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Rainbow trout (Oncorhynchus mykiss) is a significant cold-water fish farmed in

China. Currently, most molecular marker-assisted breeding applications in

rainbow trout rely on SSR markers. Although many rainbow trout SSR markers

have been developed, methods for mining many polymorphic SSR markers from

the genome and identifying them efficiently and rapidly are still lacking. For this

reason, this study used in silico simulation method to rapidly develop a large

number of polymorphic SSR markers quickly. A total of 354,613 SSR loci with two

to six nucleotide repeat motifs were mined from 32 chromosomes of the

rainbow trout reference genome using GMATA. The chromosome sequences

of the reference genome were then aligned to the whole genome sequencing

data (10×) of 68 rainbow trout samples. In silico genotyping was performed using

the HipSTR programme to compare and count the variation in the number of

repeats of the motifs of the SSR loci in the samples. The loci with high deletion

rates and monomorphism were discarded, while those with more than one non-

reference allele were kept. The final set of polymorphic SSR loci screened was

78,828. Finally, 4,821 SSR loci were selected with more than 3 alleles and no

deletion in all rainbow trout samples and were physically mapped. The average

polymorphic information content of these loci was 0.692, indicating high levels

of polymorphism. These SSRs were utilized to analyse the genetic diversity and

population structure of the 68 rainbow trout samples. The results showed that

these 68 samples were divided into two groups. These newly discovered

polymorphic SSR markers will provide valuable information for evaluating the

construction of rainbow trout family lines for genetic diversity and improvement.
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1 Introduction

Rainbow trout (Oncorhynchus mykiss) is one of the world’s

most widely farmed cold-water economic fish. Its meat is tender

and tasty; not only is it free of a fishy odor and small bony spurs, but

there is also no need to scrape the scales when consuming it. From a

nutritional point of view, the meat of rainbow trout is rich in

potassium (Barszcz et al., 2016), B vitamins (Stancheva, 2010),

amino acids (Turchini et al., 2018), and unsaturated fatty acids

(Weaver et al., 2008), which are beneficial to human absorption and

nutritional balance. Moreover, rainbow trout contains DHA and

EPA, known as brain gold, which are several times more abundant

than other fish (Santigosa et al., 2020). Notably, in the U.S. market,

marketing for rainbow trout grew from $26 million in 2016 to $35.1

million in 2021, with an average annual growth rate of 8.3% (Sun

et al., 2023). According to the 2021 China Fisheries Statistics

Yearbook, the annual domestic production of rainbow trout in

2020 was 37,800 metric tonnes. The demand for salmon trout is

expected to increase at a rate of 35–40% per year, and by 2030, the

consumption of salmon trout in China will reach 300,000–400,000

metric tonnes. It can be said that rainbow trout enjoys a high

reputation in the global market as a popular farmed fish. Its rich

nutritional value and delicious taste make it one of the top choices

for people seeking a healthy diet and a high quality of life.

Microsatellite markers, or SSR markers, are tandem simple

repetitive sequences consisting of one to six nucleotides present in

eukaryotic genomes (Ellegren, 2004). SSR markers have many

advantages, such as genome-wide coverage, stability, high

reproducibility, co-occurrence of inheritance, high polymorphism

(multiple alleles at each locus), inter-species transferability, and low

requirements for expertise and instrumentation (Tóth et al., 2000;

Jiang et al., 2014). Obtaining a large number of highly polymorphic

and strongly stable SSR markers for a target species is beneficial for

molecular resource management and the genetic improvement of

that species (Sigang et al., 2021). Currently, SSR markers have been

widely used in genetic diversity studies (Guo et al., 2010), population

structure analysis (Abdul-Muneer, 2014; Sharma et al., 2019; Layton

et al., 2020), strain identification (Napora-Rutkowski et al., 2017),

ploidy identification (Feng et al., 2018), and linkage mapping analysis

of fish (Hollenbeck et al., 2017). With the use of microsatellite

markers, we can better understand the genetic diversity of fish,

reveal population structure and relatedness, assess the purity and

quality of strains, and even establish linkage mapping to aid in

breeding efforts. The high polymorphism and wide range of

applications of microsatellite markers make them indispensable

tools in fish genetic studies and resource management.

