or more
encounters (B), and four plus encounters (C). For both sets of graphs, symbol size varies by overall in-degree centrality and rim width contrasts
carriers by the number of deficiencies recorded. Line width differs by the number of encounters, and symbol color represents the flag state.
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Intra-supply chain interference within communities. Within

factions, many encounters involve fishing vessels of the same flag,

with partitions identifying national fleets (see Figure 6). Repeat

relations, involving two or more encounters, are a prominent

feature of subgroups. However, of the top ten most central

carriers (selecting the most central from each faction), 60% are

FOC-flagged vessels. Additionally, with one exception, highly

deficient FOC carriers (denoted by thick symbol rims) also

interact with many vessels within the faction. These deviant

actors are highly centralized based on many weak ties. The

network exhibits one dominant faction; Faction 1 (dominated by

Chinese vessels) has the greatest number of strong relations, and

this faction has two sets of highly central and highly

deficient carriers.

Overlapping communities. Between-faction connections occur

through many weak ties (infrequent encounters over a 7-year

observation period); however, some strong connections are

observed to cross factions, linking different subgroups. Central

carriers play a prominent role in generating overlapping

communities; each faction includes at least one highly central

carrier estimated to participate in four or more transfers with

some fishing vessels in other factions. Of note, multiple Faction 1

carriers are strongly connected to fishing vessels in all but the 5th

faction. Thus, carriers of Faction 1 play a dominant role in

facilitating the network.

All carriers were observed to interact with fishers inside and

outside of the focal region; with a median of 85% of transactions

occurring outside the focal region with other fishers, carriers are

instrumental hubs facilitating transshipment and embedding the

region into the larger ocean-to-table supply chain. The ellipses

depicted in Panel A of Figure 6 draw attention to carriers only

receiving transshipments outside of the focal region; Factions 2, 3,

and 4 include several carriers that were observed to receive fish

from vessels that fished in the study region but transshipped cargo

when they were outside of the study area (4/7, 1/6, and 4/6

respectively). Notably, considering the volume of encounters

represented by these out of area transfers, 9% of Faction 2

encounters involve area fishers transferring cargo outside the

study region,<1% of Faction 3 transfers, and 8.5% of Faction 4

transfers. While these carriers have weak ties, they play a role in

embedding regional activity into the broader scope of the at-sea

transshipment network.
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4.4 Structural change

4.4.1 Network evolution
Table 2 shows that detected encounters vary by year, but overall,

the GFW AIS data identified more activity post-2017. The variable,

total encounters, counts the number of vessel-to-vessel interactions

recorded for the valued network capturing all eligible at-sea

transshipments (repeat interactions), and the unique pairs

describe the number of interactions observed when considering

only the unique pairs of interacting vessels, i.e., in 2015, 79 pairs of

vessels interacted but some pairs engaged in more than one

transshipment (96 total encounters). Over time, commercial

fishing activity involved a greater number of vessels. Additionally,

each year, multiple interactions occur among some pairs of vessels,

and this trend of repeat interactions is increasing.

Centralization metrics, reported as proportions, highlight the

importance of active vessels. Centralization metrics reveal the extent

to which the graph is organized around its most central actor.

Centralization is a ratio of the sum of differences between the most

central actor and all others divided by the maximum possible.

Values range from 0 to 1, where a value of 0 indicates a complete

graph (where all actors are connected to each other) and 1 indicates

a maximally centralized graph (where the structure is characterized

as a star shape with all other actors only connected to the most

central actor). Centralization values typically fall between these

extreme values, often indicating there is a set of central actors.

Notably, other metrics are needed to determine if these points are

spread through the graph or concentrated as a cluster in an

identifiable structural center (Wasserman and Faust, 1994;

Borgatti et al., 2018).

The centralization metrics reported are based on in- and out-

degree centrality. As used here, in-degree centralization calculates

the proportion of fishing vessels that extend a connection, meaning

transfer fish to, the most active (popular) carrier. While in-

centralization varies, the most active carrier overall (all years)

collects fish from 20% of the fishing vessels. Conversely, out-

degree centralization explores the influence of fishing vessels, by

calculating the activity of these vessels in relation to the number of

carriers they interact with. In other words, the most prolific fishing

vessel accounts for 1.2% of carrier onboardings.

