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Beijing, China
The issue of plastic pollution in the marine environment is a matter of great

concern. Our research presents pioneering findings on sub-surface

microplastics in the Indonesian archipelagic waters. Data on microplastic

presence in sub-surface water in the Indonesian Archipelagic Water is crucial

for expanding our understanding of microplastic distribution from the surface

to the bottom layers of the ocean, a research area that has been relatively

overlooked. We discovered microplastic particles at 5 m depth below the

surface through simultaneous pump method. The highest concentration of

microplastics was discovered in Ambon, followed by North Java and North

Sulawesi. In contrast, the lowest abundance of microplastics was detected in

the Maluku Sea. These findings are consistent with prior studies establishing a

relationship between human activity–as indicated by population density–and

microplastic pollution. However, our results indicate that levels of microplastics

in Ambon were significantly higher than those found in other sampled areas,

particularly compared to North Java, which boasts the highest population

density in Indonesia. This disparity is likely due to a faster seawater flushing

rate and shorter water residence time in North Java relative to Ambon. The

origins and pathways through which these microplastics are introduced into

Indonesian archipelagic waters remain uncertain. Based on particle

composition (52.73% fibers and 51.38% size <500 µm), it appears that they

may result from either larger plastic items being broken down during

transportation over long distances by prevailing currents from input from

coastal areas or as a byproduct of local activities. Additional research is

necessary to gain a comprehensive understanding of microplastic in water
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columns. This includes investigating the fate of microplastics and examining

their impact on marine organisms within this treasured ecosystem. Moreover, it

is important to develop methods for mapping the worldwide distribution

of microplastics.
KEYWORDS

microplastics, sub-surface, pump filtration, archipelagic, Indonesia, distribution,
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Introduction

Over the past twenty years, there has been an increasing interest

and focus on studying and understanding the issue of litter, particularly

in coastal and marine ecosystems. Among different types of waste

materials, it is evident that plastic generates significant concerns due to

its widespread use, with negative impacts on the health of ecosystems

and the survival of wildlife (GESAMP, 2015). The presence of plastic

pollution is a global concern, with its prevalence growing in various

ecosystems worldwide (Law, 2017). With continuous mass production

since the 1950s, plastics have become a commonly consumed material

(Matsuguma et al., 2017). The production of plastic has significantly

escalated, reaching approximately 8.3 billion metric tons and

surpassing the growth rates of all other synthetic materials (Geyer

et al., 2017). Recent data provided by PlasticsEurope and EPRO (2021)

indicate that in 2021, approximately 367 million tonnes of plastic were

produced, reflecting a considerable increase of 32 million tonnes since

2016. However, the increase in consumption has resulted in extensive

environmental pollution, especially within marine environments

(Knoblauch and Mederake, 2021; Meng et al., 2021; Cordova et al.,

2021a). This is attributed mainly to inadequate waste management

practices and overreliance on open-dumping systems for landfill

disposal practices (Meidiana and Gamse, 2010; Demirbilek et al.,

2013; Klemes ̌ et al., 2020; Nurhasanah et al., 2021).

Extensive research has illustrated that the presence of plastic

litter exerts a detrimental influence on the natural environment

(Sheavly and Register, 2007; Lechner and Ramler, 2015; Watkins

et al., 2015; Provencher et al., 2017; Williams and Rangel-Buitrago,

2019; Iskandar et al., 2021). In addition to the immediate risks of

ingestion, plastic litter contributes to an increased potential for

harmful substances to be released into the environment and enter

the food chain (Rios et al., 2007; Moriwaki et al., 2009; Andrady,

2011; Bakir et al., 2014; Adyasari et al., 2021; Meng et al., 2021;

Herrera et al., 2022). Due to the persistent nature of plastics, they

have the ability to disperse over long distances and accumulate on

remote shorelines and ocean floors (Barnes et al., 2009; Monteiro

et al., 2018; Lavers et al., 2019; Courtene-Jones et al., 2020;

Cunningham et al., 2020). When plastic enters the marine

environment, it undergoes mechanical, chemical, and biological

degradation processes, resulting in smaller particles known as

microplastics (range size 1-5000 µm) (GESAMP, 2015; Wright
02
and Kelly, 2017; Alimi et al., 2018). Microplastics can enter the

ecosystem through various means, such as pellets, fibers, and

powders used in plastic manufacturing, abrasive ingredients in

personal care products, medications containing plastic

components, and shedding synthetic clothing during washing

(Browne et al., 2007; Driedger et al., 2015; Boucher and Friot,

2017; Napper et al., 2022).

Introducing microplastics into natural aquatic environments

(Thompson et al., 2004; Rocha-Santos and Duarte, 2015; Vriend

et al., 2021; Sulistyowati et al., 2022; Cordova et al., 2023) leads to

the presence of these particles in various organisms, including

microorganisms (Cole et al., 2014; Long et al., 2015; Kvale et al.,

2020), plants (Yin et al., 2021; Yu et al., 2021; Huang et al., 2022a),

fish (Collard et al., 2017; Steer et al., 2017; Lubis et al., 2019), mega-

fauna (Germanov et al., 2018; Yong et al., 2021), mammals

(Provencher et al., 2017; Omeyer et al., 2023), seabirds (Hardesty

and Wilcox, 2011; Luna-Jorquera et al., 2019), and even food and

drinks that humans consume (Kniggendorf et al., 2019; Toussaint

et al., 2019; Diaz-Basantes et al., 2020). However, there is limited

consideration given to the interconnectedness between research

conducted on different environmental components (Monteiro et al.,

2018). Moreover, the problem of microplastic pollution is likely to

be especially severe in urban areas of archipelagic nations, where the

coastal marine ecosystems are crucial for sustaining local

livelihoods (FAO, 2018; Clifton et al., 2021). In these regions,

waste management practices are often lacking or inadequately

implemented (Mohee et al., 2015; Fuldauer et al., 2019; Weekes

et al., 2021). Furthermore, recent migration trends in archipelagic

countries driven by economic incentives may further exacerbate the

issue by contributing to increased plastic and primary microplastic

release into coastal waters (Lee, 2015; ten Brink et al., 2018).

Archipelagic states consist of islands that form a unified entity,

with the islands and the surrounding waters considered internal

territory (Baumert and Melchior, 2015). The country of Indonesia,

as one of the largest archipelagic states with more than 1.9 million

km2 and over 270 million people (Butcher et al., 2017;

Rochwulaningsih et al., 2019), is faced with the issue of

microplastic pollution in its surface water (Adyasari et al., 2021).

