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A demographic model to
forecast Dinophysis acuminata
harmful algal blooms
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Teresa Leal Rosa3,4, Luı́s Sobrinho-Gonçalves4*,
Marcos Duarte Mateus1 and Bernardo Mota5

1MARETEC–Marine, Environment and Technology Research Centre, LARSYS, Instituto Superior
Técnico, Universidade de Lisboa, Lisbon, Portugal, 2Marine and Environmental Sciences Centre,
Universidade Nova de Lisboa, Caparica, Portugal, 3CCMAR–Centre of Marine Sciences, University of
Algarve, Faro, Portugal, 4Portuguese Institute for Sea and Atmosphere (IPMA), Algés, Portugal,
5National Physical Laboratory, Climate and Earth Observation Group, Teddington, United Kingdom
Harmful algal blooms (HABs) in marine environments have significant adverse

effects on public health, aquaculture and recreational activities. Surges of certain

phytoplanktonic toxin-producing microalgae (mostly dinoflagellates or diatoms

species) can induce Amnesic, Diarrhetic or Paralytic Shellfish Poisoning (ASP, DSP

and PSP). Among HAB species, the genus Dinophysis leads to DSP in human

consumers; this being the most recurrent problem in the Iberian Peninsula with

the biggest economic impact on clam production and harvesting. While

complete elimination of HABs is not feasible, timely implementation of

appropriate measures can prevent their negative consequences. This is critical

for aquaculture. Research on D. acuminata (dominant Dinophysis species in the

North Atlantic) has been focused on ecophysiology and population dynamics,

although with few modelling attempts. Weekly monitoring along the Portuguese

coast since 2006 has revealed that D. acuminata thrives under spring/summer

photosynthetically active radiation (PAR) coupled with water temperatures below

20°C, which typically coincide with the local upwelling regime. In order to

advance this knowledge numerically, we developed a demographic model

linking D. acuminata growth rate to PAR and sea surface temperature (SST).

The 13-year (1-Jan-2006 to 31-Dec-2018) time-series of observations was

closely fit by model forecasts. However, the model demonstrated limitations in

issuing timely warnings of harmful proliferation of D. acuminata, failing to do so in

50% of cases, and issuing incorrect warnings in 5% of the cases. Furthermore,

improving the odds of emitting timely warnings always worsened the odds of

emitting false warnings, and vice-versa. To simultaneously improve both aspects,

the modelling results clearly indicated the need of implementing both census/

projection intervals smaller than 7 days and a laboratory detection limit below 20

cell/L. The time resolution of the census and of the model proved to be the most

limiting factor that must be addressed in order to improve numerical forecasting

of HABs.
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1 Introduction

Harmful algal bloom (HAB) is an international term adopted by

the Intergovernmental Oceanographic Commission (ICO) of the

United Nations Educational, Scientific and Cultural Organization

(UNESCO) to refer to any proliferation of microalgae (regardless of

the density) perceived as harmful owing to its negative impact on

public health, aquaculture, the environment and/or recreational

activities (Kudela et al., 2015; Reguera et al., 2016; FAO, 2023).

HABs constitute a serious threat to public health as well as

sustainable coastal and marine development worldwide. HABs

cannot easily be eliminated or prevented, but the potentially

negative consequences can be managed and mitigated (FAO,

2023). Adopting an adequate suit of actions in due time is

particularly relevant for aquaculture production systems. Among

the most problematic HAB events are those associated with

proliferations of Dinophysis species, mainly D. acuminata and D.

acuta, which, even at low cell densities, cause Diarrheic Shellfish

Poisoning (DSP) events. These marine mixotrophic dinoflagellates

are producers of different analogues of the okadaic acid group of

toxins and the main cause of shellfish harvesting closures in

boundary upwelling systems (Trainer et al., 2010) as in the eastern

Atlantic coasts of Europe (Reguera et al., 2014; Swan et al., 2018),

particularly in the Iberian Peninsula (Vale et al., 2008; Fernández

et al., 2019). Here, D. acuminata is the dominant species and it

blooms (102 – 104 cells·L-1) mainly fromApril to October, coinciding

with the upwelling season. Environmental factors are known to

shape the proliferation and distribution of Dinophysis species (Dıáz

et al., 2013, 2016; Fernández et al., 2019; Lima et al., 2022). As a

consequence, considerable effort has been devoted to understanding

the ecophysiology, population dynamics and bloom development of

D. acuminata over the past two decades (Smayda, 1997; Anschütz

et al., 2022; Lima et al., 2022; FAO, 2023).