With the number of vessels operating in the region increasing, it

is not surprising that the overall density of the network decreases.
TABLE 2 Description of networks.

Whole Network Description 2015 2016 2017 2018 2019 2020 2021 ALL YEARS

Total encounters 96 245 387 620 575 777 607 3307

Unique pairs 79 198 310 505 445 534 449 1657

No. Vessels 81 175 249 353 312 363 311 643

Density 0.012 0.007 0.005 0.004 0.005 0.004 0.005 0.004

Out-degree Centralization 0.013 0.017 0.011 0.013 0.012 0.01 0.008 0.012

In-degree Centralization 0.355 0.167 0.21 0.144 0.186 0.201 0.196 0.2

In-degree H-Index 4 8 12 16 12 14 11 20
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Density is commonly used to measure the overall connectivity

among a set of actors in a network; values range from 0 to 1, with

1 indicating that all permutations were observed. This means that

every actor in the network connects to every other actor; as used

here, all vessels would encounter each other. The extremely small

values reported in Table 1 indicate that the networks are the

opposite of dense; they are sparse. In part, this is a byproduct of

network generation protocols. Linking fishing vessels to carriers

results in a sparser network by default because network generation

protocols omit within type encounters, i.e., among fishing vessels.

The Hirsch index (also called the H-index) is commonly used to

measure the citation impact of a scholar or a journal; the value of

the H-index is the number of papers with a citation count > h.

Applied to the positional importance of entities in a network, the H-

index is a positional metric indicating that there are at least H

neighbors with a degree centrality score no less than H (Lü et al.,

2016). For the current study, we provide the in-degree H-index to

compare carriers. Substantive change is observed; in 2015, at least 4

carriers had an in-degree score of at least 4, and after peaking in

2018 at 16, fishing operations during 2021 revealed 11 carriers

encountered at least 11 fishing vessels.

To investigate more directly whether relationships are enduring,

in that fishing vessels continue to interact with specific carriers over

time, we explored two stability metrics. When used to analyze the

dynamic relative association between actors of two networks, the

Pearson Correlation Coefficient indicates the similarity of tie values

across two observations. In other words, this coefficient answers to

what extent vessels participated in the same number of at-sea

encounters in 2018 as they were in 2019. Values of -1 suggest that

at time1, vessels exhibit the opposite pattern of connectivity than they

did at time2; values of +1.00 reflect perfect structural equivalence,

indicating that vessels participated in the same number of encounters

in both observations. The results presented in Table 3 suggest that, in

general, moderately strong, significant relations are observed across

most years, suggesting that overall, highly active vessels remain active

in the following year and vessels infrequently observed to transship

remain relatively inactive in the following year. Except for the

pandemic, the strength of this correlation increases over time,

suggesting that preferential attachment may be at play. Preferential

attachment is a tendency that favors popular, highly connected actors

(Barabási and Albert, 1999). This suggests that vessels involved in

more encounters have a stronger ability to attract additional business

(more encounters) which may result in greater operational success

(Burt and Merluzzi, 2014; Burt, 2015).
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Taking two networks at a time, the Jaccard similarity coefficient

calculates the proportion of encounters that appear in both

networks.

J(W1,W2) =
W1 ∩ W2j j
W1 ∪ W2j j

Since our observations compare different years, we interpret the

Jaccard to reveal the proportion of encounters occurring in time1
that also appear in time2, using a rolling window of annual

observations for unique pairs of vessels, i.e., 2015 compared to

2016, 2016 compared to 2017, etcetera. This coefficient was

calculated on binary networks, where at least one encounter

occurred (valued at 1) or not (valued at 0).