Development of new SSR markers with high polymorphism and

strong stability has long been expensive and time-consuming.

However, with the rapid development of sequencing technologies

and the reduction of sequencing costs, it has become feasible to use

whole genome data for SSR marker development (Gao et al., 2021).

Nowadays, whole genome resequencing of multiple samples has

become increasingly common in many studies related to economic

fish (Xu et al., 2019; Ciezarek et al., 2022). In this study, SSR markers

were mined from published rainbow trout whole genome chromosome

sequences, and the distribution regions of these markers in the genome
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were identified. Subsequently, the polymorphism of SSR loci was

assessed by whole-genome resequencing of multiple samples from

different populations and comparing the resequencing data with a

reference genome by detecting changes in the number of repeat units of

SSRs in different samples. Previous studies usually verified the

polymorphism of a small number of SSR loci by PCR amplification

and polypropylene gel electrophoresis (PAGE) or by capilar

electrophoresis in a genetic analyzer ABI machine or fragment

analyzer machine (Luo et al., 2012; Mason, 2015; Ariede et al., 2018;

Guerrero-Cózar et al., 2020; Tian et al., 2021; Yang et al., 2022). This

study, however, adopted a new and efficient method to compensate for

the shortcomings of the traditional method in terms of a complex,

time-consuming, and inefficient process.
2 Materials and methods

2.1 Rainbow trout germplasm resources

Fin tissue from 68 rainbow trout was collected, 34 from the wild

populations and 34 from the selected populations. The selected

population (SK) was a new strain of rainbow trout ‘Shuike No.1’

bred by Heilongjiang Fisheries Research Institute, Chinese

Academy of Fisheries Sciences, and was collected from the Bohai

Sea Cold Water Fish Experimental Station, Heilongjiang Fisheries

Research Institute, Chinese Academy of Fisheries Sciences. The wild

population (CH) was collected from Changbai Mountain in

southeastern Jilin Province, China. Tiangen DNeasy Kit (Tiangen,

China, Beijing) was used to extract total DNA from rainbow trout

fins. Purity (OD260/280 = 1.8~2.0) and concentration were

measured by UV spectrophotometer, and concentration diluted to

50 ng/µL. 1% agarose gel electrophoresis was used to measure

the quality.
2.2 Mining SSRs in the genome of
rainbow trout

The reference genome (USDA_OmykA_1.1) for rainbow trout

was obtained from the Ensembl database (Gao et al., 2021). SSRs

were retrieved from the chromosome sequence of the rainbow trout

reference genome with the aid of the Genome-wide Microsatellite

Analysing Tool Package (GMATA) (Wang and Wang, 2016). The

minimum number of repeats was set at 12 for dinucleotide repeats,

10 for trinucleotide repeats, and 8 for pentanucleotide and

hexanucleotide repeats while searching for SSR loci with di- to

hexanucleotide motifs in the rainbow trout chromosome sequences.

Next, flanking sequences of 250 bp were located on both sides

of the motifs of the SSR loci that had been mined above using

the Marker Design module in GMATA. For every locus, primer

pairs were designed using the Primer3 algorithm. Product size of

100–400 bp, minimum GC content of 40%, annealing temperature

of 60°C (59–61°C), and primer length of 20 bp (18–25 bp) were the

parameters for generating primer pairs. After that, SSR loci that

could not produce primers were eliminated. SSRs with inter-site

distances less than 100 bp were removed.
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Furthermore, it was necessary to eliminate the SSRmotifs that only

included T and A since they were hard to score (Bhattarai and

Mehlenbacher, 2017). Finally, for the remaining filtered batch of SSR

loci, a bed format file was made in preparation for the polymorphism

analysis that would come next. The names of the chromosomes, motif

length, number of repeat units in the reference sequence, and starting

and ending positions of SSR loci were all included in the file.
2.3 Screening for polymorphisms in silico