The development of sustainable shellfish aquaculture is highly

dependent on the provision of reliable monitoring and predictive

information on the occurrence of HABs. To assist the day-to-day

management activities, it is fundamental to disclose regular

information on HAB and biotoxins risk to end-users. Around the

world, HAB alert bulletins and warning systems vary in complexity

and can be delivered by a range of platforms using traditional

environmental data or based on purely computational methods

(Anderson et al., 2015; Lima et al., 2022; Wang et al., 2022; FAO,

2023). Reports rely on field observations, ocean colour satellite

imagery, models, historical trends, public health reports, buoy data

and forecasts of potential bloom progression (e.g. bulletins from

NOAA, EUA; Marine Institute, Ireland; INTECMAR, Galicia;

IPMA, Portugal). Multiple methods exist for monitoring algal

densities and signalling the presence of algal blooms (Anderson,

2009; Stumpf et al., 2009, 2010, FAO, 2023). In situ species-specific

cell counts have the highest confidence but the spatial and temporal

resolution of the sampling is generally limited. In this regard, the

Portuguese Institute for Sea and Atmosphere (IPMA), which is the

national government agency responsible for shellfish toxicity

monitoring, uses two thresholds of Dinophysis cell density: 200

cells·L-1 to publicly emit a HAB warning alert and 500 cells·L-1 to

propose a DSP precautionary closure of shellfish harvesting.
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Remote sensing has the advantage of providing large spatial

coverage and with finer resolutions, although temporal frequency

can be limited by clouds. Remote sensing of the coastal ocean is

intricate. Satellite imagery of coastal and inland waters require

atmospheric correction algorithms (Zhang et al., 2014; Fan et al.,

2017; Lu et al., 2018; Ilori et al., 2019). Near-coast processes as daily

winds, river run-off or coastal upwelling can also bias data from

satellite imagery, especially due to their impact on ocean colour and

plankton assemblages, and the high spatial and temporal

resolutions of their dynamics (Shen et al., 2012; Smith and

Bernard, 2020). Operational models allow near real-time

forecasting and can be used to calculate the temporal and spatial

coverage of phytoplankton distribution and chlorophyll-a. Data

sampling schemes (spatial and temporal) have great influence on

the accuracy of the forecasts (Stumpf et al., 2009, 2010).

In this work, we propose a demographic model of D. acuminata

as a tool for forecasting its blooms and help decision making. The

model is applied separately to distinct regions of the Portuguese

coast with the goals of anticipating two operational thresholds

concentration of 200 and 500 cells·L-1. For that, we assess the set

of environmental variables governing D. acuminata growth.
2 Materials and methods

The study was conducted along the Portuguese continental

coast, which together with Galicia, comprise the west coast of Iberia,

constituting the northern limit of the northeast Atlantic upwelling

system (Figure 1) (Ambar and Dias, 2008; Alvarez et al., 2010).

Usually, upwelling occurs from late Spring to early Autumn. Along

the western coast, it is driven by northerly winds, while along the

southern margin, although not as frequent or intense, these events

are mainly due to westerly winds. During upwelling, the shelf

circulation is characterized by alongshore flows roughly aligned

with the wind direction. This means that during the summer

months, the water transport is mainly southward and eastward,

respectively, along the west and south coasts of the study area.

During winter the winds relax, with intermittent periods of both

upwelling- and downwelling-favourable winds (Ambar and Dias,

2008; Alvarez et al., 2010; Leitão et al., 2019), inducing local

inversion in coastal shelf currents.

The thickness of the upper ocean mixed layer and seasonal

thermocline, also varies widely according to the season: in winter,

vertical stratification is low, with homogeneous mixed layer depths

(MLD) reaching about 200 meters, while during the summer

upwelling season, the water column is highly stratified, with MLD

typically narrower than 20 meters.

The coastal area studied is also under the influence of several

rivers, where fresh water run-offs also impact the inner shore

stratification pattern (Cunha, 2001). The main rivers flowing into

the shelf are highlighted in Figure 1. Along the western margin,

among all the rivers depicted in this figure, the Minho, Douro,

Tagus, and Sado rivers stand out as a the most significant freshwater

sources to the shelf, while on the southern coast, the Guadiana

detaches as the most important one. This fresh-water outflows, can

generate lenses of low buoyancy water that can spread offshore, with
frontiersin.org
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variable seasonal distances, occasionally exhibiting a persistent

signature throughout the year. This is the case of the Western

Iberia Buoyant Plume (WIBP), first identified by Peliz et al. (2002),

which extends meridionally from approximately 40°N, to the

Galician coast, in the northern region of the study area. It results

from the outflow of several regional rivers, from which the Minho

and Douro are the main contributors (Otero et al., 2008). TheWIBP

maintains a year-round presence in the area and significantly

impacts both the structure of upwelling and the expected vertical

stratification pattern along the inner shelf.
2.1 Data collection

The monitoring of D. acuminata cell density in the seawater has

been implemented by the National Monitoring System of Molluscs

for human consumption safety, held by the Portuguese Institute for

Sea and Atmosphere (IPMA). The sampling stations are located in

known plankton retention/accumulation areas and/or in shellfish

production areas (see Figure 1). The time series of D. acuminata cell

density analysed in this study comprised 13 years of water samples

taken on a weekly basis, from the 1st of January of 2006 until the 31st

of December of 2018. However, it was not possible to implement a

strict protocol of 7 day census intervals. Due to logistics constrains, in

some cases the census intervals were smaller (6 days) or larger (up to
Frontiers in Marine Science 03
11 days). Water samples were collected during high tide and field

preserved in 1% neutral Lugol’s iodine solution. The Utermohl (1958)

method was applied with the sedimentation of 50 ml water samples

that, within 48h were analysed for the presence of D. acuminata, as

described in the IOC list (Lundholm et al., 2009), under inverted

microscopy at a magnification of 200x. Abundances were expressed

in cells·L−1, with a method detection limit of 20 cells·L-1.

