
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Elisabeth Marijke Anne Strain,
University of Tasmania, Australia

REVIEWED BY

Cory J. Krediet,
Eckerd College, United States
Federica Montesanto,
University of Florida, United States

*CORRESPONDENCE

Paige Strudwick

paige.strudwick@uts.edu.au

RECEIVED 08 January 2024
ACCEPTED 08 April 2024

PUBLISHED 26 April 2024

CITATION

Strudwick P, Suggett DJ, Seymour JR,
DeMaere MZ, Grima A, Edmondson J,
McArdle A, Nicholson F and Camp EF (2024)
Assessing how metal reef restoration
structures shape the functional and
taxonomic profile of coral-associated
bacterial communities.
Front. Mar. Sci. 11:1366971.
doi: 10.3389/fmars.2024.1366971

COPYRIGHT

© 2024 Strudwick, Suggett, Seymour,
DeMaere, Grima, Edmondson, McArdle,
Nicholson and Camp. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 26 April 2024

DOI 10.3389/fmars.2024.1366971
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bacterial communities
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2King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia, 3Australian
Institute for Microbiology and Infection, Faculty of Science, University of Technology Sydney, Ultimo,
NSW, Australia, 4Wavelength Reef Cruises, Port Douglas, QLD, Australia, 5Mars Sustainable Solutions,
Cairns, QLD, Australia
Significant threats to the long-term persistence of coral reefs have accelerated

the adoption of coral propagation and out-planting approaches. However, how

materials commonly used for propagation structures could potentially affect

coral-associated bacterial communities remains untested. Here, we examined

the impact of metal propagation structures on coral-associated bacterial

communities. Fragments of the coral species Acropora millepora were grown

on aluminium, sand/epoxy-coated steel (Reef Stars), and uncoated steel (rebar)

structures. After 6 months, the functional and taxonomic profiles of coral-

associated bacterial communities of propagated corals and reef colonies were

characterised using amplicon (16S rRNA gene) and shotgun metagenomic

sequencing. No differences in the phylogenetic structure or functional profile

of coral-associated bacterial communities were observed between propagated

corals and reef colonies. However, specific genes and pathways (e.g., lipid,

nucleotide, and carbohydrate metabolism) were overrepresented in corals

grown on different materials, and different taxa were indicative of the materials.

These findings indicate that coral propagation on different materials may lead to

differences in the individual bacterial taxa and functional potential of coral-

associated bacterial communities, but how these contribute to changed

holobiont fitness presents a key question to be addressed.
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Introduction

Reef restoration approaches that involve propagation, out-

planting, and/or substrate stabilisation are commonly being

applied to assist natural recovery and retain reef resilience in the

face of mounting local and global stressors (Boström-Einarsson

et al., 2018; GBRMPA, 2019; Hein et al., 2021). Coral propagation

and out-planting approaches facilitate increases in coral biomass

and cover at target sites (Hein et al., 2020; Suggett et al., 2020; Roper

et al., 2022; Howlett et al., 2023), whereas reef stabilisation

techniques aid substrate consolidation but similarly enhance coral

biomass when corals are attached to the structures (Fox et al., 2019;

Williams et al., 2019; Ceccarelli et al., 2020; Kenyon et al., 2023).

There is a strong motivation to boost the abundance of resilient

corals during propagation to improve long-term survival under

future climate scenarios (Caruso et al., 2021; Camp, 2022).

However, this is often conducted empirically by selecting coral

stock that has survived previous stress events (Caruso et al., 2021).

Arguably, the efficacy of such a proactive approach would be

increased if bolstered by knowledge of the underlying coral

biological dynamics during restoration (Voolstra et al., 2021;

Shaver et al., 2022). However, whilst such restoration approaches

continue to be adopted with accelerating enthusiasm (Boström-

Einarsson et al., 2020; McAfee et al., 2021; Suggett and Van Oppen,

2022), how the processes and materials used impact coral biology

(and related resilience) has only recently been considered

(Morikawa and Palumbi, 2019; Strudwick et al., 2022, 2023, 2024;

Nuñez Lendo et al., 2023).

Multifaceted communities of microorganisms—the coral

“microbiome”—are central to the health of the coral host, and in

totality, the host and associated microorganisms are referred to as

the coral “holobiont” (Rohwer et al., 2002; Reshef et al., 2006;

Rosenberg et al., 2007). Recently, the focus of restoration research

has expanded to consider approaches to “conserve the holobiont” to

improve restoration success (Carthey et al., 2020; Voolstra et al.,

2021; Peixoto et al., 2022). Such an approach is important for coral

reefs where associated microorganisms can impact reef resilience

(Putnam and Gates, 2015; Rosado et al., 2018; Peixoto et al., 2022)

and thus present an opportunity (e.g., engineering of an optimal

microbial consortium; Peixoto et al., 2017) or risk (e.g., disease

outbreaks; Rosenberg et al., 2007; Moriarty et al., 2020) in

restoration activities. Coral-associated bacterial communities are

known to be impacted by transfer between distinct environments

during nursery propagation and out-planting (Strudwick et al.,

2022, 2023). However, the extent to which materials used during

propagation influence the coral environment and subsequently

contribute—negatively or positively—to bacterial community

changes is relatively unexplored.

