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Genetic structure of ten Artemia
populations from China:
cumulative effects of ancient
geological events, climatic
changes, and human activities
Ke Li1, Rui Zhang1, Li-Ying Sui1,2, Chi Zhang3*

and Xue-Kai Han1,3*

1Asian Regional Artemia Reference Center, Key Laboratory of Marine Resource Chemistry and Food
Technology (TUST), Tianjin University of Science and Technology, Tianjin, China, 2International
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Bangkok, Thailand, 3Institute of Fisheries Science, Tibet Academy of Agricultural and Animal
Husbandry Sciences, Lhasa, China
This study investigated the population genetics and distribution patterns of

Artemia populations from ten inland salt lakes in China. A total of 1,274,698

Artemia single nucleotide polymorphisms (SNPs) were identified. The results

showed that these populations could be geographically and genetically divided

into four distinct groups, and that the Tibetan populations were further divided

into two subpopulations with a trend of decreasing genetic diversity fromwest to

east. The Tibetan population had the highest genetic diversity, whereas the

Shanxi population had the lowest. There was moderate genetic differentiation

between the Tibetan populations and greater genetic differentiation between the

Xinjiang and Shanxi populations. IBD (isolation by distance) suggested that

geographical isolation contributes to genetic differentiation. In addition, there

was some degree of gene flow among the ten populations, with A. sinica showing

unidirectional gene flow in all populations in the eastern Nagri region. Species

distribution modeling showed that mean annual temperature, temperature

seasonality, and annual precipitation were the main environmental factors

affecting the distribution of Artemia populations and suitable habitats for

Tibetan populations will be further reduced in the future. It is necessary to

strengthen the protection of germplasm resources and formulate scientific

protocols for the sustainable development and utilization of Artemia resources.
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1 Introduction

The brine shrimp Artemia is a small crustacean that lives in

hypersaline habitats such as salt lakes and coastal salt pans

worldwide. In addition to being a major part of the food chain

and a biological regulator of brine ecosystems (Triantaphyllidis

et al., 1998; Sánchez et al., 2006; Georgiev et al., 2007), Artemia,

especially Artemia nauplii obtained by hatching Artemia cysts, are

crucial live food items in fish and shrimp larviculture (Sorgeloos

et al., 2001). As a natural resource, the yield and quality of Artemia

cysts are greatly influenced by environmental factors, such as

salinity, temperature, food availability, and harvesting

management (Wurtsbaugh and Maciej Gliwicz, 2001; Torrentera

and Dodson, 2004; Van Stappen et al., 2020). In recent years, global

warming has led to an increase in surface evaporation and changes

in the spatiotemporal pattern of precipitation (Li et al., 2018),

resulting in changes in the spatiotemporal distribution and

biological diversity. Compared with marine and freshwater

environments, the diversity and number of species in high-

salinity habitat systems are often limited, making them more

vulnerable and posing greater threats to biodiversity within these

ecosystems. Salinity is the main environmental factor for the

survival and reproduction of Artemia (Torrentera and Dodson,

2004). Artemia can survive in a salinity range of 15–300 g/L (Sung

et al., 2008). However, the Artemia population suffers from

significant salinity fluctuations in salt lakes. For example, the

gradual drying of Lake Urmia in Iran has led to near-saturation

levels of lake salinity and the loss of more than 90% of the Artemia

population over the past two decades (Asem et al., 2019). In

contrast, the Qinghai-Tibet Plateau (QTP) is experiencing

warming and changing precipitation patterns, with a steady flow

of freshwater from glaciers and snowmelt on the QTP into the

plateau salt lakes, leading to salinity reduction and further

triggering the survival crisis of Artemia in these salt lakes (Song

et al., 2017). For instance, Qixiang Co, the most productive salt lake

for Artemia cysts on the QTP, has gradually approached a salinity

limit of 40 g/L in recent years.

Climate fluctuations are important drivers of changes in the

current distribution, genetic diversity, and abundance of many

species and communities (Hewitt, 2004). Species distribution

models (SDMs) are among the primary tools used to infer the

habitats of past species (Gavin et al., 2014). Combining SDMs with

genetic analyses can reveal population differences across

distributional ranges as well as population expansion and

contraction. Moreover, SDMs can help explain the adaptive

responses of different geographic populations to current and

future environmental conditions and provide more accurate range

estimates for the conservation management of threatened

populations. Although climate change has threatened the

sustainable production of Artemia cysts in recent years, currently

there have been no reports that have combined SDMs and

population genetics to study the responses of Artemia species to

global warming.

Genetic diversity is the core of conservation research on species

and a prerequisite for survival, adaptation, and evolution. The study
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of the diversity and population structure between and within

populations is essential for the effective management of genetic

resources. In recent years, molecular markers such as SSR, COI, and

ITS1 (Han et al., 2019; Li et al., 2024) have been used to study

the population genetic structure and genetic diversity of Artemia.

The results showed that the genetic structure was clear between the

Tibetan, Xinjiang, and Shanxi populations but was more complex

within the Tibetan populations. Compared to these molecular

markers, single-nucleotide polymorphisms (SNPs) have recently

been recognized as some of the most popular molecular markers for

genetic research because of their abundance, high stability, high

polymorphism, etc (You et al., 2020). The emergence of multiple

high-throughput sequencing technologies such as Rad-Seq, GBS,

and SLAF-Seq has made it possible to obtain a large number of

markers for population genetic analysis, germplasm resource

evaluation, and phylogenetic evolution studies in many animals

and plants. More recently, the SLAF-seq method was used to

develop SNP markers and construct the first high-density genetic

linkage map for Artemia franciscana (Han et al., 2021). However,

there are few reports on the application of SNP in Artemia

population genetics and molecular phylogeny (Li et al., 2024).