The environmental variables tested as predictors ofD. acuminata

growth were sea surface temperature (SST), salinity, Chlorophyll-a,

upwelling Bakun index, ocean mix layer depth (defined by sigma

theta), photosynthetically active radiation (PAR), wave height and

precipitation. Satellite imagery, modelling and in situ information

were used to construct time series of these variables with spatial and

temporal resolutions adjusted to that of the D. acuminata sampling.

The upwelling Bakun index and precipitation data were retrieved in

situ by IPMA. The SST, salinity and Chlorophyl-a data were

retrieved from satellite imagery provided by the Copernicus

Marine Environment Monitoring Service (available at http://

marine.copernicus.eu/). The ocean mixed layer depth was retrieved

from numerical model re-analyses provided by the Copernicus

Marine Environment Monitoring Service. The PAR and wave

height data were retrieved from numerical model re-analyses

provided by the European Centre for Medium Weather Forecast

(ERA-Interim reanalysis atmospheric products available at

https://www.ecmwf.int).
FIGURE 1

Map of the study area (Portuguese coast). Names indicate the location of estuaries of the main rivers flowing into the shelf. ◉ - Phytoplancton
sampling stations. Roman numbers I to VII indicate the 7 regions/zones studied.
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2.2 Modelling

The Portuguese HAB species monitoring program started in 1998

and, based on that time series of data, IPMA operates a spatial sub-

division of the coast into seven regions (see Figure 1). The

environmental variables were aggregated according to those seven

regions by averaging. The environmental variables were initially

obtained with a time resolution of hours, up to a maximum of 1

day. As such, temporal composites were calculated to facilitate

comparison with the D. acuminata data. Depending on the

environmental variable, either an average or sum-based rule was

applied. Various temporal solutions were experimented with,

including averages over the preceding 3-day, 5-day, and 7-day

periods. The growth of D. acuminata exhibited a stronger

correlation with the 5-day averages of environmental variables.

Subsequently, the analysis was conducted using these 5-day averages.

Biological populations typically grow following sigmoid-shaped

functions (Gompertz, 1825; Winsor, 1932; Weibull, 1951; Paine

et al., 2012). The sigmoid growth of D. acuminata in each of these

zones was modelled following the same protocol as in Vieira et al.

(2018, 2021, 2022). The population growth corresponded to the

traditional nt+Dt =R×nt, where n is population density (in cell·L-1), R

is the growth rate and t is the time instance. Because time intervals

(Dt) between consecutive census varied from 7 to 11 days,

parameter estimation for this non-linear growth required

adaptation. In this case, n was transformed to x=log10(n),

enabling the growth rate to be estimated as log10R=Dx. The model

becomes nt+Dt =10
x+Dx. Then, to standardized for unit time, the
Frontiers in Marine Science 04
model coefficients were estimated from linear regression of Dx/Dt
on x so that Dx/Dt = a+b·x (Figure 2). Consequently, the model

became nt+Dt =10
x+(a+b·x)Dt. The y-axis intercept (a) corresponded to

the maximum exponential growth verified when the population size

was small. The negative sign of parameter b led to a line with

negative slope corresponding to growth rate de-acceleration as the

population got larger. The x-axis intercept (given by -a/b)

corresponded to the largest possible population size beyond

which growth was unsustainable; commonly referred in the

specialized literature as the “Carrying Capacity” or “K”. This way,

a population will reach the carrying capacity allowed by specific

environmental conditions given time enough. If the conditions are

good the carrying capacity will be large. When conditions worsen

the population is momentarily above the new carrying capacity,

leading to enhanced mortality and the population decreasing to the

new lower carrying capacity. The carrying capacity is a central

tendency. Besides biological factors, measurement error can also

contribute to uncertainty around this central tendency.