A range of materials are used in reef restoration, from concrete

to chemical adhesives, metals, plastics, ropes, and natural fibres

(Nedimyer et al., 2011; Meesters et al., 2015; Williams et al., 2019;

Boström-Einarsson et al., 2020; Ceccarelli et al., 2020; Suggett et al.,

2020; Dehnert et al., 2022). Materials are often selected due to their

low cost, structural integrity, scalability, and ease of deployment

(Ceccarelli et al., 2020), rather than considering how they may

detrimentally impact or benefit propagated corals and the other
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members of their holobiont. The use of artificial materials may

create a unique biogeochemical interface for corals that could act as

a potential source of essential resources, such as trace elements (Ray

et al., 2010; Reich et al., 2023), or harbour distinct bacterial

communities and consequently impact coral-associated bacterial

communities (Ceccarelli et al., 2020). Recent work has revealed that

the type of plastic material used to secure corals to substrates does

not differentially impact coral-associated bacterial communities, yet

some zip-tie materials have greater coral retention rates (Strudwick

et al., 2024). However, whether metal structures influence

environmental conditions for propagated corals and subsequently

influence coral-associated bacterial communities remains untested.

Across multiple studies, we have recorded changes in the

bacterial communities of Acropora millepora when transferred

from native reef to aluminium nursery structures during

restoration (Strudwick et al., 2022, 2024). Aluminium is generally

considered to be inert (although alloys can also corrode, Ezuber

et al., 2008), whereas steel corrodes and releases iron oxides (Ray

et al., 2010) in marine environments. Iron (Fe) plays essential roles

in the physiological processes of both the coral host and associated

microorganisms (Duckworth et al., 2009; Patel et al., 2020; Rubio-

Portillo et al., 2020) and has the potential to leach into the

environment at the coral–material interface as steel structures

interact with the marine environment (Procópio, 2019). Thus,

compared to aluminium, it is plausible to expect that steel

structures will differentially impact the coral holobiont during

propagation. We therefore hypothesise that coral propagated

on steel structures will (i) host distinct bacterial communities,

(ii) have different functional potential compared to those

propagated on aluminium structures, and (iii) specifically involve

overrepresentation of genes related to Fe cycling or with Fe

requirements (e.g., as cofactors) and/or higher abundance of

putatively pathogenic bacterial taxa. To test these hypotheses, we

compared the functional and taxonomic characteristics of

associated bacterial communities of the coral species A. millepora

propagated on aluminium frames, sand/epoxy-coated steel modular

structures (Reef Stars; Williams et al., 2019), and uncoated

steel stakes.
Materials and methods

The study period spanned 6 months from February to August

2022 and was conducted on the northern Great Barrier Reef (GBR),

at the site “Long Bommie” onOpal Reef (16°22′17.2″S 145°87′60.6″E,
Supplementary Figures S1A, B). Long Bommie was impacted by

Cyclone Ita in 2014, which caused high structural degradation over

most of the site and substantial areas of unconsolidated rubble.

Despite widespread coral bleaching on the GBR in 2016/2017,

2020, and 2022, good recovery has been observed over the last 2

years on the reef flat and crest (Edmondson personal obs,

Supplementary Figures S1C, D). Coral cover has particularly

increased in the shallow (< 3 m depth) areas of the site

(Edmondson personal obs, Supplementary Figures S1C, D).

However, recovery has been relatively slow within the rubble, and

subsequently, areas of unconsolidated rubble remain on the southern
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side of the bommie (Edmondson personal obs, Supplementary Figure

S1E). Two 2.0 × 1.2-m aluminium diamond-mesh frames were

installed approximately 30–40 cm above the sand, secured to and

held in place with 4 × 9 kg Besser blocks (Figure 1A). Six hexagonal

Reef Stars (coated steel) 54 cm in diameter × 33 cm in height,

constructed from rebar coated with fibreglass and sand (Figure 1B),

were installed directly over coral rubble and secured with steel rods

(as per Williams et al., 2019; Figure 1B). Six uncoated 60-cm rebar

stakes were hammered ~ 15 cm into rubble (Figure 1C). All structures

were installed at the start of the experiment without preconditioning

and were located 20–40 m away from source colonies on the reef.
Coral harvesting and experimental set-up

Coral sampling methods were designed to minimise any trace

metal contamination (as per Grima et al., 2022). In brief, clear

polypropylene plastics were prepared via a series of wash steps (as

per Rodriguez et al., 2016) and used to mark and transfer the corals,

whilst wooden chisels (or new bone cutters wrapped in parafilm)

were used to sample coral. Acropora millepora was the chosen study

species because the Acropora genus is commonly used in reef

restoration (Boström-Einarsson et al., 2020) and has previously

demonstrated variable coral-associated bacterial communities

during propagation and out-planting on the Great Barrier Reef

(Strudwick et al., 2022, 2023, 2024). The location of six A. millepora

source colonies (≥ 55 cm diameter)—representing biological

replicates—on the native reef was marked with transparent

polypropylene plastic tags. Sixteen fragments (≤ 5 cm) were taken

from each source colony. One fragment was retained in a sterile

Whirl-Pak® bag for T0 microbial community characterisation,

whilst the remaining 15 fragments were then divided into three

plastic baskets. Fragments were then transported to the three

different structures by SCUBA: five fragments from each of the

six source colonies were taken to each of the aluminium frames,

rebar stakes, or the Reef Stars (Supplementary Figure S2). Coral

fragments were evenly divided and attached to the two aluminium

frames (to account for potential frame effect), six Reef Stars, and six

rebar stakes with clear cable ties (Supplementary Figure S2). On the

aluminium frames, each row of corals corresponded to one source
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colony; fragments from only one source colony were attached to

each structure for rebar stakes and Reef Stars. Clear tags were

attached to the individual structures (or rows on the aluminium

frames) to identify the respective source colonies (Figures 1A–C;