Jaccard values will range between 0 and 1, with 0 meaning no

overlap between networks and 1 meaning perfect overlap. In other

words, if the value is 1 then 100 percent of the relations in the first

network appear in the second network. As used here, these values

are indicative of the consistency of encounters among unique pairs

of vessels. We found that stability in the network varies from year to

year, but the highest years of stability in the network are 2016-2017

with 33.9% and 2019-2020 with 38.7%. This level of consistency

suggests evolution is occurring within a network. Had the values

been consistently below 0.20, we would interpret the networks as

changing so much between observations that they constitute

different networks. Akin to the Pearson Correlation Coefficient

described above, when applied to networks, the significance of the

Jaccard value was determined by an algorithm that compares the

proportion of 2,500 randomly generated network permutations that

were equivalent or exceeded the observed value. All reported values

are significant at the p<.001 level.

4.4.2 Positional change
Comparing the average in-degree centrality score of carriers

within each faction overall and by flag (within faction), Table 4

shows that Carriers belonging to Faction 1 (Chinese flagged or

operated carriers) experienced sustained growth in activity, and

those belonging to Faction 5 (Korean carriers) exhibited dramatic

decline in activity. For example, in 2020, carriers in Faction 1

participated in an average of 3.96 (rounding to 4) encounters,

whereas carriers from Faction 5 were observed to be involved in

an average of 4.58 encounters in 2015, but this declined to an

average of 2.41 in 2021 (and all this activity involved FOC vessels, as

Korean carriers were no longer operating in the area). The activity
TABLE 3 Observed evolution in encounter networks.

Change Metrics 2015-16 2016-17 2017-18 2018-19 2019-20
START OF COVID PANDEMIC

2020-21
COVID PANDEMIC

Pearson Correlation 0.222 0.422 0.430 0.508 0.546 0.471

Jaccard Coefficient 0.119 0.339 0.239 0.282 0.387 0.318
All reported values are significant at the p<.001 level.
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(popularity) of FOC carriers of three factions (1, 3, and 5) increased

over time.
5 Discussion

Despite mounting evidence showing that at-sea transshipment

activities have directly contributed to the depletion of high-risk

species, such as tuna, sharks, mackerel, billfishes, salmon, squid, and

crab (Gianni and Simpson, 2005; Miller et al., 2018; Seto et al.,

2020), the fundamental challenge facing IUU researchers is that it is

difficult to determine whether a specific set of vessels is engaging in

lawful or illegal fishing activities. Most transshipment activities

happen on the high seas at remote locations, beyond the authority

of the coastal countries. This situation makes it relatively easy to

obscure the origin of the catch, subsequently complicating the

efforts at ports to distinguish the status of the fish offloaded by

carriers. Reduced transparency undermines the efforts of regional

fisheries management organizations (RFMOs) to effectively

monitor the fisheries resources exploited within their convention

areas (Boerder et al., 2018; Seto et al., 2020), a role that these

organizations were charged with by the United Nations Fish Stocks

Agreement in 1995 (UNCLOS, 1995). Using encounter data to map

a single segment of the ocean-to-table supply chain, this study

sought to investigate what a social network framework reveals about
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the structural characteristics of illicit supply chain interference,

specifically how IUU fishing might be embedded within subgroups.
5.1 Consistencies with prior research

Consistent with prior research, this study affirmed that network

methods and analytics could support targeted conservation efforts

and policies aimed at identifying highly central carriers within

identifiable communities of actors that are at elevated risk of IUU

involvement (Greenpeace, 2020; Petrossian et al., 2022). First, this

study found evidence of distinct communities involving multiple

carriers and fishing vessels, with one community dominating the

network; Faction 1 represented 32% of all encounters within the

network, with carriers receiving transfers from 85.5% fishing vessels

within their faction. Second, within each community, we found

highly central carriers that engaged in many transshipment

encounters, which suggests that centrality is a useful indicator to

identify important actors. Third, while the general pattern of

encounters within subgroups exhibited flag homophily (suggestive

of a general preference among fishing vessels to offload to carries of

the same national origin), each faction also included highly deficient

FOC carriers that appeared to shadow other highly active (central)

flag state carriers. This interaction pattern draws attention to the

potential role played by national and FOC carriers in facilitating
TABLE 4 Average in-degree centrality by faction and flag for carriers.