The Beijing Genomics Institute (BGI) conducted 10 × depth

resequencing of DNA from 68 rainbow trout samples. In order to

gather data on variations in SSR repeat units across multiple

rainbow trout sample genome sequences, the chromosome

sequences of the reference genome were mapped with the genome

resequencing sequences of 68 samples. The raw sequencing data

was first subjected to quality control and data filtering using Fastp

v.0.23.2 (Chen et al., 2018). Next, the paired-end reads of the 68

rainbow trout samples were aligned to the reference genome’s

chromosomal sequences using BWA mem2 v. 2.2.1 (Li, 2013).

The resulting SAM format files were converted to BAM format

using SAMtools v. 0.1.19 (Li et al., 2009). The final comparison file

was sorted and indexed, and the final bam file was created for

further polymorphism analysis.

Subsequently, in silico polymorphism screening was performed

on the SSRs that were selected from GMATA. The aligned bam files

of the 68 rainbow trout samples, the bed files containing the

coordinates of the SSR loci and the reference genomic chromosome

sequences used to mine the SSRs were all used in the allelotyping

process using the HipSTR programme (Willems et al., 2017). The

integrated Python script was used to filter the VCF file containing

SSR calls produced by HipSTR for low-quality calls. Following that,

the monomorphic SSRs were removed. In 68 samples, the SSRs that

had less than 60% detection were eliminated. Furthermore, SSRs with

fewer than two non-reference alleles were eliminated. The

polymorphic SSRs’ start position was utilized to create the physical

map in R, which was then uniquely coloured for every motif length

(two to six). Then, the genomic coordinates of polymorphic SSRs

were compared with the general feature format (GFF) file to

determine the distribution of SSRs in gene regions or between

genes. Finally, gene functional annotations were retrieved from the

rainbow trout database in the BiomaRt package.
2.4 Genetic diversity and population
structure analysis

Expected heterozygosity (He), observed heterozygosity (Ho)

and polymorphic information content (PIC) were computed by

Cervus v.3.0.7, with the detection of any deviations from Hardy-

Weinberg equilibrium (Kalinowski et al., 2007).

Before the population structure analysis using Structure v. 2.3.4

(Evanno et al., 2005), the genotype data of SSR loci generated by the

HipSTR programme were converted into data suitable for Structure

software using the GenALEx v. 6.503 (Peakall and Smouse, 2012).
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Next, set the K value from 1 to 10, the number of iterations to 20,

the Length of the Burnin Period to 5000, and the Number of

MCMC Reps after Burnin to 50000 to estimate the number of

subpopulations. At the end of the run, the results of the Structure

run were uploaded to STRUCTURE HARVESTER (Earl and

VonHoldt, 2012) to determine the optimal K value. The Structure

results were then sampled and analysed using CLUMPP (Jakobsson

and Rosenberg, 2007). Finally, R was used to graphically plot the

results based on the Q matrix of the optimal K. Principal

Component Analysis (PCA) was performed using GenAlEx v.

6.503 to determine population structure further.
3 Results

3.1 Identification and distribution of SSRs in
the rainbow trout genome

The rainbow trout reference genome chromosome sequence

used for mining SSR loci was approximately 2.19 Gb. A total of

354,613 SSR loci (162.26 loci/Mb) were identified, with dinucleotide

motif repeat minimum number of 12 (305,535; 86.16%),

trinucleotide motif repeat minimum number of 10 (7,807; 2.20%),

tetranucleotide motif repeat minimum number of 8 (33,369;

9.41%), pentanucleotide motif repeat minimum number of 8

(5,780; 1.63%), and hexanucleotide motif repeat minimum

number of 8 (2,122; 0.60%) (Figure 1; Table 1; Supplementary

Table S1). Among the different types of SSRs, there were six types of

dinucleotide repeat sequence motifs, with a higher number of TG/

CA and AC/GT, which accounted for 28.32% and 27.05%,

respectively (Supplementary Figure S1, Supplementary Table S2).