When modelling the D. acuminata population growth, the

forecasted population size (n) at time t+Dt depended on its

observed size at time t and on its growth rate (R). It was only the

latter - the growth rate R - that depended on the environmental

parameters averaged over the previous 5 days. Their effects can be

visualized on the Dx/Dt-on-x plot (Figure 2; see Figures 2 and 3 in

Vieira et al., 2021 for an example with macroalga). Any

environmental factor significantly affecting the growth rate has a

significant effect on the slope (b) and/or on the intercept (a) of the

regression line.
FIGURE 2

Sigmoid growth of Dyophysis acuminata populations and its dependency on Sea-Surface Temperature (SST) in °C, and Photosynthetic Active
Radiation (PAR) corresponding to the flux of photons within the 400-700nm wavelengths observed at 12:00 (noon) and given in J·m-2·h-1. Colours
correspond to PAR classes: (blue) PAR<6·105, (green) 6·106< PAR<9·105, (red) 9·105<PAR. Upper row panels: regression lines fit by Quantile
Regression to the 75% percentile but using the pooled slope b=-0.078. Lower row panels: growth model simulations.
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The effects of environmental variables on D. acuminata growth

were tested by ANCOVA. Each environmental variable was

partitioned into classes (intervals). PAR (in J·m-2·h-1 as observed at

12:00 noon) was aggregated into Low (PAR<6·106), Medium (6·105<

PAR<9·105), and High (9·105<PAR) classes that typically follow the

seasonal cycle in higher latitudes as the North Atlantic. SST was

aggregated into 2°C intervals between 16°C and 22°C, and open

intervals beyond these bounds. This was considered the best solution

to capture the signal in the data while not turning the amount of

SST×PAR combinations overwhelming for the ANCOVA. A Dx/Dt-
on-x regression was applied to the observations within each

SST×PAR combination. These regressions were first compared for

differences among estimated slopes (b). If slopes were significantly

different, these and the respective intercepts (a) were preserved. If

slopes were not significantly different, a pooled slope was estimated,

applied to all classes, and then tested for differences among

intercepts. The significances of the estimated slopes and intercepts

where inferred by permutation tests using the Matlab software

developed by Vieira and Creed (2013a), (2013b). The fundamental

principle of permutation tests is that the null hypotheses are

simulated by randomly redistributing the observations within each

variable (thus breaking x-y correlations, to test for the significance of

the slopes), and randomly redistributing the observations among

classes (thus homogenizing classes, to test for the significance of the

differences among slopes) (Manly, 1986). The permutation tests

were performed with 10000 iterations i.e., the original plus 9999

simulations of the null hypothesis (randomizations). Estimation of

coefficients (model calibration) by linear regression is highly

sensitive to the regression methodology used (Pearson, 1901;

Draper 1992; Smith, 2009; Vieira et al., 2016). We tested several

regression methodologies: for model I regression were tested

Ordinary Least Squares (OLS) and Quantile Regression (QR) (see

Zhang et al., 2005; Creed et al., 2019, for QR and its application to

ecological data). For model II regression were tested Principal

Components Analysis (PCA) and Reduced Major Axis (RMA)

(see Pearson, 1901; Draper 1992; Smith, 2009; Vieira et al., 2016,

for types of model regression and their application to

ecological data).
Frontiers in Marine Science 05
There are two ways to implement the model, diverging in the

number of iterations performed to progress from the observed at

time t to the forecasted for time t+Dt. One way is to do it in just one

iteration. Considering the present case where Dt=7, the model

implementation becomes nt+7 = 10x+(a+b·x)·7, with x=log10n

corresponding to the observed at time t. This implementation

disregards that x evolves along the Dt=7 and with an impact on

the final outcome (Figure 3). To account for this evolution, the x

and Dx progression must be iterated along Dt. We did it in 7

iterations; one per day (Figure 3). The model implementation

becomes nt+1 = 10x+(a+b·x) iterated 7 times, with the initial

x0=log10n0 corresponding the observation at time t=0 and the

following xi=log10ni corresponding to x forecasted by the previous

iterat ion. This alternative, being more accurate , was

preferred hereafter.
3 Results

3.1 Environmental forcing of D.
acuminata growth

The asymmetrical statistical distribution of some environmental

variables together with the non-linear nature of their relations with

D. acuminata growth (Figure 4) turned extremely difficult to access

the strength and significance of these relations using standard

statistical methods. An exploratory analysis showed that SST and

PAR gave the best contributions to explain D. acuminata growth:

population growth is favoured during lower temperatures and

higher PAR periods, as shown by the colour scales on the

respective panels (Figure 4) and the distribution of the Dx/Dt
residuals (Figure 5). On the SST plot (Figure 4), warmer

dominates towards the bottom of the data dispersion cloud

whereas cooler dominates towards its top. On the PAR plot

(Figure 4), observations taken under higher light intensity

environments tend to place relatively higher along the data

dispersion cloud relative to observations taken under lower light

intensity environments. This was corroborated by the regression
FIGURE 3

Alternative modes of model implementation. (Dashed lines) one iteration from t=0 to t=7 days. (Full lines) seven iterations (one per day) from t=0 to
t=7 days. Initial conditions (n0) tested were 1, 10, 50 100 and 500 cell·L-1. Model implemented with a=0.15 or a=0.22, and b=-0.078.
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residuals of Dx/Dt (Figure 5), which tended to place upper under the
combination of more intense PAR with cooler SST, and to place

lower otherwise. Other variables were not relevant, as demonstrated

by their even scatter along the data dispersion cloud (Figure 4).