FACTION
Flag

YEAR

2015 2016 2017 2018 2019 2020 2021

1 2.50 3.21 1.92 2.07 3.14 3.96 3.31

China - - 2.12 1.53 4.28 6.08 5.58

FOC 2.50 3.21 1.85 2.34 2.38 2.90 2.18

2 0.97 3.35 0.83 1.63 1.89 1.28 2.03

Taiwan 0.42 – – 1.25 0.77 3.04 1.74

Local - - - - - 0.11 -

FOC 1.25 3.35 0.83 1.72 2.17 1.09 2.13

3 6.25 2.64 2.98 1.38 1.05 1.30 1.58

Korea 1.88 1.72 2.02 1.34 0.87 1.30 1.58

Local 15.00 2.87 4.74 1.36 - - -

FOC – 2.87 3.07 1.42 1.42 – –

4 1.04 1.05 1.18 0.91 0.86 1.49 0.77

Taiwan 1.67 0.96 1.61 1.25 1.99 2.71 0.77

Korea - 0.19 0.20 0.28 0.26 0.28 -

FOC 0.42 1.53 1.46 1.19 0.32 – –

5 4.58 3.32 2.79 1.69 1.53 1.77 2.41

Korea 12.08 7.28 6.65 3.13 3.79 2.27 –

FOC 0.83 1.34 0.86 0.97 0.77 1.60 2.41

Overall Centrality 3.33 2.61 1.95 1.60 1.85 2.25 2.45
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intra-supply chain interference [e.g (Miller et al., 2018; Greenpeace,

2020; Park and Stamato, 2020; Petrossian et al., 2022)]. Considered

together, these findings reaffirm the importance of using multiple

analytics to identify potential IUU activity.
5.2 Contributions

Knowledge gained here extends existing targeted conservation

efforts and prevention policies that focus on the mechanisms and

activities at the highest risk for intra-supply chain interference, the

goal being to make the supply chain more resilient to interference

(Marteache et al., 2020). First, the findings suggest that potential

intra-market illicit supply involves strong and weak ties embedding

overlapping subgroups into a global network. By using a 2-step

sampling strategy, this study showed that weak ties (unrepeated

interactions) and strong ties (repeated encounters between pairs of

vessels) embedded highly central actors into the larger fishing

industry, thereby extending the influence of deviant carriers

beyond the focal region to the broader activity of national fleets.

Observing that overlapping communities link different enduring

subgroups through bridging hubs suggests that geographically

constrained analyses can be misleading. Bridging hubs are highly

active vessels that interact within different subsets of actors. This

network position is associated with greater information control

benefits and economic success (Burt and Merluzzi, 2014; Burt,

2015). When actors are both hubs and bridges, they are likely to

have a positional advantage that facilitates their ability to control

what is flowing through the network, as such, curtailing their illicit

activity may have greater impact on IUU fishing beyond a target

region. Thus, a more nuanced, multifaceted investigation of vessel

position within and beyond the focal region could identify

influential IUU actors.

Second, regarding network change, we found that, in general,

relations evolve over time. Factions do not engage in consistent

levels of activity, and the positional importance of specific carriers

shifts, with some becoming more central and others becoming less

central. Flag of registration was not necessarily predictive of high

centrality as both FOC and non-FOC carriers gained and lost

positional advantage during the study period. However, highly

active vessels tended to remain active in the following year and

vessels infrequently observed to transship tended to remain

relatively inactive in the following year. Those carriers that retain

relationships with fishing vessels over time have a stronger ability to

attract additional business, raising the possibility of preferential

attachment [e.g (Barabási and Albert, 1999)]. Metrics capturing this

mechanism of change are well developed and can be used to support

targeted interdiction efforts aimed at disrupting illicit supply chains

(Duxbury and Haynie, 2018; Bright et al., 2019; Diviák, 2023).
5.3 Next steps to advance
conservation research

There are three key directions for future research. First, this

study exposed the inherent weakness of relying on conventional
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indicators of potential IUU activity, suggesting that rather than

relying on port state inspection programs and FOC status alone,

new composite approaches are needed to uncover illicit intra-

supply chain interference. For example, Greenpeace (2020)

identified behavioral criteria, arguing for example, that “risky

reefers” have a broad geographic scope of operations, spend a lot

of time on the high seas and within areas with no satellite tracking,

and they visit ports that are known for low regulations found in

countries that are not a party to the 2009 Port States Measures

Agreement (Greenpeace, 2020). These criteria could be

operationalized with network methods.