Supplementary Figure S2).
Sampling regime

At the start of the experiment, one (5–10 cm) fragment from

each source colony was placed in an individual sterile Whirl-Pak®

bag and immediately taken to the operation vessel to be snap-frozen

in liquid nitrogen to characterise the bacterial community of source

colonies at “time zero” (T0) (Supplementary Figure S2B). Following

T0, corals on the propagation structures (aluminium frames, Reef

Stars, rebar stakes) and source colonies were resampled at 6 months

(T6m) (Supplementary Figure S2C). After 6 months, coral fragments

(5–10 cm) were either removed from the propagation structures

by detaching the cable tie (or cut using bone cutters wrapped in

parafilm in cases where fragments had begun to overgrow the

structure) or from the source colony in the natural reef

environment using parafilm-wrapped bone cutters. Samples were

placed into sterile Whirl-Pak® bags and snap-frozen in liquid

nitrogen as per sampling at T0.

In total, 30 coral samples were collected, and up to two DNA

extractions were conducted from each sample to provide DNA for

shotgun metagenomics and amplicon (16S rRNA gene) sequencing.

To increase the yield of coral-associated bacterial DNA, a phenol-

chloroform extraction with an endonuclease step to remove the

coral host and Symbiodiniaceae DNA was used for shotgun

metagenomic applications (detailed in Appendix 1). This

approach is not required for amplicon sequencing, where the

target region is amplified via PCR prior to sequencing; hence, we

proceeded with a previously successful DNA extraction kit for

amplicon sequencing.

In some cases, there was not adequate material for two DNA

extractions, and replication of n = 3 for each treatment across

consistent source colonies (e.g., colonies 1, 2, and 3 sampled at both

T0 and T6m for source reef colonies) for metagenomic sequencing

was prioritised (Supplementary Figure S7). DNA was extracted
FIGURE 1

Coral fragments at Long Bommie are secured to (A) an aluminium frame, (B) Reef Stars, and (C) rebar stakes.
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from 15 samples for shotgun metagenomic analyses: three replicates

× one time point for each of the propagation structures (n = 9) and

three replicates × two time points for the source reef colonies (n =

6). DNA was extracted from 25 samples for amplicon (16S rRNA

gene) sequencing: five to six replicates × two time points for source

reef colonies (T0 n = 5 and T6m n = 5), four to six replicates × one

time point for propagated corals (T6m: aluminium frames n = 4,

Reef Stars n = 4, and rebar stakes n = 6) (Supplementary Figure S7),

and one blank DNA extraction to identify laboratory contaminants.
DNA extractions

All samples were transported from the field site to the

laboratory in a dry shipper and then stored at −80°C for 3–9

months so that all DNA extractions could be conducted

simultaneously. To minimise sample bias based on fragment size,

preliminary analysis of the coral elementome (specifically Fe

content) was performed (as per Grima et al., 2022) to identify a

location on the coral branch (tip, middle, or base) for standardised

metagenomics sampling. Results from this testing did not indicate

any areas of host tissue or symbiotic algae with significant Fe

enrichment. Thus, a 3–4-cm fragment was subsampled 1 cm from

the base (structural contact point) of the propagated coral

(Supplementary Figures S8A, B), and a 3–4-cm fragment of the

source colony sample was placed in sterile zip-lock bags, and coral

tissue was removed from the coral skeleton via airbrushing with

sterile pipette tips into 2 mL of autoclaved PBS (3×, pH 7.4). The

tissue slurry was transferred to a 2-mL microcentrifuge tube and

centrifuged at 8,000×g for 5 min. The supernatant was removed,

and the pellet was stored at −80°C for 2 days until DNA extraction.

Coral tissue pellets were resuspended in 3× PBS prior to a series of

homogenisation steps (as per Voolstra et al., 2022, detailed in

Appendix 1). Following all homogenisation steps, a 250-µL

aliquot of tissue slurry was used for phenol-chloroform DNA

extraction that included an incubation with benzonase to remove

free host and Symbiodiniaceae DNA (as per Voolstra et al., 2022,

detailed in Appendix 1).

Prior to DNA extraction for amplicon (16S rRNA gene)

sequencing, coral tissue was removed from the coral skeleton,

using an airbrushing technique. For each sample, a 3–4-cm

fragment was subsampled from the same area as before and

placed in a sterile zip-lock bag to be airbrushed with sterile

pipette tips into 4 mL of autoclaved PBS (3×, pH 7.4). The tissue

slurry was divided across two 2-mL microcentrifuge tubes and

centrifuged at room temperature for 5 min at 8,000×g. The

supernatant was removed, and DNA was extracted from

approximately 100 µL of the coral tissue pellet using a DNeasy

Blood and Tissue kit (Qiagen—July 2020 version) following the

manufacturer’s protocols with a total elution volume of 40 µL. A kit

negative (no sample material added) was included in the DNA

extraction to identify any kit contaminants. For both the shotgun

metagenomic and 16S amplicon DNA extraction methods,

extracted DNA was quality checked, and the concentration was

quantified using a NanoDrop spectrophotometer prior

to sequencing.
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Sequencing

DNA samples were stored at −80°C for 2–4 days until

transportation on dry ice to the Ramaciotti Centre for Genomics

(Sydney, NSW, Australia) for 16S rRNA gene amplicon and shotgun

metagenomic sequencing to characterise taxonomic and functional

profiles of the coral-associated bacterial communities. To

taxonomically characterise coral-associated bacterial communities,

the hypervariable V3 to V4 region of the bacterial 16S rRNA gene was

amplified using the primers 341F (5′-CCTAYGGGRBGCASCAG-3′)
and 805R (5′-GACTACHVGGGTATCTAATCC-3′) (Klindworth