The likelihood of microplastic presence in the marine waters of

Indonesia is significant, particularly due to Indonesia’s ranking as

one of the top five contributors to plastic waste entering the world’s
frontiersin.org
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oceans (Lebreton and Andrady, 2019; Meijer et al., 2021). Limited

research on microplastics in sub-surface water areas has been

conducted, with most studies focusing on surface water or

sediments near the bottom (Van Sebille et al., 2015), leaving a

significant knowledge gap regarding the abundance, dispersal and

fate of microplastics throughout most of the ocean volume.

Research on sub-surface microplastics remains uncommon,

largely due to the vertical nature of this type of investigation,

which spans from the surface to the bottom sediment. Despite

this, there is a clear dearth of vertical research on sea microplastics.

Such sub-surface research could provide valuable insights into the

movement of microplastics from the surface to sediments in open

sea areas. This is especially true in the case of Indonesia, which may

serve as both a sink and a source of microplastics in global oceans.

The one comprehensive survey conducted in the Arctic Central

Basin (Kanhai et al., 2018) revealed that movement of microplastics

from surface to deep ocean areas does occur, highlighting this as an

surface to deep sea ocean area for further exploration. The limited

research on microplastics in the sub-surface is also due to various

methodologies. While most studies utilize simultaneous pumps,

only a small minority use net sampling and water bottle sampling

methods (see discussion section for details). The use of

simultaneous pumps for sub-surface water research generates

fewer samples compared to net sampling, but it can cover a larger

area and be conducted while the ship is in motion. A vertical study

of microplastics in China indicated that the abundance of

microplastics in sub-surface water exceeds that found in surface

and bottom waters (Wu et al., 2022). This suggests that sub-surface

water serves as a temporary location when microplastics undergo

resuspension processes in surface water and deposition processes in

bottom water and sediment layers. Research investigating

microplastics in sub-surface water offers additional information

on the microplastics’ journey from the water’s surface to its depths.

Furthermore, the Indonesian archipelagic water, which acts as a

conduit for the significant flow of water between the Pacific and

Indian Oceans, known as the Indonesian Throughflow (Sprintall

et al., 2009), transports large volumes of water, along with its
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associated materials (Sprintall et al., 2019), including microplastic

particles. Given these gaps in knowledge, it is crucial to conduct

research studies globally focusing on microplastics below the

surface (sub-surface) of oceans. Further research is needed to

comprehensively understand the distribution and fate of

microplastics in sub-surface waters. While research on sub-

surface microplastics has been conducted in other archipelagic

states like Fiji (Dehm et al., 2020) and regions such as the Arctic

(Lusher et al., 2015), Atlantic (Lusher et al., 2014), and Pacific

(Desforges et al., 2014) areas, no studies have focused on this topic

specifically within Indonesian waters. Therefore, it is crucial to

establish a baseline for understanding the distribution and

concentration of microplastics in order to implement effective

monitoring strategies for addressing this form of pollution within

the Indonesian archipelago.

This study aimed to assess the occurrence and distribution of

microplastics found in the sub-surface water surrounding the

Indonesian archipelagic region. We also aimed to identify the most

common types of shapes, sizes, and polymers present. Based on

human impact, we hypothesized that areas with higher

anthropogenic activities would exhibit a greater abundance of

microplastics compared to those with lower levels of human

activity. The findings from this investigation will contribute to a

comprehensive report on microplastic contamination in Indonesia’s

archipelagic water area, potentially enhancing efforts for managing

and preventing such contamination within marine ecosystems.
Method

Sampling methods

Water samples were obtained during the Western Pacific Ocean

System (WPOS) joint cruise between IOCAS-RCO Research

Expedition (https://sims.qdio.ac.cn/joint3.aspx) on board RV

Baruna Jaya VIII, which took place in September-October 2018.

(Figure 1). The sampling process commenced upon departure from
FIGURE 1

Microplastics abundance and ocean currents in sampling area in the Indonesian archipelagic water overlayed with population density (per square
meter) in the island. Blue dots and its numbers represent the sampling locations and their stations. The red arrow indicates the speed of the sub-
surface water current.
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outer Jakarta Bay and extended towards the Sulawesi Sea (Sampling

zone area please refer to Supplementary Material Table SM1).

Seawater samples were collected from below the surface (sub-

surface) in accordance with established protocols described in

previous publications (Lusher et al., 2014; 2015). In a careful

procedure, seawater from a depth of 5 meters was circulated

using a seawater pump (DAB Multi 4 SW) through stainless steel

pipes under low pressure conditions (2 Bar) to the vessel’s deck. The

low-pressure conditions were used to prevent sample water

overflow and to avoid damage to the microplastic. Briefly, the

seawater pump was directly linked to a hose that transports the

inflow from a stainless-steel pipe located 5 meters below the surface.

The sampling depth was approximated using the ship’s draft and

sea waves, resulting in an estimated depth of 5.01 ± 1.12 meters. The

hose is then attached to a stainless-steel filtering compartment with

a diameter of 5 inches and a height of 20 cm. Within this filtering

compartment, there are dual-level sieves with mesh sizes of 5000

microns and 200 microns. Adapters with lids and handles are

positioned at the top of these sieves for easier retrieval of filtered

material (please see Supplementary Material Figure SM1 for

sampling devices). The seawater pump and filtering procedure

were operated during the vessel’s voyage from one sampling point

to another. The seawater intake point was positioned in the middle,

positioned slightly forward on the port side and opposite to the

wastewater intake. Furthermore, it has been placed a considerable

distance away from the bilge and float pump outlet to prevent any

potential cross-contamination from the outlet. The measured

volume of sub-surface water was determined using a flowmeter

installed before the filtering compartment, along with manual

calculations and calibration at each sampling point before any

adjustments were made. While using the flowmeter for all

sampling and filtration processes is preferred, damage occurred

during the final sampling stage at the second sampling point. As a

result, only manual calculation methods were used to determine the

filtered water output from the filtering compartment for the

following 33 sampling points. After filtering between 17-33 m3

over approximately 11-14 hours (please see Supplementary

Materials Table SM1), each material collected within the sieve

was carefully transferred into sterile jars with a capacity of 350 ml

using appropriate tools such as tweezers, droppers, and glass

spatulas. The material remaining in the sieve is rinsed with

double distilled deionized water (DDDW). Throughout this

transfer process, it was ensured that the sterile jars were not

overfilled with water. For laboratory examination, the jars were

sealed with ParaFilm® sealing film and stored at 4 ± 2°C for

further analysis.
Sample treatment and
microplastics identification

The microplastic extraction process from seawater samples was

employed using a previously documented method involving high-

density solvents for density separation and biological digestion

(2017b; Lusher et al., 2014; GESAMP, 2019; Michida et al., 2019;