There were 29 types of trinucleotide repeat sequence motifs, with

GTA/TAC having the highest number at 15.77%. There were 123

types of tetranucleotide repeat sequence motifs, with CAGA/TCTG,

ACAG/CTGT, and GTCT/AGAC being the more numerous,

accounting for 12.78%, 11.70%, and 10.04%, respectively.

CTCTC/GAGAG and TCTCC/GGAGA were the two most

dominant 203 pentanucleotide repeat sequence motif types,

accounting for 17.06% and 17.02%, respectively. CCCTAA/

TTAGGG was the most abundant of the 190 hexanucleotide

repeat sequence motif types, accounting for 14.56%. With the

highest density of distribution of SSR loci on chromosome 21,

240.30 loci/Mb, the average distribution density (number of SSR

loci/Mb) of SSR loci on the reference genome’s chromosome

sequences ranged from 117.90 to 240.30 loci/Mb (Table 2).
3.2 Polymorphic SSRs identification
through in silico genome
sequence comparison

After mining SSRs based on the chromosome sequence of the

rainbow trout reference genome using GMATA, primer pairs were

successfully designed for a total of 306,916 SSR markers using its

primer design module. Next, 109,158 SSR markers were removed

because the distance between their motifs was less than 100 bp. In
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addition, 16,124 SSR markers with motifs containing only A and T

needed to be removed. A total of 181,634 SSR markers were

retained, and a bed file containing details of these loci was

prepared for subsequent polymorphic site identification

(Supplementary Table S3).

Next, the HipSTR program was used to investigate

polymorphisms based on a bed file containing information on

181,634 SSRs, a comparison BAM file of 68 rainbow trout

samples, and the chromosome sequences of the reference genome.

The HipSTR program generated genotypic calls for 107,812 SSR loci

(Table 1). Seven thousand six hundred seventy-eight monomorphic

SSR loci were excluded. Nineteen thousand eight hundred thirty-

four loci with less than 60% detection in 68 samples were rejected

due to missing information. In addition, 1,472 SSR loci with less

than two alleles were eliminated (Table 1). Finally, a total of 78,828

SSR loci with polymorphisms were retained, as detailed in

Supplementary Table S4.

Among these polymorphic loci, the dinucleotide repeat and

tetranucleotide repeat loci were more abundant, while the

trinucleotide repeat, pentanucleotide repeat, and hexanucleotide

repeat loci were relatively scarce (Table 1). Among the chromosome

sequences of the rainbow trout reference genes, chromosome 2 was

the longest and, as expected, it contained the most polymorphic

SSRs (Table 2). Comparison of the genomic coordinate information

of the polymorphic SSRs with the rainbow trout GFF file revealed

that these polymorphic SSR loci could be classified into five regions:

UTR_5’, UTR_3’, intron, exon, and intergenic regions of the genes.
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Of the SSR loci, 45.19% and 53.04% were localized in the intergenic

and introns of genes (Figure 2A). Intergenic regions are non-coding

DNA regions located between genes, In contrast, introns are non-

coding DNA sequences located between exons within genes. In the

rainbow trout genome set, these two regions may occupy most of

the genome with more SSR sequences. Among the five regions,

dinucleotide repeats constituted a more significant proportion

(Figure 2B). Additionally, no polymorphic SSRs with

pentanucleotide and hexanucleotide repeats were detected in both

the UTR_5’ and UTR_3’ regions (Figure 2B).
3.3 Genetic diversity and population
structure analyses based on highly
polymorphic SSR loci