et al., 2013), and the amplicons were sequenced using the Illumina

MiSeq v3 2 × 300 bp platform. To characterise the functional profile

of the coral-associated bacterial communities, shotgun metagenomic

sequencing was performed using the Illumina NovaSeq 6000 SP 2 ×

150 bp Flowcell platform (Ramaciotti Centre for Genomics). Raw

reads from 16S rRNA amplicon sequencing and shotgun

metagenomics were deposited in the NCBI Sequence Read Archive

(SRA) in FASTQ format under Bioproject number PRJNA988823

and will be released upon publication or by request.
Bioinformatics

16S rRNA amplicon sequencing
Raw demultiplexed sequencing data were analysed with the

Quantitative Insights into Microbial Ecology (QIIME 2, version

2020.6) platform (Callahan et al., 2016). The data were denoised

(with the DADA2 plugin) prior to taxonomic assignment against

the SILVA v138 database using the classify-sklearn classifier

(Pedregosa et al., 2011). After denoising, 3,666,205 reads were

generated from 25 samples. Mitochondrial or chloroplast

amplicon sequence variants (ASVs) were filtered from the dataset.

Nine ASVs that comprised 100% of the sequences in the kit negative

DNA extraction were removed for subsequent analyses using the

filter command in R (version 4.2.2). Two samples were removed

before diversity analyses due to poor sequencing outputs, resulting

in low read numbers after quality filtering and contaminant

removal (< 55 ASVs) (Supplementary Figure S7). For beta

diversity analyses, the raw read ASV table was converted to

relative abundances, scaled to 20,000 (McKnight et al., 2019), and

square root transformed.

Shotgun metagenomic sequencing
Filtering of low-quality reads, trimming of adapter and low-

quality sequences, and deduplication was performed on raw reads

using fastp (v0.23.2) (Chen et al., 2018). Removal of contaminating

host A. millepora (acc:GCF_013753865.1) and human (acc:

GCF_013753865.1) DNA was performed using HoCoRT (v1.0.0)

(Rumbavicius et al., 2023, in press). Read-based taxonomic profiles

were generated from cleaned read sets using Sourmash (v4.8.2)

(Brown and Irber, 2016) against the Genome Taxonomy Database

(GTDB) (release 207) (Parks et al., 2022). Overlapping pairs were

first merged for each read-set using fastp, and a (pooled)

coassembly was then constructed using MEGAHIT (v1.2.9),

where merged reads were passed as single-ended (Li et al., 2015).
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Coassembled contigs were passed as a user-supplied assembly to the

SqueezeMeta (v1.6.1) pipeline (analysis mode: coassembly), and

read-sets for each sample were aligned to the coassembly to predict

genes, annotate gene functions and estimate the abundance of

individual genes per sample (Tamames and Puente-Sánchez, 2019).
Statistical analysis

Analysis of taxonomic structure of coral-
associated bacterial communities (16S rRNA
amplicon sequencing)

Differences in bacterial community structure and dispersion (beta

diversity patterns) of source reef corals over time (T0 to T6m) and

between source colonies and propagated corals after 6 months (T6m)

were analysed using the Bray–Curtis dissimilarity distance metric.

Patterns in bacterial community structure were visualised using

nonmetric multidimensional scaling (nMDS) plots. Differences in

community structure were tested for significance with permutational

multivariate analysis of variance (PERMANOVA; perm = 999) of

Bray–Curtis dissimilarities using the adonis function of the “vegan” R

package and subsequent pairwise comparisons (if significant) with

pairwise.adonis, p-values were adjusted by applying a Benjamini and

Hochberg correction, and all padj values < 0.05 were considered

significant. Permutation tests for homogeneity of multivariate

dispersion (PERMDISP) of the coral-associated bacterial community

were calculated using the betadisper function of the “vegan” R package

(perm = 999), p-values were adjusted by applying a Benjamini and

Hochberg correction, and all padj values < 0.05 were considered

significant. The core_members function of the “microbiome” R

package was used to identify core bacterial community members

(present in > 75% samples with relative abundance (RA) > 0.1%) for

source reef corals and propagated fragments at T0 andT6m. To identify

bacterial taxa significantly associated with different propagation

structures, we applied an indicator species analysis with the

multipatt function of the R “indicspecies” package. Results were

cross-referenced against the relative abundance (RA) of each ASV

and retained if present in > 75% of replicates.

Analysis of the functional profile of coral-
associated bacterial communities
(shotgun metagenomics)

Metagenome reads were assigned gene functions and pathways

based on the database structure of the Kyoto Encyclopedia of Genes

and Genomes (KEGG). To quantify the abundance of KEGG

Orthologs (KOs), transcripts per million (tpm) values were

calculated. Functional analysis at the KO level was conducted

using a Bray–Curtis dissimilarity distance metric on the KO tpm

matrix. Patterns in the diversity of functions at the community level

were visualised using nMDS plots and differences between

treatments were tested for significance with PERMANOVA of

Bray–Curtis dissimilarities using the adonis function of vegan.