Following these results, the D. acuminata growth model was

developed using SST and PAR as predictors. The higher growth

rates obtained under high PAR and low SST should mainly occur

during Spring-Summer upwelling conditions (Supplementary

Figure S1). On the contrary, the lower growth rates obtained

under low PAR and/or high SST report to distinct environmental

scenarios. Considering the study area, low PAR and low SST

correspond mainly to Winter conditions whereas medium/high

PAR and high SST are associated with a variety of conditions from

May to October without upwelling (Supplementary Figure S1).
Frontiers in Marine Science 06
The ANCOVA compared among SST×PAR combinations.

To each of these combinations was fit a regression line by

Quantile regression using the 50% quantile. This ANCOVA

showed that all slopes were significant (always p<0.0001, which

is also much lower than the Bonferroni correction threshold). As

for the differences between these slopes, the lowest p obtained

was an isolated case of p=0.025, which is much higher than the

Bonferroni correction for 55 pairwise comparisons (a=0.0009).
Hence, it was considered that all slopes were statistically similar

and decided to use the slope pooled among all slopes (b =

-0.078). Inference about the differences between intercepts (a)

revealed that many of them were largely different, both at the

a=0.05 level or even at the Bonferroni correction level a=0.0009
(Figure 2; Table 1).
FIGURE 4

Effect of environmental variables on the population growth (Dx/Dt) of Dinophysis acuminata starting from an initial density x (x=log10n, where n is
cell·L-1). Environmental variables where 5-day averaged, namely for Sea Surface Temperature (SST), Chlorophyl concentration (Chl), Mixed layer
depth (Mix), Sea Surface Salinity (SSS), Bakun upwelling index (Upw), Precipitation (Per), Photosynthetic Active Radiation, (PAR) and Wave Height.
FIGURE 5

The Dx/Dt residuals and their dependency on PAR and SST. SST is Sea Surface Temperature in °C. PAR is Photosynthetic Active Radiation
corresponding to the flux of photons within the 400-700nm wavelengths and given in mol·m-2·s-1. Red line (median), blue box (2nd and 3rd

quartiles), whiskers (1st and 4th quartile), red crosses (outliers).
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The results above suggest that the SST and PAR affected the

maximum growth rate possible by D. acuminata (parameter a),

whereas the decay of the maximum growth rate as the populations

gets larger (parameter b) was unaffected.
3.2 Uncertainty analysis

Lateral advection and mixing - due to hydrodynamic processes

such as eddies, fronts and turbulence - lead plankton to have patchy

horizontal distributions at scales of 1-to-hundreds of meters

(Martin, 2003; Pérez-Muñuzuri and Huhn, 2010). The

importance of hydrodynamic transport processes in patch

formation becomes more relevant as the time-scale of these

processes becomes comparable (or shorter) to the time-scale of

the phytoplankton reproduction (Okubo, 1978). Furthermore,
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species of the genus Dinophysis have been detected forming thin

vertical layers in upwelling (Moita et al., 2006; Velo-Suarez et al.,

2008) and fjord systems (Dıáz et al., 2021). Because plankton

distribution has high patchiness, its abundance data is commonly

uncertain (e.g. Kiørboe, 1993). Therefore, we tested how this

uncertainty affected the estimation of parameter a and its

dependency on SST and PAR. For that, we estimated parameter a

for all quantiles of the x-Dx/Dt bivariate distribution (Figure 6).

The results confirmed that, despite all uncertainty in the data,

D. acuminata grows better under the conjugation of higher PAR

and cooler SST.

Following the uncertainty analysis above, we tested running the

D. acuminata growth model with the parameters a and b estimated

from different quantiles. As an example, Figure 2 shows the growth

function estimated from the quantile regression using the 75%

quantile and Figure 7 shows the respective model run. Generally,
TABLE 1 Significance of differences between the intercepts estimated for the PAR×SST classes.

PAR Cl 2 Cl 3 Cl 1 Cl 2 Cl 3 Cl 1 Cl 2 Cl 3 Cl 3 Cl 3

SST Cl 1 Cl 1 Cl 2 Cl 2 Cl 2 Cl 3 Cl 3 Cl 3 Cl 4 Cl 5

Cl 1 Cl 1 0.0668 0.0091 0.3776 0.0907 0.0287 0.9094 0.6952 0.0637 0.1300 0.3261

Cl 2 Cl 1 0.1955 0.2793 0.6275 0.7093 0.0147 0.1481 0.8801 0.2974 0.0059

Cl 3 Cl 1 0.0386 0.0823 0.1504 0.0006 0.0186 0.0685 0.0075 0.0003

Cl 1 Cl 2 0.4444 0.1362 0.2422 0.6380 0.2855 0.6512 0.0691

Cl 2 Cl 2 0.3583 0.0319 0.2133 0.6870 0.6352 0.0063

Cl 3 Cl 2 0.0034 0.0607 0.4812 0.0892 0.0006

Cl 1 Cl 3 0.5850 0.0135 0.0495 0.3194

Cl 2 Cl 3 0.1357 0.3139 0.2038

Cl 3 Cl 3 0.3048 0.0038

Cl 3 Cl 4 0.0070
fro
Bold: differences significant considering the a=0.05 level. Underlined: differences significant with the Bonferroni correction a=0.0009.
FIGURE 6

Uncertainty analysis upon the growth rate of D. acuminata. The quantile chosen for quantile regression affects the estimation of parameter a. SST is
Sea Surface Temperature in °C. PAR is Photosynthetic Active Radiation.
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forecasts fit well observations. Still, the uncertainty in the estimation

of parameter a brought large uncertainty in the model

performance (Figure 8).