Nurhasanah et al., 2021; Cordova et al., 2022b). Initially, filtered
Frontiers in Marine Science 04
water samples were dried at 50°C in an oven (B-One OV-30) for 72-

96 hours before being treated with a highly saturated NaCl solution

(1.2 g cm-3). To mitigate potential extraction variation associated

with the usage of NaCl (Li et al., 2019; Cutroneo et al., 2021), the

separation process was repeated six times (please refer to QA/QC

section for microplastic recovery test). Subsequently, the dried

samples were placed in a sterile 50 ml Pyrex test tube and

subjected to heating at 50°C in an oven for 48 hours. A Fenton

reagent prepared from 30% H2O2 (20 ml, Merck Millipore,

Emprove® Essential, Ph Eur, BP, USP) and Fe(II)SO4 (10 ml, 10

mg/ml, Merck Millipore, EMSURE® ACS, ISO, Reag. Ph Eur) was

then added to the test tube, followed by further heating in a water

bath (B-One DWBC-30L-6H) at 50°C throughout 48 to 72 hours.

Finally, sterile gridded filter paper (Merck Whatman™ cellulose

nitrate, sterile, diameter 47 mm and pore size 0.45 µm) was used to

facilitate the identification and characterization examination of the

obtained sample materials. The filter paper membrane was observed

under a Leica M205C stereo microscope with a Leica IC90 E

camera. Suspected microplastics were identified using established

identification methods (Cole et al., 2013; Cordova et al., 2019), and

their shape, size, and images were recorded promptly upon

detection. The particle was classified based on criteria including

consistent coloration without organic or cellular characteristics, as

well as absence of segmentation (Crawford and Quinn, 2017; Shim

et al., 2017; GESAMP, 2019). In our research, we categorized the

microplastic particles we found into two shapes: fibers and

fragments. We determined the size of the fiber shape based on

the length of the fiber, while the size of the fragment shape was

determined by its maximum dimension. The microplastics that

were proportionally selected representative of each sampling station

(30.09%, n = 99 out of the total of 329 recovered particles, please

refer to the proportional selection of particle data in Supplementary

Material Table SM1), underwent manual identification and were

then analyzed using micro-Raman spectroscopy (Renishaw inVia™

Qontor® confocal mRaman microscope) to determine their

functional groups. Sample composition proportions for analyzing

the chemical makeup of microplastic particles can be found in

Supplementary Material Table SM1. To identify the synthetic

polymer using mRaman spectroscopy, we analyzed the most

prominent bands in the vibrational spectrum based on established

findings from prior research combined with a standard and

advanced library provided by mRaman. The library data used has

matching rates above 70%, which are considered alongside peak

identification, based on the findings of Jin et al. (2022).
Quality assurance and quality control

Recovery experiments were conducted on a variety of commonly

used polymers (PlasticsEurope and EPRO, 2021) to assess

microplastic retrieval. Seven different types of polymers (size 400

µm to 1000 µm), including low-density and high-density polyethylene,

polypropylene, polystyrene, polyvinyl chloride, polyamide, and

polyurethane, were introduced into pure water (Milli-Q®) along

with 5 mg/l Now Solution® Red Clay Powder. This concentration

was chosen to closely mimic the average total suspended solid content
frontiersin.org
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in the Java and North Flores Seas (Tarigan and Edward, 2010;

Suryantini et al., 2011; Rustiah et al., 2018). A method utilizing

density separation using a highly saturated NaCl solution and a

biological digestion procedure involving Fenton’s reagent was

employed to achieve complete recovery. The overall recovery rate

was determined to be 90.04% through three repetitions of the density

separation process along with one iteration of the biological digestion

treatment. In contrast, when six repetitions of the density separation

process were conducted followed by one iteration of the biological

digestion treatment, a 100% recovery rate was achieved.

Furthermore, several precautions were taken to ensure the

sampling process’s integrity and minimize contamination. The hose

in the seawater pump and sieve underwent thorough cleaning with

seawater followed by DDDW before each subsequent sampling.

Glassware was also rinsed with DDDW and then wrapped in

aluminum foil. A blank sample approach was implemented to

estimate potential contamination levels during the analysis and

sampling processes. During sampling in each area (n=7), a

procedural blank was conducted by placing 100 ml of distilled

water in a sterile 300 ml glass beaker. The same procedure was also

carried out during the laboratory’s microplastic extraction from sub-

surface water (n=5). All 12 blank samples underwent the previously

described sample treatment procedure. No microplastic

contamination was detected in the blank samples. Additionally, to

reduce any possible errors during sampling and analysis, we adhered

to strict protocols such as wearing 100% cotton clothing and using

glass laboratory supplies. All materials were promptly wrapped after

treatments, while instruments were thoroughly sanitized prior to

conducting laboratory analyses. Chemical solutions underwent

filtration through sterile filter paper to eliminate any residual

microparticles present.
Statistical analyses

The assessment of microplastic abundance and properties and

the generation of graphical representations were performed using

PAST software version 4.03. To streamline the statistical analysis, we

divided the 35 sampling locations into seven areas: [1] Outer Jakarta -

Kangean Island (7 sampling points), [2] Kangean Island - Selayar

Island - Wakatobi Archipelago (4 sampling points), [3] Wakatobi

Archipelago - South Buru Island - Outside Ambon Island (5 sampling

points), [4] Lifamatora Passage (3 sampling points), [5] Halmahera

Island - Talaud Island (6 sampling points), [6] Maluku Sea (4

sampling points), and [7] Talaud - Miangas Island - North

Sulawesi (5 sampling points) (please see to Supplementary Material

Table SM1 for more detail). By categorizing these areas accordingly,

we aim to facilitate our understanding of their respective microplastic

abundances in Indonesian Regional Fisheries Management (please

see Supplementary Materials Table SM1). In descriptive statistics, we

present both the mean ± standard error and the median ± standard

deviation as results. In order to examine the correlation between the

number of microplastics identified in different sampling regions, a

non-parametric analysis (Kruskal-Wallis test followed by Dunn’s post

hoc analysis) was conducted, following a non-normality indication

from The Shapiro-Wilks test and The Anderson-Darling A test
Frontiers in Marine Science 05
conducted on the data’s results. A significant level of 0.05 was