To identify functions unique to each treatment, a presence/

absence analysis was conducted. KOs were isolated based on their

presence in source colonies at T6m (in all replicates) and simultaneous

absence (0% RA in) in a given propagated coral (e.g., in all replicates
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and for each structure separately) or their absence in source colonies

at T6m (in all replicates) and simultaneous presence in a given

propagated coral (in all replicates) at T6m. Functional analysis was

also conducted at the path level for pathways that were related to KOs

identified in the absence/presence analysis. All KOs were grouped by

KEGG-classified pathway, and differences between treatments were

visualised with bar plots. Differences between treatments for each

pathway were tested for significance using a Kruskal–Wallis test,

where a significant pairwise Wilcox post-hoc test was applied with

Benjamini and Hochberg p-value adjustment, all padj values < 0.05

were considered significant.
Results

Associated bacterial communities of
source reef colonies remain the same over
time (16S taxonomy)

Taxonomic profiles of coral-associated bacterial communities

generated from shotgun metagenomic sequencing (Supplementary

Figure S8) did not match those acquired from the (more directed)

amplicon sequencing of the 16S rRNA gene (Supplementary Figure

S7A). Such contrasting outcomes are potentially from the two

different databases used for the taxonomic classification of reads

and/or two different extraction methods used to prepare the DNA

for sequencing. Considering the taxonomic profiles acquired from

the amplicon sequencing were more comprehensive (2,899 ASVs vs.

96 unique taxa)—and to capture any differences in rare taxa that

were not quantified in the shotgun sequencing output—all

subsequent analysis of the phylogenetic characteristics of coral-

associated bacterial communities was conducted using the amplicon

(16S rRNA gene) dataset.

No significant changes were observed for the taxonomic structure

of bacterial communities associated with A. millepora source colonies

over the course of the experiment (T0 to T6m: PERMANOVABray–Curtis,

F = 1.156, padj = 0.182, Supplementary Figures S7A, B). Consequently,

all comparisons between the source colony and propagated corals were

conducted only at the 6-month sampling point (T6m). Two ASVs

(Synechococcus genus and Endozoicomonas acroporae, mean relative

abundance (RA) = 5.13% and 14.92%, respectively) were identified as

“core”members of the bacterial communities of source colonies at the

start of the experiment (T0) and were retained throughout the 6-month

study period. After 6 months, an additional ASV (Psychrobacter

pacificensis, mean RA = 6.61%) was identified as the core of source

reef colonies (Supplementary Table S2).
Propagated corals exhibit similar bacterial
community structure and core taxa to
source reef colonies but have distinct
indicator species (16S taxonomy)

After 6 months, no consistent differences were observed between

the taxonomic structure of the coral-associated bacterial community of

propagated corals across all propagation materials or versus source reef
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colonies (T6m) (PERMANOVABray–Curtis, padj > 0.05, Figures 2A, B;

Supplementary Table S1). No differences were found for the core

bacterial taxa of source reef colonies (T6m) versus all propagated coral

(regardless of propagation structure material). The core included one

P. pacificensis species ASV, one Synechococcus genus ASV, and one E.

acroporae species ASV (Supplementary Table S2). The mean RA of the

E. acroporaeASVwas higher in aluminium and rebar corals (mean RA

= 33.33% and 34.79%, respectively) than source reef colonies (T6m
mean RA = 24.88%) but lower in Reef Star corals (mean RA = 2.38%).

Highlighting minor differences in core bacterial community members

across propagation structures. Reef Star corals formed a discrete cluster

on the nMDS plot (Figure 2B) and exhibited significantly less

multivariate dispersion compared to source reef colonies (at T6m)

and rebar corals (pairwise PERMUTEST, padj = 0.041 and padj = 0.048,

respectively), but no significant differences in taxonomic structure

between Reef Star coral and source reef colonies or other propagated

corals were observed (PERMANOVABray–Curtis, padj > 0.05). Thus,

differences in coral-associated bacterial communities between

propagation structures may have been too small to detect.

Consequently, we further assessed bacterial communities to identify

any discriminating factors at the ASV level using indicator

species analysis.

Although no community-level (beta diversity) differences were

observed between propagated corals, seven different ASVs were

significant “indicators” for bacterial communities associated with

propagated corals across the different metal structures and source

reef colonies at T6m. Three ASVs from the Ruegeria and

Trichodesmium_IMS101 genera (mean RA = 1.91% and 1.10%,

respectively) and from the family Rhizobiaceae (mean RA = 1.45%)

were indicative of Reef Star coral-associated bacterial communities.