Minimizing the error in the estimates (in the numerical/

statistical sense of ‘error’) does not necessarily provide the best

decision on whether or not to emit a HAB warning given the 200

cell·L-1 threshold, and whether or not to propose a precautionary

closure of shellfish harvesting given the 500 cell·L-1 threshold. In

fact, the current model yield a correct warning decision probability

p ≈ 0.89 and a correct precautionary closure probability p ≈ 0.94,

depending on the monitoring zones. However, such apparently

good results have problems. To illustrate these problems, we can

conceptualize a given shellfish harvesting zone where 95% of the

times the bivalve producers should not be closed. In such case, if the

decision-taker adopts as effortless decision criterion to never close

the harvesting under any circumstances, 95% of the times he shall

be correct. Still, for the remaining 5% of the times, when closure is
Frontiers in Marine Science 08
of utmost importance, he shall always fail. To improve the decision-

making process, alternative criteria are required, namely, the

probability of failing to emit a warning or failing to propose a

precautionary closure (a false negative), and the probability of

emitting a wrong warning or a wrong precautionary closure (a

false positive). The model was re-evaluated according to these

criteria. The uncertainty analysis showed that improving (i.e.,

minimizing) the probability of emitting a wrong warning or a

wrong precautionary closure came at the cost of failing to emit a

correct warning or a correct precautionary closure, and vice-

versa (Figure 9).
3.3 Improving the forecasting ability

In this section it is shown that searching for the best model/

numerical solution is secondary when facing the error introduced
FIGURE 7

Timeseries of Dinophysis acuminata density in the 7 zones defined along the Portuguese coast, and model simulations with b=-0.078 and parameter
a estimated from the 75% quantile.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1355706
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Vieira et al. 10.3389/fmars.2024.1355706
by the field and laboratorial methods, namely the too-wide time

intervals between census and the detection limit of 20 cell·L-1.

At the biological level, when conditions are favourable, D.

acuminata grows at a pace that is too fast to be monitored (or

modelled) at 7-day intervals. In fact, under favourable conditions,

after 7 days the D. acuminata populations may grow to 5 times larger

(Figures 2, 3). At the hydrodynamic level, when the sampler goes back

to the same sampling station after 7 days, he can find a different water

mass. The D. acuminata population previously sampled was subject to

7 days of advective transport, diffusion, and mixing. Consequently,

even duringD. acuminata blooms, consecutive samples taken from the

same locations show high variability (Figure 7). The stated laboratory
Frontiers in Marine Science 09
detection limit implies that any real cell density of microorganisms in

the seawater below 20 cell·L-1 was arbitrarily considered as 0 cell·L-1

(actually, any value within 0 and 20 could be arbitrarily chosen).

Arbitrarily setting these observations to zero disabled their use both for

model estimation and model simulation because log100=-∞. From a

modelling perspective, whatever the value arbitrarily chosen, these

observations should not be used because they carry great uncertainty

(or eventual bias). Besides being a problem for parameter estimation,

this uncertainty was also a problem for model simulation. Any initial

density (nt) of 0 cell·L
-1 always remained 0 cell·L-1 whatever the growth

rate R. In order to run the model from those time instances, these

observations needed to have arbitrarily attributed a value greater than
FIGURE 9

Uncertainty analysis upon the probabilities (p) of emitting HAB warnings or proposing harvesting closures.
FIGURE 8

Uncertainty analysis regarding the D. acuminata growth model. The quantile chosen for quantile regression affects the estimation of the maximum
growth rate (parameter a), which in its turn affects the model fit to observed data. Model fit to observed data is evaluated by R2 and Root Mean
Square Deviation (RMSD) applied to log cell·L-1.
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zero and lower than 20 (i.e., 0<nt<20). In theory, any value within these

boundaries is equally acceptable. However, the consequences of

choosing different values was significant. To understand the problem,

consider theD. acuminata growth under the most favourable PAR and

SST. If starting with 1 cell, after 7 days of growth, the result would be 17

cells, which was still under the detection limit. This may justify why,

even under environmentally favourable conditions, observations of 0

cells·L-1 were often followed by new observations of 0 cell·L-1 at the next

census. However, if starting with 19 cells, after 7 days of growth, the

result would be 286 cells. This may justify why observations of 0 cell·L-1

sometimes surprisingly burst to observations above the thresholds for

warning at the next census. It was because all the conditions were met

for that burst: the PAR, the SST and an initial population density that

was big enough, although under a detection limit that is too high due to
Frontiers in Marine Science 10
limited resources. To illustrate the broader effect of this bias (i.e., over