applied to all statistical examinations undertaken.
Results

This study presents the initial comprehensive documentation of

microplastics found in sub-surface layers up to a depth of 5 m

within the Indonesian archipelagic water. To our understanding, no

previous research has reported such findings. A comprehensive

survey was conducted, sampling nearly 950,000 liters of sub-surface

seawater. The survey encompassed a track length of nearly 5200 km

across various regions in the Indonesian archipelagic waters,

including the sea boundaries of the Java Sea, Flores Sea, Banda

Sea, Seram Sea, Maluku Sea, and Sulawesi Sea.
Microplastic abundance

The presence of microplastics was observed consistently across

all sampling intervals and throughout the entire study area. A total

of 329 microplastic particles were found in the samples taken from

35 different sampled regions, ranging between 2 and 44 particles per

sample. The abundance of microplastics in the sub-surface varied

from 0.07 to 2.89 particles per m3, with a mean and standard error

of 0.38 ± 0.08 particles per m3 and median and standard deviation

of 0.27 ± 0.49 particles per m3.

The levels of microplastic abundance varied across sub-surface

layers collected from Indonesian archipelagic water (Figures 2)

spanning [1] Outer Jakarta - Kangean Island (mean and standard

error of 0.48 ± 0.07 particles per m3 with median and standard
FIGURE 2

Microplastics abundance in each sampling area. [1] Outer Jakarta -
Kangean Island (n=7), [2] Kangean Island - Selayar Island - Wakatobi
Archipelago (n=4), [3] Wakatobi Archipelago - South Buru Island -
Outside Ambon Island (n=5), [4] Lifamatora Passage (n=3), [5]
Halmahera Island - Talaud Island (n=6), [6] Maluku Sea (n=4), and [7]
Talaud - Miangas Island - North Sulawesi (n=5).
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deviation of 0.40 ± 0.18 particles per m3), [2] Kangean Island -

Selayar Island - Wakatobi Archipelago (mean of 0.20 ± 0.06

particles per m3 and median of 0.12 ± 0.19 particles per m3), [3]

Wakatobi Island - South Buru Island - Outside Ambon Island

(mean of 1.03 ± 0.50 particles per m3 and median of 0.64 ± 1.12

particles per m3), [4] Lifamatora Passage (mean of 0.19 ± 0.04

particles per m3 and median of 0.16 ± 0.07 particles per m3), [5]

Halmahera Island - Talaud Island (mean of 0.21 ± 0.03 particles per

m3 and median of 0.20 ± 0.08 particles per m3), [6] Maluku Sea

(mean of 0.16 ± 0.04 particles per m3 and median of 0.14 ± 0.08

particles per m3), and [7] Talaud - Miangas Island - North Sulawesi

(mean of 0.30 ± 0.05 particles per m3 and median of 0.27 ± 0.12

particles per m3), respectively (Figures 2). Based on the statistical

analysis using mean values and conducting a Kruskal-Wallis test

followed by Dunn’s post hoc analysis (p < 0.05), it is evident that

there is variation in microplastic abundance within sample across.

The ranking from highest to lowest abundance is as follows: [3] >

[1] > [7] > [5] ≈ [2] ≈ [4] > [6]. Sub-surface seawater in regions with

high levels of human activity, e.g., Ambon (area [3]), North Java

(area [1]), and North Sulawesi (area [7]), exhibits a substantially

greater concentration (p < 0.05) of microplastics. The

concentrations of microplastics in these regions are 4-10 times

higher compared to areas with less human impact, e.g., area [5], [2],

[4], and [6].
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Microplastic characteristics

In each sampling area, microplastics were categorized into two

shapes based on their morphological properties: fiber and fragment

(Figures 3A–D). The percentage of fibers (52.73% with a mean and

standard error of 0.17 ± 0.03 particles per m3 with median and

standard deviation of 0.14 ± 0.16 particles per m3) was higher than

that of fragments (47.27%, 0.21 ± 0.07 particles per m3 and median

of 0.10 ± 0.40 particles per m3). Additionally, no significant

differences were observed between fiber shapes and fragment

shape of microplastics during this investigation (Kruskal-Wallis’s

test, p=0.492). The distribution of microplastics in the sub-surface

waters of the Indonesian Archipelagic Water shows interesting

patterns (Figures 3D–F), mean abundance of fragment was larger

than fibers due to outlier data in the Wakatobi - South Buru -

outside Ambon (sampling area [3], Figure 3E). Specifically, two

outliers were observed for fragment shape at sampling points 14

(0.96 particles per m3) and 16 (2.30 particles per m3). This

particular sampling area ([3]) exhibited a dominant presence of

fragment-shaped microplastics (67.01%) compared to other

locations. Based on the sampling area analysis, it was found that

sampling areas [3] and [1] had higher concentrations of fibers

(mean of 0.31 ± 0.10 and 0.26 ± 0.09 particles per m3 and median of

0.34 ± 0.22 and 0.21 ± 0.24 particles per m3) and fragments (mean
A B

D E F

C

FIGURE 3

Sub-surface microplastics characteristics by shape. (A) Proportion for all shapes; (B) Fiber shape size proportion (size in µm); (C) Fragment shape size
proportion (size in µm); (D) Microplastic abundance by shapes; (E) Fiber shape abundance in each sampling area; (F) Fragment shape abundance in
each sampling area. Sampling area: [1] Outer Jakarta - Kangean Island, [2] Kangean Island - Selayar Island - Wakatobi Archipelago, [3] Wakatobi
Archipelago - South Buru Island - Outside Ambon Island, [4] Lifamatora Passage, [5] Halmahera Island - Talaud Island, [6] Maluku Sea, and [7] Talaud
- Miangas Island - North Sulawesi.
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of 0.72 ± 0.43 and 0.22 ± 0.06 particles per m3 and median of 0.24 ±

0.96 and 0.20 ± 0.16), compared to other sampling areas examined

in the study. Furthermore, statistical tests also did not show any

significant differences in microplastic shapes (fiber and fragment) in

each sampled area (Kruskal-Wallis’s test, p>0.05).