Second, while this study demonstrated the potential utility of

social network analytics, continued network-oriented investigation

stands to enhance our understanding of how IUU fishing

interweaves within the fishing industry and what structural

characteristics this illicit interference shares with other supply

chains (Magliocca et al., 2021). This line of inquiry is particularly

salient as current data sources have noted limitations and

community detection algorithms vary, raising the possibility of

generating false positives, that is identifying vessels at high risk of

IUU involvement that do not engage in illegal fishing activity. To

extend this investigation, future research could evaluate potential

change mechanisms, such as preferential attachment, more directly

with dynamic multivariate stochastic actor-oriented modeling to

add greater statistical rigor to prediction models [e.g (Kalish,

2020)]. Also, machine learning and other strategies can be used to

impute illegal harvesting and missing transshipment encounters,

i.e., detect unobserved events (Masroeri et al., 2021; Kumar et al.,

2022; Masroeri et al., 2022). This would allow conservation

researchers to test the robustness of findings under different

scenarios of data completeness.

Third, we need to take a more integrated approach to IUU

fishing activities. Supply chain segments can overlap if one or more

group members are sufficiently connected to other criminal

operations. Since deviant actors often engage in different

activities, i.e., processing, transshipment, and money laundering

[e.g (Malm et al., 2011; Collins et al., 2021)], efforts to map criminal

interactions must be sensitive to roles played by actors (Basu, 2014;

Bichler et al., 2017). Moreover, actors may participate in different

markets, particularly if involved in illegal transport, i.e., refrigerated

cargo vessels can transfer different types of illicit food commodities,

drugs, and labor (UNODC, 2011; Boerder et al., 2018; Seto et al.,

2020). This complex activity pattern blurs the line between crime

groups and supply chains for different commodities. Applied to

IUU fishing, this means we need a full set of encounters (among all

vessels), as well as linkages to personnel (owners, shared crews) and

ports, to better understand the supply chain and identify criminal

interference [e.g (Telesetsky, 2014; Collins et al., 2021)]. Future

investigations could extend our understanding of the supply chain

by: scripting critical activities or mechanisms and applying

multimodal network analytics [e.g (Bichler et al., 2013; Bichler,

2019)]; integrating data sources, such as seizure data or United

Nations trade data to investigate the vulnerabilities endemic to each

trade segment [e.g (Marteache et al., 2015; Petrossian et al., 2015;

Miller et al., 2018; Ospina-Alvarez et al., 2022)]; or using qualitative

network-friendly methods to expose how the associations among
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crew members, beneficial managers, owners, and port authorities

facilitate non-compliance [e.g (Pedroza, 2013; Collins et al., 2021)].
6 Conclusion

Using GFW AIS data to identify potential vessel-to-vessel

encounters as a proxy measure for likely transshipments, this

study investigated whether distinct communities can be detected

and whether potentially deviant actors (FOC vessels and vessels

with recorded deficiencies) maintained a central position. Applying

social network analytics, we observed cross-group connections and

the extent to which the cross-connections link vessels to fishing

activity outside of the study region. Then, we considered the

characteristics of subgroups and active vessels (e.g., the flag of

registration, deviance, relative position) to query the use of a social

network framework to detect potential IUU activity. Finding that a

small set of potentially deviant carriers play a critical role in

embedding regional fishing within a larger global context, thereby

raising the possibility that they engage in intra-supply chain

interference, we investigated if the relative position of carriers

changes over time. Finding a dynamic network suggestive of

preferential attachment favoring prominent actors in some

national fleets, this study confirms knowledge generated by

previous studies and extends this line of inquiry, highlighting the

need for continued network-oriented investigation of IUU fishing.
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