all zones during the entire monitoring experiment), the model was first

simulated with all original values of 0 cell·L-1 being replaced by 1 cell·L-1

(Figure 10 - Simulation 1). The simulation fit to observations, although

failing in some situations. Then, all original values of 0 cell·L-1 were

instead replaced by 19 cell·L-1, leading to a largely different model

simulation (Figure 10 - Simulation 19).
4 Discussion

Our results suggest that D. acuminata thrives under the

combination of high PAR and cool seawater. Given spring-summer

light conditions, D. acuminata blooms with SST below 18°C. On the
FIGURE 10

Timeseries of Dinophysis acuminata density in the 7 zones defined along the Portuguese coast, and model simulations. Simulation 1: initial
observations of 0 cell·L-1 arbitrarily replaced by 1 cell·L-1. Simulation 19: initial observations of 0 cell·L-1 arbitrarily replaced by 19 cell·L-1.
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other hand, with SST above 20°C D. acuminata cannot bloom. These

results fit the niche envelop previously reported for D. acuminata

(e.g. Anschütz et al., 2022) as well as other Dinoflagellate species

causing HABs in the North Atlantic (Gianella et al., 2021; Lima et al.,

2022). These favourable conditions correspond to the spring-summer

upwelling regime characterized by bright sunny days and nutrient-

rich cold waters, typical to the Iberian and Morocco coastal ocean

(Ambar and Dias, 2008; Alvarez et al., 2010; Dıáz et al., 2013, 2016;

Moita et al., 2016; Leitão et al., 2019; Danchenko et al., 2022). In other

locations on the North Atlantic, namely along the Bay of Biscay,

British Isles and British Channel, the water is cold enough due to its

higher latitude. Consequently, the summer is the typical season for

HAB of D. acuminata as well as other Dinoflagellate species in the

North Atlantic (Smayda and Trainer, 2010; Dıáz et al., 2013, 2016;

Moita et al., 2016; Swan et al., 2018; Fernández et al., 2019; Gianella

et al., 2021; Danchenko et al., 2022; Lima et al., 2022).

Despite the environmental conditions favouring HABs being

already reasonably understood, attempts to systematically forecast

them have underachieve. Often, these attempts considered the

modelling of HABs as a strictly statistical problem requiring a

strictly statistical solution. Consequently, statistical tools were

applied to produce empirical models forecasting the population

size from environmental predictors. By doing so, these attempts

incurred in two flaws: first, to choose population size as response

variable when the correct choice should be the population growth

rate; second, neglecting the fundamental factor in demographic

forecasting that is “how much was there to start with?” i.e., the

initial population size. It is known that numerous phytoplankton

species can double their population in 12h under good

environmental conditions (e.g. Smayda, 1997); if there is 1 cell to

start with, the day after we have 4 cells. But if there are 1000 cells to

start with, the day after we have 4000 cells. Our simulations with D.

acuminata illustrated well these aspects and the results are evidence

that forecasting HABs is a problem of population dynamics/

demography. Hence, the solution must come from population

dynamics/demography theory and respective mechanistic models.

These say that environmental factors set the population growth rate

and the maximum sustainable population size, also known as

“carrying capacity”. Hence, in the simplest approach possible, the

correct choice for response variable is the population growth rate. In

a more elaborate approach, as we did in this work, the

environmental predictors affect the population growth rate

dependency from current population size i.e., how the initially

exponential growth dampens as the population approaches its

carrying capacity. It is only at this stage (i.e., once the core model

has been established from population dynamics/demography

theory) that statistics steps in to fit the dependency of

demographic parameters from environmental predictors; and for

that fit there are many viable statistical alternatives.

Like many dinoflagellates (see Smayda, 1997), D. acuminata is a

mixotrophic species (Anschütz et al., 2022): a phagotroph acquiring

phototrophy from the Mesodinium it preys upon, in its turn

acquiring phototrophy from the Teleaulax it preys upon. This

sequence is known as the Teleaulax-Mesodinium-Dinophysis-

Complex. Given the D. acuminata sensibility to the light

environment and its phototrophy being acquired from its prey,
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demographic models shall predict better D. acuminata growth if

they also take into consideration the availability of Mesodinium.

The fact that the niche envelops of both predator and prey are

similar (see Anschütz et al., 2022) facilitates this task. Nevertheless,

the onset of the right environmental conditions should not

immediately trigger a D. acuminata bloom as a prior bloom of

Mesodinium is likely required (see Moita et al., 2016).

Unfortunately, weekly data on Teleaulax and Mesodinium are not

available in the study area. Hence, we could not include them in our

modelling. Still, we recognize that these predator-prey dynamics

and the time-lag between prey bloom and the following predator

bloom may justify why the D. acuminata growth was better

forecasted from the environmental data relative to the previous 5

days, rather than from the simultaneous data. Once the monitoring

constrains by us identified are solved, modelling the Teleaulax-

Mesodinium-Dinophysis-Complex will become the fundamental

development for accurate forecasting of D. acuminata blooms.