Although many polymorphic SSR loci were screened in this

study, we need highly polymorphic SSR loci more in practical

applications. SSRs with a 100% detection rate in 68 samples were

retained, and to further reduce the number of SSR markers, SSR loci

with more than 3 alleles were used in conducting population

structure analyses. Ultimately, a total of 4,821 SSR markers were

retained (Supplementary Table S5), which contained 3,521

dinucleotide repeat loci, 214 trinucleotide repeat loci, 1,022

tetranucleotide repeat loci, 54 pentanucleotide repeat loci, and 10

hexanucleotide repeat loci. The average PIC value was 0.692,

indicating that these loci were highly polymorphic. 36,779 alleles
TABLE 1 Distribution of SSR markers for dinucleotide to hexanucleotide repeat sequences.

Motifs
Total
SSRs
(no.)

Designed
Primer
(no.)

Distance
>100 bp

Only
A&T
(no.)

Genotype calls
generated by
HipSTR (no.)

Monomorphic
SSRs (no.)

the detection rate of
less than 60% in
samples (no.)

alternate
allele
< 2 (no.)

Polymorphic
SSRs (no.)

Di 305,535 270,855 173,184 14,966 98,081 6,802 17,814 1,113 72,352

Tri 7,807 3,436 2,803 995 1,090 20 200 45 825

Tetra 33,369 27,354 18,346 162 7,462 703 1,570 269 4,920

Penta 5,780 4,411 2716 0 1,046 146 209 44 647

Hexa 2,122 860 709 1 133 7 41 1 84

Total 354,613 306,916 197,758 16,124 107,812 7,678 19,834 1,472 78,828
Stepwise screening of polymorphic SSR loci.
FIGURE 1

Distribution of di-, tri-, tetra-, penta- and hexanucleotide repeat SSR loci in rainbow trout genome chromosomes.
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in total were found; the average number of alleles per locus was

approximately 7, and the range of alleles per locus was 4 to 17.

(Supplementary Table S5). Expected heterozygosity (He) per locus

ranged between 0.128 and 0.922, averaging 0.731. Observed

heterozygosity (Ho) ranged from 0.015 to 0.971, averaging 0.650

per locus (Supplementary Table S5). The average null allele
Frontiers in Marine Science 05
frequency was 6.5% (Supplementary Table S5). The physical map

revealed the distribution of 4821 polymorphic SSR loci in the

rainbow trout genome and was plotted using unique colors for

each SSR motif length (Figure 3). In addition, the gene names of

these genic SSRs and their predicted functions are reported in

Supplementary Table S6.
TABLE 2 Distribution and density of SSR loci on rainbow trout genome chromosomes.

Chromosome
Chromosome

size (bp)
SSRs (no.)

SSRs density
(loci/Mb)

polymorphic
SSRs (no.)