In this study, microplastics were detected in the size range of

201.4-796.9 µm (mean of 494.3 ± 9.97 µm with median of 493.20 ±

180.90 µm). With a fiber length range of 203.7-796.9 µm (mean of

500.64 ± 14.05 µm with median of 516.45 ± 176.03 µm) and a

maximum fragment dimension range of 201.4-792.1 µm (mean of

488.31 ± 14.33 µm with median of 471.40 ± 185.72 µm). To analyze

the distribution of these microplastic particles by size, we

categorized them into four groups: 200-350 µm, 350-500 µm,

500-650 µm, and 650-800 µm (Figures 4A–F). Among these

categories, the most commonly found microplastic sizes were

between 650-800 µm (26.38%, mean of 0.10 ± 0.02 particles per

m3 with median of 0.17 ± 0.14 particles per m3) and 350-500 µm

(26.10%, mean of 0.10 ± 0.02 particles per m3 with median of 0.17 ±

0.14 particles per m3), followed by particles sized between ranges of

500–650 µm (22.24%, mean of 0.08 ± 0.02 particles per m3 with

median of 0.05 ± 0.11 particles per m3) and 200–350 µm (21.59%,

mean of 0.08 ± 0.02 particles per m3 with median of 0.07 ± 0.11

particles per m3), respectively (Figures 4C–F). Additionally, there

were statistically significant differences in the size distribution of

microplastics at different sampling locations. Specifically, a

difference was found in the range of 350-500 µm between
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sampling areas [1] with [5] and [6]; sampling areas [3] and [4]

with sampling area [6]; and sampling area [6] with [7] (Kruskal-

Wallis’s test, p <0.05; Dunn’s Post Hoc, p<0.05, Figure 4E).

Raman spectroscopy determined the chemical composition for

99 of the detected microplastic particles (30.09% of the total

recovered particles). Chemical composition testing involves

randomly and proportionally selecting particles in fiber and

fragment shapes, with a 25-50% distribution at each station. More

detailed data can be found in Supplementary Material Table SM1.

All 99 particles were identified as being made of a synthetic

polymer. We identified eight different forms of microplastic

polymers (Figure 5, Table 1). polypropylene (20.20%),

polyethylene (19.19%), nylon 6 and 9 (15.15%), and polyethylene

terephthalate (15.15%) dominated the chemical composition

analyses, accounting for 69.70% of total microplastics. The

remaining polymers (30.30%) included cellophane (10.10%),

polyurethanes (8.08%), polybutadiene (8.08%) and polyvinyl

chloride (4.04%).
Discussion

In this comprehensive research, we documented and analyzed

the first occurrence, abundance, and characteristics of microplastics

in Indonesian archipelagic sub-surface seawater. This study of sub-

surface water can serve as an additional reference for understanding
A B

D E F

C

FIGURE 4

Sub-surface microplastics characteristics size. (A) Proportion for all size range (size in µm); (B) Microplastic abundance by size range; (C) Abundance
of microplastics size 200-350 µm in each sampling area; (D) Abundance of microplastics size 350-500 µm in each sampling area; (E) Abundance of
microplastics size 500-650 µm in each sampling area; (F) Abundance of microplastics size 650-800 µm in each sampling area. Sampling area: [1]
Outer Jakarta - Kangean Island, [2] Kangean Island - Selayar Island - Wakatobi Archipelago, [3] Wakatobi Archipelago - South Buru Island - Outside
Ambon Island, [4] Lifamatora Passage, [5] Halmahera Island - Talaud Island, [6] Maluku Sea, and [7] Talaud - Miangas Island - North Sulawesi.
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the fate of microplastics from the surface to the bottom of ocean

waters, a topic that has been insufficiently explored. The presence of

microplastics in sub-surface water within the Indonesian

Archipelagic Water suggests that these particles are part of the

vertical movement pathway for zooplankton in this area.

Furthermore, given that microplastics fall within the size range of

zooplankton food, particularly copepods, which make up a

significant portion, it is crucial to monitor them regularly using

suitable methodologies. This sampling technique proves to be

efficient as it allows for the simultaneous collection of continuous

seawater samples during vessel operations. The use of a continuous
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intake system on most research vessels makes this method easily

adaptable for other studies. Similar monitoring approaches have

been utilized in the Northeast Pacific (Desforges et al., 2014) and

Northeast Atlantic regions (Lusher et al., 2014) since almost a

decade ago.

The presence of microplastic particles was detected in the

samples studied from Indonesian archipelagic water, indicating a

problem with microplastic pollution in the catchment areas within

our research area (Lusher et al., 2015; Constant et al., 2020; Dehm

et al., 2020). This finding aligns with previous studies and suggests

that both non-point and point sources contribute to this widespread
TABLE 1 Chemical composition from recovered microplastics in the sub-surface of the Indonesian archipelagic water.

No Polymer types Total samples % Fiber sample % Fragment sample %

1 Polypropylene 20 20.20 10 20.83 10 19.61

2 Polyethylene 19 19.19 9 18.75 10 19.61

3 Nylon 6 and 9 15 15.15 15 31.25 0 0.00

4 Polyethylene terephthalate 15 15.15 7 14.58 8 15.69

5 Cellophane 10 10.10 2 4.17 8 15.69

6 Polyurethanes 8 8.08 3 6.25 5 9.80

7 Polybutadiene 8 8.08 2 4.17 6 11.76

8 Poly vinyl chloride 4 4.04 0 0.00 4 7.84

Total 99 100 48 100 51 100
frontier
FIGURE 5

The Microplastic polymer profiles in each sampling station (left) and Raman spectra of the microplastic sample with corresponding photos (right).
The red curves represent the sample spectra, while the blue curves depict data from the library.
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issue (Siegfried et al., 2017). The statistical analysis findings indicate

that the concentration of microplastic particles in Indonesian

archipelagic water differs based on location, with the highest

levels observed in the Ambon (sampling area [3]), North Java

(sampling area [1]), and North Sulawesi (sampling area [7]). This

study’s results support previous research that has established a

correlation between human activity, as reflected by population

density, and the abundance of microplastics (Wang et al., 2017).