Three ASVs of the E. acroporae species were indicators of rebar

coral-associated bacterial communities (mean RA = 1.19%, 2.41%,
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and 0.33%). One ASV of the Prosthecochloris vibrioformis

species was indicative of aluminium frame coral-associated

bacterial communities (mean RA = 4.47%). One ASV of the

Flavobacteriaceae family was indicative of source reef coral

bacterial communities (mean RA = 0.91%).
Functional profiles of coral-associated
bacterial communities were consistent for
source reef colonies and propagated corals
(shotgun metagenomics)

No differences in the functional profiles of coral-associated

bacterial communities were observed in source colonies over time

(from T0 to T6m) (PERMANOVABray–Curtis, F = 0.915, padj = 0.5,

Supplementary Figure S7A). Consequently (as with the taxonomic

data), all analysis of bacterial community function between the

source colony and propagated corals was conducted at the 6-month

sampling point (T6m). Overall, there were no differences in the

functional profiles of coral-associated bacterial communities

between corals grown on different metal propagation structures

and source reef colonies at T6m, nor were there any differences

between propagation structures (PERMANOVABray–Curtis,

padj > 0.05, Supplementary Figure S7B).
The presence and absence of KOs in coral
metagenomes differed across propagation
structures (shotgun metagenomics)

To resolve any high-resolution differences in coral-associated

bacterial community functioning potential, e.g., from a more
A B

FIGURE 2

(A) Bacterial community structure and relative dispersion of the microbial communities of the source reef colonies and corals propagated on
different metal structures (Reef Stars, rebar stakes, and aluminium frames) after 6 months (T6m). The plot is based on nonmetric multidimensional
scaling (nMDS) of Bray–Curtis distances of bacterial community structure from 16S rRNA gene taxonomy profiles. (B) Bacterial community
composition (relative abundances) by genus* of source reef colonies and of corals grown on three different propagation structures after 6 months
(T6m). Pastel colours represent genera with an average relative abundance of < 0.1% in all samples; a full legend is provided as supplemental data
(Supplementary Data S1). *Family/class classifications were used when the genus was unknown.
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nuanced response to the propagation materials (that might not be

detected when comparing the whole profiles) and could be linked to

differences in indicator taxa, we analysed the abundance of

individual KOs. At the 6-month time point (T6m), a presence/

absence analysis highlighted 22 KOs (groups of genes performing

the same functions) of the 5,125 assigned KOs were present in

propagated corals and completely absent in source reef colonies.

One KO was present in the source reef colonies but was absent from

the aluminium frame coral, and no KOs were present in the source

reef colonies and absent in rebar and Reef Star coral. Hence, we

focussed on the KOs present in coral-associated bacterial

communities across different metal propagation structures

(Figure 3A). Four KOs were present in the metagenomes of corals

grown on aluminium propagation structures (and absent in source

reef colonies) assigned to genetic information processing (KEGG

classification 2) and environmental information processing

pathways (KEGG classification 3.2, Supplementary Table S3;

Appendix 2). Three KOs were present in Reef Star coral

metagenomes (and absent in source reef colonies) relating to

environmental information processing (KEGG classification 3.1),

metabolic pathways (KEGG classification 1.2), and one unknown

pathway (Supplementary Table S3; Appendix 2). Fifteen KOs were

present in rebar coral-associated bacterial communities (and absent

in source reef colonies), four were related to genetic information

processing pathways (KEGG classification 2.1, 2.3, and 2.4), two

KOs were related to environmental information processing

pathways (KEGG classification 3.1), four KOs were related to

metabolic pathways (KEGG classification 1.1, 1.4), one KO was

related to a signalling and cellular processing pathway (KEGG

classification 4.1), and three KOs were from poorly described

pathways (Supplementary Table S3; Appendix 2).
Different pathways were overrepresented
in propagated corals and source
reef colonies

Across restoration structures, the KOs present in propagated

corals but absent in source reef colonies were components of

carbohydrate and nucleotide metabolic pathways, translation,

membrane transport and folding, sorting and degradation

pathways, and signalling pathways (Figure 3A). Therefore, to

determine whether entire functional pathways were elevated in

propagated corals, we analysed the functional profiles at the

pathway level. All metabolic and genetic information processing

pathways (KEGG classifications 1 and 2) were overrepresented in

the metagenomes of corals propagated on Reef Stars and rebar

stakes compared to source reef colonies and aluminium corals

(Figures 3B, C), apart from energy metabolism (KEGG

classification 1.2), which was underrepresented in rebar coral

compared to coral propagated on other metal structures and

source reef colonies (Supplementary Figure S8). Differences across

propagated corals and source reef colonies were significant for only

two categories of metabolic pathways (KEGG classification 1.3—

Lipid metabolism, Kruskal–Wallis, c2 = 8.5385, df = 3, p = 0.0361

and KEGG classification 1.4—Nucleotide metabolism, Kruskal–
Frontiers in Marine Science 07
Wallis, c2 = 8.641, df = 3, p = 0.0345, Figure 3B) and two genetic

information processing pathways (KEGG classification 2.4—

Replication and repair, Kruskal–Wallis, c2 = 8.641, df = 3,

p = 0.03446; Genetic information processing protein families,

Kruskal–Wallis, c2 = 9.0513, df = 3, p = 0.02862, Figure 3C). No

significant differences were observed in the post-hoc tests (pairwise

Wilcox post-hoc, padj > 0.05).
Discussion

Various materials are being used in ever-scaling reef restoration

approaches (Nedimyer et al., 2011; Meesters et al., 2015; Williams

et al., 2019; Boström-Einarsson et al., 2020; Ceccarelli et al., 2020;

Suggett et al., 2020; Dehnert et al., 2022) that have the potential to

alter coral holobiont fitness by influencing the composition and

functioning of coral-associated bacterial communities (Ceccarelli

et al., 2020; Reich et al., 2023). Yet, it remains unclear if the use of

different metals positively or negatively affects coral-associated

bacterial communities during propagation and, in turn, how this

regulates reef restoration success (van Oppen and Blackall, 2019;