Polymorphic
SSRs density

Chr01 95,772,356 12,629 131.86 2,929 30.58

Chr02 103,806,877 15,795 152.16 3,819 36.79

Chr03 85,311,031 13,194 154.66 3,385 39.68

Chr04 46,841,314 7,158 152.81 1,673 35.72

Chr05 100,798,064 14,288 141.75 3,566 35.38

Chr06 101,096,859 15,983 158.10 3,374 33.37

Chr07 90,918,291 14,914 164.04 3,267 35.93

Chr08 91,622,588 12,154 132.65 3,142 34.29

Chr09 79,455,637 13,433 169.06 3,216 40.48

Chr10 87,811,138 14,505 165.18 2,602 29.63

Chr11 86,280,908 13,066 151.44 3,453 40.02

Chr12 102,853,256 14,149 137.56 2,912 28.31

Chr13 73,332,040 14,829 202.22 2,153 29.36

Chr14 43,310,081 7,398 170.81 1,742 40.22

Chr15 81,569,517 16,433 201.46 3,186 39.06

Chr16 78,541,548 12,075 153.74 2,998 38.17

Chr17 95,212,422 16,076 168.84 2,943 30.91

Chr18 74,657,750 15,884 212.76 3,180 42.59

Chr19 67,237,266 11,538 171.60 2,560 38.07

Chr20 46,616,863 7,315 156.92 1,690 36.25

Chr21 64,935,962 15,604 240.30 2,942 45.31

Chr22 52,474,311 6,895 131.40 1,916 36.51

Chr23 62,880,378 8,868 141.03 1,899 30.20

Chr24 45,930,806 9,220 200.74 2,111 45.96

Chr25 47,542,702 7,064 148.58 1,658 34.87

Chr26 51,113,553 8,876 173.65 1,614 31.58

Chr27 51,556,237 8,991 174.39 2,283 44.28

Chr28 43,716,683 5,154 117.90 1,458 33.35

Chr30 46,327,593 5,969 128.84 1,679 36.24

Chr31 44,108,611 7,153 162.17 1,624 36.82

Chr32 41,837,469 8,003 191.29 1,854 44.31

Total 2,185,470,111 354,613 162.26 78,828 36.07

Average \ 11,439 \ 2,543 \
The symbol "\" means that the value is not calculated.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1375524
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Ma et al. 10.3389/fmars.2024.1375524
Population structure analyses were performed on 68 rainbow

trout samples using the 4,821 highly polymorphic SSR loci screened

above. Genetic differences between the two populations were

explored by PCA analysis in GenAlEx v. 6.503. Sixty-eight

samples were differentiated into two main clusters, CH (red

squares) and SK (blue diamonds) in the PCA plot (Figure 4A).

Structure software was used to infer the optimal number of

subgroups (K) for the 68 rainbow trout samples, K = 2 was

selected as the best value, followed by K = 5 (Figure 4B). In

addition, the population structure of the 68 samples was shown

by Bayesian-based structure analysis (K = 2 and K = 5) (Figure 4C).

In the Structure plot with K = 2, two subpopulations of individuals,

Q1 and Q2, were labelled in blue and red, respectively. Group Q1

contained exactly 34 individuals from the CH population. Group

Q2 also had precisely 34 individuals from the SK population. In the

structure plot with K = 5, it remains possible to clearly distinguish

the two populations on the basis of the colours of the subpopulation

representatives, with the CH population predominantly marked in

red, yellow, and blue and the SK population predominantly marked

in pink and purple. In summary, population structure analyses of 68
Frontiers in Marine Science 06
rainbow trout samples using 4,821 highly polymorphic SSR loci

yielded consistent results in Structure and PCA, all clearly

distinguishing between CH and SK populations (Figures 4A, 4C).
4 Discussion

Microsatellites are widely distributed in the genome of rainbow

trout and are widely used for genetic relationship analysis (Spruell

et al., 1999; Overturf et al., 2003; Silverstein et al., 2004; Bielikova

et al., 2021), subspecies determination (Ostberg and Rodriguez,

2002), ploidy identification (Haibing et al., 2023), and quantitative

trait locus mapping (Sakamoto et al., 1999; Perry et al., 2001;

O'Malley et al., 2003; Perry et al., 2005; Haidle et al., 2008).

Obtaining many SSR markers with high polymorphism and

sound stability is crucial for promoting molecular resource

management and genetic improvement (Sigang et al., 2021). With

the advancement of sequencing technology, more and more whole-

genome sequencing data for species have been made publicly

available, facilitating the mining of SSR markers even more. In
BA

FIGURE 2

The type and distribution of microsatellites in the genome of rainbow trout. (A) Number of SSRs distributed within and between rainbow trout
genomes; (B) Percentage distribution of different types of SSRs within and between rainbow trout genomes. P2, dinucleotide repeats; P3,
trinucleotide repeats; P4, tetranucleotide repeats; P56, pentanucleotide repeats and hexanucleotide repeats.
FIGURE 3