Human activities have been identified as one of the significant

contributors to microplastics in marine habitats (Cordova et al.,

2020). The study also presents a visualization of the population

density in each province of Indonesia, as shown in Figure 1. The

data reveals that Java Island has the highest population density, with

over 150 million people (Statistics Indonesia, 2021). Surprisingly,

despite having a lower population than Java Island, Ambon exhibits

higher microplastic abundance in its waters compared to the North

Java area. This disparity is attributed to the swifter seawater flushing

rate and shorter water residence time in North Java as opposed to

Ambon (Nugrahadi et al., 2013; Mayer et al., 2015; Atmadipoera

et al., 2022; Iskandar et al., 2022). Conversely, Inner Ambon Bay’s

unique characteristics impede material from leaving this area

compared to other study locations (Salamena et al., 2023). The

third most sub-surface water-abundant microplastics were

discovered in the Talaud - Miangas Island - North Sulawesi

sampling area [7]. It is believed that these originate from human

activities in North Sulawesi, where there is a relatively higher

population density in the eastern region of Indonesia.

Additionally, this area directly borders the southern Philippines

and the Pacific Ocean, potentially serving as a convergence point for

inflows carrying diverse materials, including microplastics, into

Indonesia from this vicinity (Purba et al., 2021; Yuan et al., 2023).

Moreover, the presence of a high quantity of microplastics in the

environment could be connected to degraded water quality

resulting from specific economic activities (Mintenig et al., 2020;

Kutralam-Muniasamy et al., 2021).

Our findings demonstrate that microplastic particles are

prevalent in the sub-surface layer of Indonesian archipelagic

water, which is to be expected considering their widespread

presence. The reported abundance is comparable to previous

studies conducted in various regions (Table 2), such as the Arctic

Central Basin (Kanhai et al., 2018), North to South Atlantic Ocean

waters (Kanhai et al., 2017), and Antarctica (Cincinelli et al., 2017).

However, it is worth noting that the methodologies used in these

studies differ (Table 2). Studies conducted in Arctic polar waters,

the Pacific Ocean (including small islands, inland areas, and high

seas), and the Atlantic Ocean (inland areas and high seas) reported

significantly higher mean abundances compared to our study,

ranging from 5-10,000 times greater (2015; Lattin et al., 2004;

Desforges et al., 2014; Lusher et al., 2014; Enders et al., 2015;

Dehm et al., 2020; Montoto-Martıńez et al., 2020; Pabortsava and

Lampitt, 2020; Jones-Williams et al., 2021). These variations could

be attributed to differences between geographical locations and

periods of sampling collection (Lusher et al., 2014). Our study

was conducted during the onset of the wet season, when sea

currents were predominantly westward, coinciding with the

direction of research vessel travel from west to east Indonesia.
Frontiers in Marine Science 09
The relatively low presence of microplastics in sub-surface samples

obtained during this period can be attributed to a reduced input of

microplastics from land sources due to decreased runoff associated

with the rainy season peak (Purwiyanto et al., 2022). Previous

research has indicated a positive link between precipitation levels

and the presence of microplastic particles in aquatic environments

(Moore et al., 2011; Dris et al., 2015; Faure et al., 2015; Lima et al.,

2015; Gündoğdu et al., 2018; Wong et al., 2020; Xia et al., 2020). The

hydrological processes within these ecosystems facilitate runoff

from rainfall, resulting in the deposition of microplastics in

sediments and riverbanks during dry periods. While UV exposure

may be more prevalent during this time (which will enhance the

probability of plastic fragmentation), an increase in rainfall during

the wet season leads to the reactivation of previously deposited

microplastics, causing a higher concentration of these particles in

rivers that eventually flow into the ocean (Hurley et al., 2018; Wang

et al., 2021). Moreover, prior studies have examined different

sampling methods for analyzing microplastics, leading to

significant variations in the observed levels of microplastic

abundance (Zheng et al., 2021). A harmonized approach is crucial

for accurate comparison between data sets, while simultaneous

testing may aid in standardizing methods used for sample analysis.

In regard to the overall distribution pattern in the region, we did

not observe a significant increase in the abundance of microplastics

below the surface of waters surrounding the Indonesian

archipelago. These sub-surface microplastics are likely transported

from land by prevailing winds, currents, and local circulation

(Iwasaki et al., 2017; Pabortsava and Lampitt, 2020). Figure 1

illustrates the significant variability of the ocean ship’s track

current. This variability can be attributed to multiple factors,

including wind patterns, tides, and topography encountered along

the ship’s route. Furthermore, Figure 1 highlights that the high

concentration of microplastics is located to the east of Buru Island

and west of Ambon with similar concentrations observed in the

southernmost region of the island. The ocean currents depicted in

Figure 1, around Ambon, exhibit a southward flow towards

southern Sulawesi. These currents have the potential to transport

microplastics from one area to another, potentially leading to their

dispersion over considerable distances within the sea (Iskandar

et al., 2021). Furthermore, the circular currents in the western part

of the Sulawesi Sea are believed to be associated with the activity of

eddies in the region (Masumoto et al., 2001; Hao et al., 2022).

Eddies may potentially contribute to the transport of materials,

including microplastics, within the water column and thus could

redistribute the microplastics around Miangas and Talaud Islands.

Furthermore, the positioning of microplastics at particular

depths can be attributed to gravity, advection, and ingestion by

plankton or other organisms (2016; Maximenko et al., 2012; Cole

et al., 2013; Steer et al., 2017; Iskandar et al., 2022; Omeyer et al.,

2023). Subsequently, these microplastics may be adsorbed with the

fecal material of marine organisms, leading to their descent to the

bottom of the water column (Yong et al., 2021). The specific

mechanisms responsible for the redistribution of microplastics in

different marine regions worldwide currently need to be understood

completely but are expected to differ across various areas. However,

in this study, we were unable to describe the movement of
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microplastics and areas of accumulation in certain regions of the

Indonesian archipelago water. There needs to be more

measurement of plastic debris sizes, particularly in sub-surface,

throughout the entire extent of waters surrounding Indonesia,

which results in the underrepresentation of both ocean surface

and subsurface areas. These limitations introduce uncertainties

when trying to determine distribution patterns for sub-surface

plastic pollution on regional scales such as within Indonesian

waters or globally. It is crucial to comprehensively assess and

predict the consequences of plastic waste on marine ecosystems.