Voolstra et al., 2021; Peixoto et al., 2022; Strudwick et al., 2022,

2023). Here, we show that across different propagation structures

after 6 months, minor differences in individual bacterial taxa and

the functional potential of coral-associated bacterial communities

can emerge. Specifically, propagated corals exhibited several KOs

that were absent in the bacterial communities of source reef

colonies, and coral propagated on steel structures exhibited an

overrepresentation of various metabolic and genetic information

processing pathways. Furthermore, distinct bacterial taxa were

indicative of coral-associated bacterial communities across the

different metal propagation structures. Together, the minor

differences in functional potential and individual members of

coral-associated bacterial communities demonstrate that

propagated coral may have been under distinct environmental

conditions (Ziegler et al., 2017; Maher et al., 2019; Camp et al.,

2020, 2019). Consequently, further testing is required to resolve the

confounding findings of differences in functional potential and lack

of differences in community composition of coral-associated

bacterial communities, to determine whether Fe from steel

structures plays a role in these changes, and to identify the

implications of such differences in coral-associated bacterial

communities on the fitness and resilience of the holobiont.
Coral-associated bacterial communities did
not differ between propagation structures

We compared three propagation structures to identify whether

the type of metal used differentially impacts coral-associated bacterial

communities. No differences in the structure of coral-associated

bacterial communities were recorded between A. millepora source

reef colonies and propagated corals across structures. Restructuring

of coral-associated bacterial communities ofAcropora spp. is typically

seen during transplantation between distinct environments (Ziegler

et al., 2019; Haydon et al., 2021), and for A. millepora, particularly
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during reef restoration on the GBR (Strudwick et al., 2022, 2024).

Previously, coral-associated bacterial community differences have

been recorded after 4 to 6 months of propagation on aluminium

structures at other sites at Opal Reef (Strudwick et al., 2022, 2024).

Therefore, it is perhaps surprising that no differences in coral-

associated bacterial communities were observed between source

reef colonies and propagated corals on aluminium structures (or

any other structure) after 6 months in our current study. The

observed lack of changes in coral-associated bacterial communities

between source reef colonies and propagated coral may be linked to

environmental site differences (Haydon et al., 2021). High flow, for
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example, has previously been linked to more stable coral-associated

bacterial communities (Lee et al., 2017), and the location of our

current study (Long Bommie, Opal Reef) experiences greater flow

and wave action than Rayban and Mojo of Opal Reef in previous

studies (Edmondson personal obs.; Strudwick et al., 2022, 2024). At

Long Bommie, corals were also grown on structures positioned 30–40

cm above the substrate, whereas mid-water aluminium frames

suspended 2–3 m above the benthos were used at Rayban and

Mojo (Strudwick et al., 2022, 2024). The different positioning of

propagation structures in relation to the substrate likely resulted in

exposure to lower water flow (Perkol-Finkel et al., 2008) for
A

B C

FIGURE 3

(A) Presence/absence analysis used to identify propagation material-related functions in coral-associated bacterial communities of propagated corals.
The heatmap shows KEGG orthologs (KO) in the metagenome of corals propagated on different materials (coated steel: Reef Stars, uncoated steel:
Rebar and aluminium frames) and source reef colonies after 6 months (T6m). The colour gradient corresponds to the transcripts per million (tpm) (higher
tpm = higher abundance). The KO identifier is provided on the left of the heatmap, and the respective name is on the right of the heat plot for each KO.
KO names are coloured by their related functional paths, and entries are organised by these functions. KOs are only shown if they are present in 100% of
replicates for each treatment. (B) KEGG metabolism and (C) genetic information processing pathways in the metagenomes of source reef colonies or
corals propagated on different material propagation structures after 6 months. KOs were grouped by path, and a mean of the total tpm values is plotted
with standard error bars. The asterisk indicates where the Kruskal–Wallis test on each pathway by treatment showed p < 0.05.
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propagated corals, or more importantly, similar environmental

conditions (such as temperature and water quality) to source reef

colonies at Long Bommie. The unique positioning of the structures

may have also altered the interaction of the structure material with

the environment, which in turn could influence the coral-associated

bacterial community dynamics [e.g., varied flow rates can alter the

rate of steel corrosion in a marine environment (Peng et al., 2024) and

Fe has important roles in coral and microorganism health

(Duckworth et al., 2009; Patel et al., 2020; Rubio-Portillo et al.,

2020)]. Whilst this notion remains to be verified, it is consistent

with the growing evidence of site-specific environmental conditions

as drivers of coral-associated bacterial communities (Maher et al.,

2019; Ziegler et al., 2019; Camp et al., 2020; Osman et al., 2020). It

also highlights the importance of further characterising coral-

associated bacterial communities during restoration across diverse

sites and potentially on longer time frames to combine knowledge of

species-specific and site-specific bacterial community trends

necessary to tailor local protocols as approaches scale geographically.
Propagated corals exhibited distinct
indicator taxa

Whilst propagation on different materials did not yield changes

in the structure of the coral-associated bacterial communities, distinct

taxa were identified at the individual ASV level as representative of

the different coral environments. Three ASVs of the putative coral

symbiont Endozoicomonas acroporae (Tandon et al., 2022) were

identified as indicator taxa for rebar coral. Three bacterial taxa that

were putative symbionts and/or had nitrogen-fixing and iron-binding

abilities were identified as indicator taxa for Reef Star coral (Ruegeria,

Kitamura et al., 2021; Trichodesmium_IMS101, Capone et al., 1997;