Physical map location and distribution of 4821 polymorphic SSRs in rainbow trout genome chromosome sequence.
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previous studies, SSR markers were usually developed by cloning

and sequencing microsatellite-rich sequences. However, this

method is costly, complex, and time-consuming (Rexroad et al.,

2002; Rexroad and Palti, 2003; Rexroad et al., 2008). Although

genome-wide or transcriptome data have been used for SSR marker

mining in recent studies, often only a few loci are often randomly

selected for polymorphism testing. Therefore, large-scale screening

and assessment of polymorphisms for SSR loci mined from

genome-wide or transcriptome data remains challenging. In

addition, no study has been conducted so far to mine SSR loci

from rainbow trout genome-wide data. In this study, we propose a

novel approach to remedy the shortcomings of previous methods.

First, SSR locus mining and primer design were performed based on

the publicly available rainbow trout reference genome chromosome

sequences. Then, whole genome resequencing data of multiple

samples from different populations was combined with the mined

SSR marker information, Genotyping was performed with the help

of the HipSTR program to obtain information on the variation in

the number of motif repeats of the SSR loci in the different samples

to determining whether they were polymorphic. Subsequently,

many screened SSR loci with high polymorphism were used to

analyze the genetic relationships of individuals from diverse

populations. In this study, we successfully developed SSR loci in

32 chromosomes of the rainbow trout genome and efficiently

screened and identified many polymorphic loci from them.

In this study, 354,613 SSR loci were detected in the

chromosome sequence of rainbow trout. On average, there were

about 162.26 loci per 1 Mb of genomic chromosome sequence,

which was lower than that of Lateolabrax maculatus (425.06 loci/
Frontiers in Marine Science 07
Mb) (Sigang et al., 2021) and Solea senegalensis (886.7 loci/Mb)

(Guerrero-Cózar et al., 2020). Among the five types of SSRs,

dinucleotide repeat motifs had the highest number of SSRs,

accounting for 86.16%. Microsatellites are formed mainly through

the replication pulley mechanism, where mismatches between the

nascent and template strands may lead to an increase or decrease in

repetitive units during DNA replication. Microsatellite sequences

with dinucleotide repeats are more common due to their relative

shortness and susceptibility to slip, resulting in dinucleotide repeats

(Levinson and Gutman, 1987). In addition, the higher mutation rate

of dinucleotide repeat SSRs compared to other types of

microsatellites may be one of the reasons why they are more

common. However, it is worth noting that dinucleotide repeat

sequences are prone to “stutter” during PCR, which may affect

the subsequent analysis and interpretation of these sequences

(Cipriani et al., 2008). Single nucleotide repeat SSR loci were not

explored in this study because single nucleotide sequences are prone

to errors in detection and analysis, resulting in inaccurate data

(Flores Renterıá and Whipple, 2011). Although the number of tri-,

tetra-, penta-, and hexanucleotide motifs detected in the rainbow

trout genome with a high number of repeats is relatively tiny

compared to the number of dinucleotide repeats, they are less

prone to amplification errors and “stutter” phenomena and are

therefore more suitable for future genetic studies (Edwards et al.,

1991; Brinkmann et al., 1998; Schug et al., 1998).

The distribution of microsatellites is closely related to the

selective pressure during evolution, and different genomic regions

may perform other functions. To determine the location of the

mined SSR markers in the genome, this study compared the
B

C

A

FIGURE 4

Population structure analysis of 68 rainbow trout samples. (A) Principal component analysis (PCA) for 68 rainbow trout samples using 4821 SSRs;
(B) Distribution of △K at different K values; (C) Population structure of 68 rainbow trout samples inferred by genotyping 4821 SSRs (K = 2 and K = 5).
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coordinate information of SSRs with the GFF files. It classified them

into intergenic microsatellites and intragenic microsatellites. The

results showed that a total of 78,828 polymorphic SSR loci were

screened in this study, of which 53% were located in the intronic

region of genes, 45.19% in the intergenic region, 1.42% in the exon

region of genes, 0.21% in the UTR_3’ region, and 0.14% in the

UTR_5’ region (Figure 2A). Exon regions are critical to gene

function and have been subjected to more stringent selection

pressures during evolution to retain the correct protein-

coding sequences.