The prevalence of microplastic particles found in this study,

specifically fibers, aligns with the global pattern observed in inland

or coastal and open waters globally (Suaria et al., 2020; Xue et al.,

2020; Zhou et al., 2020; Forero-López et al., 2021), including in the
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sub-surface water study in Table 2. However, it is likely that there

are variations in the sources of these microplastics. The primary

focus of previous research has been on the impact of laundry

washing as a significant contributor to microplastic pollution

(Boucher and Friot, 2017; Carr, 2017; Siegfried et al., 2017; Dalla

Fontana et al., 2020; Mohamed et al., 2023). Studies have also found

a connection between the extent of fishery activities, such as

mariculture and capture fisheries, and the levels of microplastic

contamination (Lusher et al., 2017a; Xue et al., 2020; Huang et al.,

2022b). The research revealed the presence of small-sized fibers,

with the majority measuring less than 500 microns. According to

Suaria et al. (2020), these fibers will decompose upon entering

coastal and marine environments, making them susceptible to long-

distance transportation by air and water currents (Allen et al., 2019;
TABLE 2 Comparison of sub-surface microplastic abundance in this study to other sampling areas.

Sampling area Microplastic
abundance
(particles
per-m3)

Cut-off
size (µm)

Sampling
depth (m)

Sample
volume (m3)

Sampling
method

References

Indonesian
archipelagic water

0.38 ± 0.49 200 5 17-33 Simultaneous
pump

this research

southern
California shore

3.92 333 5, 15, 30,
near bottom

n/a bongo nets (Lattin et al., 2004)

Arctic polar waters 2.68 ± 2.95 250 6 2 Simultaneous
pump

(Lusher et al., 2015)

Northeast Atlantic 2.46 ± 2.43 250 3 ± 20 Simultaneous
pump

(Lusher et al., 2014)

North-South
Atlantic Ocean

1.15 ± 1.45 250 11 2 Simultaneous
pump

(Kanhai et al., 2017)

Arctic Central Basin 0.97 ± 1.20 250 8.5 2 Simultaneous
pump

(Kanhai et al., 2018)

Northeast
Pacific Ocean

279 ± 178 62.5 4.5 n/a Simultaneous
pump

(Desforges et al., 2014)

west coast
Vancouver Island

1710 ± 1110 62.5 4.5 n/a Simultaneous
pump

(Desforges et al., 2014)

Queen
Charlotte Sound

7630 ± 1410 62.5 4.5 n/a Simultaneous
pump

(Desforges et al., 2014)

Strait of Georgia 3210 ± 628 62.5 4.5 n/a Simultaneous
pump

(Desforges et al., 2014)

Canadian
Arctic Archipelago

31 ± 17 50 7 0.05-1.16 Simultaneous
pump

(Jones-Williams
et al., 2021)

Ocean Canary Islands 9.92 ± 11.22 50 4 0.24-2 Simultaneous
pump

(Montoto-Martıńez
et al., 2020)

Atlantic Ocean 1602 ± 1551 (PE)
490 ± 822 (PP)
180 ± 439 (PS)

25 10-270 0.5-1.5 Simultaneous
pump

(Pabortsava and
Lampitt, 2020)

Atlantic Ocean 13-501 10 3 2.6 ± 1.3 Simultaneous
pump

(Enders et al., 2015)

Antarctica 0.17 ± 0.34 n/a 5 2 Simultaneous
pump

(Cincinelli et al., 2017)

Fiji, South Pacific 290 ± 170
100 ± 70

n/a 0.6 0.001 Niskin
bottles sampling

(Dehm et al., 2020)
n/a, not available.
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Pradit et al., 2022). Moreover, this transportation is minimally

influenced by their proximity to potential source areas (Suaria et al.,

2020). These human-induced activities are likely contributing to the

presence of microplastics in the sub-surface waters around the

Indonesian archipelago. Fragmented microplastics contribute to the

presence of microplastics on the coastlines of Indonesia, particularly

in the western region (Vriend et al., 2021). It is believed that these

fragments originate from degraded large plastic items. Throughout

coastal areas of Indonesia, there is a significant amount of single-use

plastic litter, including shopping bags, sachets, food containers,

wrappers, bottles, and cups (Cordova et al., 2022a). Over time, due

to natural weathering and physical stressors like biological

deterioration or environmental factors, larger plastic waste breaks

down into smaller pieces (Fok et al., 2017; He et al., 2019;

Nurhasanah et al., 2021; Sulistyowati et al., 2022). One can

speculate that increasing levels of anthropogenic activity may be

linked to an increase in fragment-shaped microplastics present in

marine waters; however, further research is needed to validate this

hypothesis and gain deeper insights into the matter. Furthermore,

the distribution of plastics in varying sizes shows a higher

prevalence of relatively smaller particles.

The microplastics discovered in our study are predominantly

categorized as small-microplastic (<1000 µm), with approximately

51.38% being below a size of 500 µm. Our findings may initially

appear lower compared to the reported values (Table 2). Based on

the data we compiled, 15 studies focus on microplastics in sub-

surface water. Limited research has been conducted in this area, as

most studies have focused on surface water, vertical areas, or

sediments near the bottom. However, the volume of water filtered

vertically or near the sediment is generally lower than surface water

filtration. Typically, samples from vertically and near-sediment

filtered waters are obtained from a sample bottle (<50 liters).

These studies, including the 15 mentioned above, primarily used

a simultaneous pump for broader coverage but with relatively less

filtered water volume than surface water sampling. The 15 studies

listed in Table 2 have varying cutoff sizes, with most falling either

below or above 200 mm. This study established a detection limit of

200 mm, which was slightly smaller than the size range mentioned in

Lao and Wong’s (Lao and Wong, 2023) examination across various

environmental matrices. In instances where the cutoff sizes

exceeded 200 microns, the levels of microplastic abundance were

consistently similar to or lower than those observed in studies with

cutoff sizes below 200 mm. It is worth noting that some of these

studies indicate particles smaller than 100 µm are predominantly

found at the research sites (Pabortsava and Lampitt, 2020; Jones-

Williams et al., 2021). The abundance of floating microplastics

decreases significantly as water depth increases (Reisser et al., 2015;

Song et al., 2018; Ryan et al., 2020), making it advisable to collect

samples from the water surface. Exploring microplastics across a

range of depths is important rather than focusing on just one level

of depth. Research should span from the surface down to the

bottom of the water. Smaller microplastics tend to have an even

distribution across surface waters and can be found down to a depth

of 50 meters (Song et al., 2018). Previous studies have shown that
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microplastic levels at the water’s surface can be 2-5 times higher

than those in subsurface areas (Reisser et al., 2015; Song et al., 2018;

Ryan et al., 2020). Fiber-type microplastics, in particular, tend to

mix vertically within these waters due to their lower buoyancy

compared to microplastic fragments (Kooi et al., 2016; Bagaev et al.,

2017). Further investigation is required to understand how fiber

density decreases with increasing water depth and how this process

varies under different sea conditions, such as increased vertical

mixing during or after rough weather. Moreover, it should be

emphasized that the true abundance of these smaller particles

(<200 µm) may exceed what was established in our study due to

limitations in analytical capabilities. Irrespective of their origin, the

small dimensions of microplastics seem to play a significant role in

facilitating downward transportation (Pabortsava and Lampitt,

2020). Microplastics that are smaller in size are more susceptible

to vertical dispersal through processes such as mixing and diffusion,

particularly in the mixed layer (Enders et al., 2015; Kooi et al., 2016).