This work identified the necessary knowledge about D.

acuminata ecology and population dynamics so that this is no

longer a limitation to forecasting its blooms. The results also

indicate that for this knowledge to be effective it must be applied to

input data with better resolution. While this is not improved,

forecasts will continue limited and attempts to develop better

models are probably futile. The first key issues lessening the

adequacy of the input data was the census intervals of 7 days that

proved to be too wide to monitor D. acuminata populations when

environmental conditions were favourable for their growth

(Figures 2, 3, 7). Even starting from low numbers, after 7 days of

favourable growth their populations can overshoot the 500 cell·L-1

threshold representing a harmful abundances for shellfish

toxification. Knowing D. acuminata has relatively low inherent

growth rates compared to many other HAB species, our results

quantitatively confirm the severe insufficiency of 7-day census for

most microbiological processes. When modelling population growth,

the simulations may overshoot reality, and even became unstable or

chaotic, because a continuous process was modelled as being discrete

and with too large time intervals (Akçakaya et al., 1999; Caswell,

2001). The importance of monitoring and modelling HABs with time

resolutions shorter than 7 days was actually demonstrated by the

significant improvements in south Florida’s operational monitoring

program when the monitoring was performed twice-daily and in the

operational forecast system when the model was run twice-weekly

(Stumpf et al., 2009). The second key issue lessening the adequacy of

the input data was the laboratory detection limit of 20 cells·L-1. Our

work proved this limit to be too coarse to monitor D. acuminata

populations when environmental conditions were favourable for their

growth. Below the detection limit, the actual in situ population

numbers were unknown, with 0 or 19 cell·L-1 being equally likely

yet producing opposing results (Figure 10). Starting the model with 1

or 19 cells can result after 7 days in an incipient population or an

overshoot of the HAB alarm threshold (200 cell·L-1), which is

problematic for an operational shellfish toxicity monitoring

program that needs to communicate accurate information.

Even good demographic models applied to high resolution data

underachieve forecasting HABs if they do not take into account the

motion of the ocean water with the consequent advection and diffusion
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of the phytoplankton cells. For this reason, the state-of-the-art in

forecasting HABs use hydrodynamic simulations to force Lagrangian

simulations of phytoplankton dispersion. Such are the cases of HABs

forecasting in the North Atlantic, namely along the Iberian shelf, Bay

of Biscay, British Isles and British Channel (Bedington et al., 2022;

Hariri et al., 2022). Cell multiplication is the fundamental determinant

of HABs during their earlier stages. However, when populations have

already achieved densities that are high and/or harmful, their transport

and dispersion gain importance for the accuracy of the forecasts

(Bedington et al., 2022). A significant portion of the lack of accuracy

in our modelling efforts resulted from the lack of hydrodynamics in

our model and this was exacerbated by a too wide census/projection

interval. Over the course of 7 days, advective transportation could carry

D. acuminata cells towards or away from each of census location

whereas diffusion processes and/or sinking losses could locally alter its

cell density in a specific volume of water. This was challenging both for

monitoring and for forecasting. In the case of monitoring, it brought

great uncertainty about how much of the change in the observed

population numbers resulted from its “local” biology and how much

resulted from larger scale hydrodynamics. Given this uncertainty, it

was very hard to estimate model coefficients with confidence. In the

case of forecasting, even if we had a perfect demographic model to

forecast cell multiplication, not knowing where those cells headed

turned very difficult to produce accurate forecasts.

The too wide census/projection intervals, the coarse detection

limit and the neglection of hydrodynamics are probably behind the

unexpected surge in D. acuminata numbers following situations of

perceived absence. Improving these aspects demands substantial

increase in the sampling logistics, laboratory methods and

modelling efforts, which is difficult if the resources of any given

HABmonitoring program are not increased. For future work in this

field, we suggest two solutions. One, is to use image acquisition

systems (both in situ and laboratory hardware units) with machine

learning software to automate the counting of phytoplankton cells

and therefore increase sample processing and lower the detection

limit. The other is to intensify the seawater collection effort only

when conditions are favourable for any given HAB species.

Considering D. acuminata, this sampling intensification should

take place during the upwelling regime that takes place along the

western Iberian shelf mainly during the summer season (Ambar

and Dias, 2008; Alvarez et al., 2010; Leitão et al., 2019; Danchenko

et al., 2022). Hence, weather forecasts of incoming north winds

leading to upwelling, and the subsequent cooling of SST, may be

used as triggers (in some semi-automatic way) to intensify the

sampling effort, as well as to relax the remaining time. A time-

variable monitoring programme maybe the key to optimize the

prediction of D. acuminata blooms, as well as other HAB species,

and obtain forecasts of the highest quality, helping effective

management measures for the shellfish industry.
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