In contrast, intergenic and introns are likely subject to lower

selective pressures during evolution and are more prone to

accumulating SSRs. In addition, although UTR regions and

introns are not coding regions, they have essential functions in

gene regulation and stability. Among these five regions,

polymorphic SSR loci with pentanucleotide and hexanucleotide

repeats were detected only in the intergenic, intron, and exon

(Figure 2B). This may be because the minimum number of times

for detecting pentanucleotide and hexanucleotide motif repeats was

set at 8 in this study, which is a high value relative to the values set in

other studies and may have limited the detection of polymorphic

SSR loci for pentanucleotide and hexanucleotide repeats in the

UTR_5’ and UTR_3’ regions.

The effectiveness of microsatellite markers usually depends on

factors such as the loci’s stability, polymorphisms, gene locus

localisation, and primer design’s success. In this study, we

successfully designed primers for the developed polymorphic loci

and determined the distribution regions of these polymorphic loci

in the genomic chromosomes (Supplementary Tables S4, S5). Valid

microsatellite loci should maintain a stable presence across

individuals. The stability of loci is usually assessed by detecting

mutations or deletions among different individuals. Therefore, in

this study, we retained 4821 SSR loci with polymorphism that were

not detected missing in 68 rainbow trout samples, and determined

the physical map locations of these loci on 32 chromosomes of

rainbow trout (Figure 3). In addition, these 4,821 loci had an allele

number greater than 3, with an average allele number of

approximately 7. PIC is an essential indicator of population

genetic diversity and is often used to measure genetic

heterozygosity, with values ranging from 0 to 1, with 0 indicating

no polymorphism and 1 indicating a very high degree of

polymorphism. According to Botstein et al (Ghislain et al., 2004),

PIC values can be classified into three intervals: PIC<0.25 for low

polymorphism, 0.25<PIC<0,50 for medium polymorphism, and

PIC>0.50 for high polymorphism. In this study, the average PIC

value of 4,821 loci was 0.692, of which 4,451 (92.33%) loci had a PIC

greater than 0.5, indicating that these loci were highly polymorphic.

The null allele frequency of these polymorphic loci was about 6.5%

on average. When the null allele frequency of individual loci

averages between 5% and 8%, using of these loci for analyses such

as genetic differentiation usually does not introduce bias (Oddou-

Muratorio et al., 2009). Using these 4,821 loci with high

polymorphisms, we revealed the population structure between 68

rainbow trout individuals. As expected, the results of PCA and

structure analysis consistently and clearly separated these 68

individuals into two populations, the selected population (SK)
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and the wild population (CH). Finally, we annotated the gene

function of these 4821 SSRs, and used them as reference

resources for rainbow trout research, providing information basis

for subsequent research in this field.
5 Conclusions

In summary, 354,613 SSR loci were mined in this study based

on the available chromosome sequences of the rainbow trout

reference genome. By analysing the whole genome sequencing

data of 68 rainbow trout samples, 78,828 polymorphic SSR loci

were successfully identified, and a new method for rapid screening

of polymorphic loci was provided. The technique avoids time-

consuming and laborious screening by molecular experiments.

Considering the stability of loci, polymorphism, genetic locus

positioning, and success rate of primer design, 4821 SSR loci with

high polymorphism and validity were finally screened. These loci

can be used for fingerprinting, genetic diversity analysis,

phylogenetic study, population structure analysis, and mapping

and molecular breeding of rainbow trout, which provides an

essential reference for related research.
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