Therefore, further research utilizing more advanced tools is

necessary to accurately assess the presence of small-sized

microplastics, particularly within sub-surface waters and near

the seabed.

Based on an analysis of the chemical composition, it has been

found that four specific types of polymers (i.e., polypropylene,

polyethylene, nylon 6 and 9, and polyethylene terephthalate) are

prevalent in marine ecosystems. The findings align with earlier

research in surface and sub-surface water, including in Table 2,

indicating that these polymers were the predominant ones found in

marine environments globally and are associated with single-use

plastics waste and fishery activities (Au et al., 2017; Hahladakis

et al., 2018; Erni-Cassola et al., 2019; Walkinshaw et al., 2020; Xue

et al., 2020). It is conjectured that the identified microplastics in this

study were probably linked to plastic waste accumulation on

beaches in Indonesia (Cordova et al., 2022a) and it connects to

studies concerning microplastics present specifically in Indonesian

seas (Vriend et al., 2021). Moreover, the presence of microplastics in

sub-surface water believed to be linked to fishing activities is

indicated by the microplastic fiber samples, as shown in Table 1.

The polymer types of Nylon 6 and 9 account for 15 particles,

constituting 31.25% of all fiber samples, while polypropylene

contributes 10 particles (20.83%), and polyethylene accounts for 9

particles (18.75%). These three polymers collectively comprise more

than 70% of the analyzed fiber samples based on their polymer type,

aligning with previous research, highlighting synthetic polymers

such as nylon, polyethylene, and polypropylene in fishing gear

(Galgani et al., 2000; Pawar et al., 2016; Ryan, 2018; Nelms et al.,

2021; Richardson et al., 2021). However, given the limited research

on the relationship between microplastics and fishing in Indonesian

waters (Vriend et al., 2021; Cordova et al., 2021b), coupled with

Indonesia’s significant potential as a major global fish producer

(Statista, 2023), it is crucial to undertake thorough studies to

enhance the management of this concern. The inclusion of

cellophane in this investigation, as an addition to the four main

polymer types identified, is significant given its prevalence (>10% of

the particle samples). While there is an ongoing debate on whether
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cellophane should be classified as a synthetic polymer due to its

cellulose-derived nature, its presence in sub-surface water could

explain the common occurrence of cellophane particles found in sea

salt measurements conducted in China (Yang et al., 2015). In this

research, we also observed natural cellulose fibers were arranged in

a stacked and tied manner. Due to their size exceeding 5 mm and

chemical composition analysis using Raman spectroscopy, these

fibers are not classified as microplastics. We acknowledge the

resemblance of cellophane and cotton spectra; therefore, apart

from matching rates >70%, we compare peaks based on findings

documented by (Jin et al., 2022). Moreover, Remy et al. (2015)

research indicated minor variations in Raman spectra between

artificial cellulose and pure cotton fiber. Further comprehensive

investigation is necessary to resolve the ongoing dispute regarding

the classification of cellophane as a synthetic polymer.

Further investigation is needed to understand the impact of

environmental factors such as UV radiation, heat, hydrodynamic

activity, and waves on fishing gear. A previous study suggests that

microplastics can be released from worn-out polypropylene ropes

due to aging and abrasion (Napper et al., 2022). Although larger

plastic debris eventually breaks down into smaller particles, we

currently lack information on the direct input of these particles to

the area. Studies should concentrate on local and regional sources to

identify potential nearby contributors to microplastic pollution.

This discovery highlights the importance of preventing larger

plastic pieces from breaking down once they enter the

environment. In order to address this issue, it is crucial to

implement stringent regulations, raise public awareness, and

launch campaigns that promote proper disposal methods and

systemic improvements in managing plastic waste. Furthermore,

further research is needed to understand the pathways through

which microplastic particles enter the aquatic ecosystem and their

origins, such as residential areas, industrial activities, agricultural

runoff, and other potential sources of microplastics.
Conclusion

Our study revealed the presence of microplastic particles in all

samples collected from the waters surrounding the Indonesian

archipelago. This finding suggests that these waters are

contaminated with microplastics. The presence of microplastics in

the sub-surface water of the Indonesian archipelago is notably high

near areas influenced by human activities. The order of abundance,

from highest to lowest is as follows: Wakatobi Archipelago - South

Buru Island - Outside Ambon [3] > Outer Jakarta - Kangean Island

[1] > Talaud - Miangas Island - North Sulawesi [7] > Halmahera

Island - Talaud Island [5] ≈ Kangean Island - Selayar Island -

Wakatobi Archipelago [2] ≈ Lifamatora Passage [4] > Maluku Sea

[6]. The concentration of microplastics found in the sub-surface

water is relatively lower compared to global studies. However, it

should be noted that this research focuses on microplastics

measuring 200 µm and larger. Further investigation may reveal

higher levels of microplastic abundance if conducted with more

comprehensive methods. The presence of microplastic particles,
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particularly fibers, found in this study is consistent with the global

trend observed in inland and coastal waters worldwide. Among all

the sampling areas examined, only one sampling area (sampling

area 3) demonstrated a dominance of fragment-shaped

microplastics. These fragments are believed to originate from

degraded large plastic items commonly found along the

Indonesian coast. The type of polymer detected in our analysis

further supports the prevalence of fiber-shaped microplastics.

Additionally, due to legal and illegal fishing practices, there is an

increased likelihood of accumulated ALDFG-derived microplastics

in these archipelagic waters. Further investigation is necessary to

address the limited data on this issue. To mitigate the influx of

microplastics into marine environments, it is essential to conduct

research aimed at implementing strict regulations, enhancing public

awareness, and initiating campaigns that encourage proper disposal

practices and systematic enhancements in plastic waste

management. This should specifically focus on reducing single-

use plastics and addressing ALDFG.
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