Held et al., 2022; Rhizobiaceae, Rincon-Rosales et al., 2010). Finally,

one photosynthetic green sulphur bacterium, Prosthecochloris

Vibrioformis (Nie et al., 2023) ASV, was indicative of coral grown

on aluminium frames. We hypothesised that pathogenic bacterial

taxa may proliferate on steel structures, due to the role of Fe in

pathogenesis and virulence (Kelly et al., 2012; Rubio-Portillo et al.,

2020; Gnanagobal and Santander, 2022), but importantly, no putative

pathogens were identified as indicator species across any of the

propagation structures. However, differences in indicator taxa

suggest propagated coral may be under distinct environmental

conditions. Thus, our results indicate that the unique

biogeochemical niche surrounding each propagation structure had

a subtle influence on propagated coral and affected individuals within

coral-associated bacterial communities for the period of growth in

this study.
Coral bacterial communities gained several
distinct KOs across propagation structures

No differences were observed in the overall functional profile of

coral-associated bacterial communities across propagation structures

and source reef colonies. However, several KOs were elevated in

propagated corals that were absent from source reef colonies, and
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various pathways were differentially represented between all corals

(propagated and source reef colonies). Given our hypothesis that coral

propagated on steel structures would display enrichment of genes

associated with Fe within associated bacterial communities, we

specifically investigated whether overrepresented KOs were related to

Fe. Coral propagated on rebar exhibited the most overrepresented Kos,

and these were components of nucleotide (purine and adenosine

monophosphate) and carbohydrate (pyruvate and glucose)

metabolism pathways and genetic information processing

(translation, membrane transport and folding, sorting, and

degradation) pathways. Though only components of these pathways

were enriched, the overrepresentation of carbohydrate metabolism

KOs (malate dehydrogenase and MtfA peptidase) and nucleotide

metabolism KOs (AMP nucleosidase and phosphoribosylglycinamide

formyltransferase 1) in rebar coral compared to source reef colonies

suggests that rebar coral-associated bacterial communities could have

altered or increased metabolic potential (Zhang et al., 2015). In fact,

both rebar and (to a lesser extent) Reef Star coral-associated bacterial

communities exhibited an overrepresentation of several KEGG

metabolic pathways (carbohydrate, lipid, amino acid, and nucleotide

metabolism) compared to both aluminium coral and source reef

colonies. The metabolic potential of coral-associated bacterial

communities has been shown to reflect local oceanographic

conditions (Kelly et al., 2014; Zhang et al., 2015), and metabolic

demands can increase in response to Fe enrichment (Rädecker et al.,

2017). Consequently, the possible increase in metabolic potential may

be linked to different environmental conditions (e.g., nutrient

availability; Kelly et al., 2014; Rädecker et al., 2017) between

propagation structures and source reef colonies. Furthermore, Fe

leaching rates may differ between steel structures due to the rust

preventative on Reef Stars (Williams et al., 2019) and the lack thereof

on rebar stakes, which could explain the different extent of metabolic

pathway overrepresentation between Reef Star and rebar corals.

However, whether steel structures (coated or not) alter Fe availability

in the coral microenvironment and whether Fe availability is

responsible for the altered functional potential is yet to be resolved.

Only three KOs were present in Reef Star coral and absent in

source reef colonies, yet two of these had putative links to Fe

transport or utilisation (a periplasmic transport protein that binds

Fe-containing molecules (hemes), Hogle et al., 2014; and an oxidative

phosphorylation protein that shuttles electrons from NADH via

iron–sulphur centres in the respiratory chain, Leif et al., 1995). The

presence of these KOs in Reef Star coral indicates the potential

contribution of Fe to the coral microenvironment from the steel

propagation structures. Our results suggest that depending on

propagation structure material, there are implications for the

functional potential of coral-associated bacterial communities, but

whether this directly relates to Fe and the extent to which this impacts

holobiont fitness requires further testing.
Conclusions and implications for
coral propagation

Successful preservation of beneficial coral–microorganism

associations will likely be essential for maintaining coral health
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and resilience during reef restoration activities (Peixoto et al., 2022)

and, more importantly, optimal ecosystem functioning (Lima et al.,

2023). The materials used to manufacture propagation structures

and to secure corals during propagation are diverse (Boström-

Einarsson et al., 2018), yet their impacts on coral-associated

bacterial communities have until now been untested. In this

study, we demonstrate that propagation on different materials can

lead to subtle differences in individual bacteria and the functional

potential of coral-associated bacterial communities; however, the

implications of these differences on holobiont fitness and the

implications for ecosystem functions of a restored reef using these

materials are unknown. Restoration practitioners may operate with

the understanding that structure material does not significantly

impact coral-associated bacterial community composition for A.

millepora in the short term. However, KOs that were present in Reef

Star coral and pathways overrepresented in both Reef Star and rebar

corals point to differing conditions in the coral local environment

between steel structures and source reef colonies or aluminium

structures; therefore, further testing is required to determine the

role of Fe and its impacts on the holobiont health. Considering low-

level nutrient (e.g., Fe) enrichment can enhance coral thermal

performance (Becker et al., 2021), we suggest future research

should assess Fe accumulation within the coral elementome

during propagation on steel structures and any related changes in

stress tolerance (Becker et al., 2021; Reich et al., 2023). In

conclusion, our findings highlight that propagation structure

material has minimal impacts on the taxonomic composition of

coral-associated bacterial communities but may have implications

for the functional potential of these communities that deserves

further attention.
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