The genus Artemia has six sexually dimorphic species (Artemia.

franciscana, Artemia. persimilis, Artemia. salina, Artemia. sinica,

Artemia. urmiana , and Artemia. tibetiana) and many

parthenogenetic Artemia populations. Recently, three new species

(Artemia. murae, Artemia. frameshifta, and Artemia. sorgeloosi)

were identified in the salt lakes in Mongolia and China (Naganawa

and Mura, 2017; Asem et al., 2023). A. tibetiana and A. sinica are

indigenous to China. The traditional view is that all Artemia species

in Tibet belong to A. tibetiana. While salt lakes in Tibet are

geographically close, they are relatively isolated, showing a

fragmented distribution that may result in a certain degree of

genetic differentiation of Artemia in Tibet. In recent years, people

have introduced A. sinica and colonized successfully in Tibet,

which, combined with the fact that Artemia cysts can be

transmitted by waterfowls (Vest and Conover, 2011; Reynolds

et al., 2015), necessitates studies into gene flows between salt

lakes. There is evidence that Artemia populations in Tibet do not

all belong to A. tibetiana (Abatzopoulos et al., 1998; Asem et al.,

2023). Therefore, further research is needed to better understand

the population genetic structure of Artemia in this region.

Artemia has a short reproductive cycle, viviparous and

ovoviviparous reproduction modes, high level of genetic

variability, and easy handling in the laboratory; thus, it is an ideal

experimental organism in genetics, developmental biology, and

molecular biology studies (Baxevanis et al., 2006; Duan et al.,

2014, 2022). This study aimed to (1) determine the genetic

diversity of Artemia in central and western China to guide the

rational exploitation of Artemia resources, (2) explore the genetic

structure to provide a reasonable reference for taxonomy (especially

Tibetan Artemia), and (3) elucidate the relationship between

geographic isolation and genetic differentiation using IBD

(isolation by distance). This was the first time that Treemix and

Maxent were used to study gene flow and species distribution to

explore the historical dynamics of Artemia populations.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1375641
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Li et al. 10.3389/fmars.2024.1375641
2 Materials and methods

2.1 Sampling and sequencing

Artemia cysts were collected from salt lakes in the Nagri region

of Tibet (Qixiang Co, Bange Co, Dangqiong Co, Daduo Co, Dong

Co, Lagkor Co, and Nieer Co), Aibi Lake, and Balikun Lake in

Xinjiang Province, and Yuncheng Salt Lake in Shanxi Province

(Table 1, Figure 1). These salt lakes are large, rich in Artemia and

Artemia cysts, and cover different levels of salinity and can thus

represent the diversity of Artemia in the three regions. The cysts

were hatched for 24 h following the general hatching procedure

(Lavens and Sorgeloos, 1996) and Artemia nauplii were collected in

1-L cones and reared at 28°C and salinity 30 g/L for approximately

25 days and fed with the microalgae Chlorella vulgaris (De Vos

et al., 2019). Then 10 adult Artemia samples were collected from

each population, and DNA was extracted using a tissue genomic

DNA extraction kit (Tianjin Lanrui Biotechnology Co., Ltd.,

China). The DNA concentration was measured using a nucleic

acid protein meter (Eppendorf, BioPhotometer) and DNA quality

was determined on a 1.2% agarose gel.

Large-scale SNP discovery and genotyping were performed on

100 samples using SLAF-seq (Sun et al., 2013) to obtain genome-

wide molecular markers. Based on the results of electron digestion

training, a combination of HaeIII and Hpy166II restriction enzymes

was selected to digest genomic DNA. Briefly, the resulting

fragments were processed with A at the 3’ end, ligated with Dual-

index sequencing connectors, amplified using PCR, purified, mixed,

and gummed to select the target fragments (Kozich et al., 2013).
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Subsequently, DNA fragments of 364–414 bp were gel-purified and

diluted for sequencing on an Illumina High-seq 6000 platform.
2.2 SNP calling

The SNP markers were developed using the sequence type with

the highest depth in each SLAF tag as the reference sequence (Wei

et al., 2020). After an initial quality check of the raw data, low-

quality reads (N content > 10%, > 50% of bases with quality values <

10) were removed. We clustered all the paired-end reads into SLAF

loci with clear index information based on sequence similarity

above 90% using LAST software and concatenated all loci into a

“fake” reference genome. For each locus, a reference sequence was

selected based on the maximum sequencing depth of the

corresponding SLAF tag. Sequenced reads were compared to the

reference genome using BWA, and SNPs were developed using both

GATK and SAM tools (Li et al., 2009; McKenna et al., 2010). The

SNP marker intersection obtained using both methods was used as

the final SNP marker dataset (Li and Durbin, 2009). Finally, SNPs

with minor allele frequencies (MAF) above 5% and completeness

above 50% were selected for population genetic analysis.
2.3 Population genetic analysis

The population structure was constructed and genetic diversity

was calculated based on 156,695 SNPs. Genetic diversity indicators

included the number of alleles (Na), expected heterozygosity (He),
TABLE 1 Origin of Artemia cyst samples in this study.

No. Locality Abbreviation for locality Species Geographic coordinates

1 Aibi Lake, Xinjiang ABL A. parthenogenetica
44°52′48″N,
82°54′0″E

2 Balikun Lake, Xinjiang BLK A. parthenogenetica
43°40′0″N,
92°43′60″E

3 Yuncheng, Shanxi YC A. sinica
34°58′60″N,
111°0′0″E

4 Qixiang Co, Tibet QXC unclassified
32°30′0″N,
90°0′0″E

5 Bange Co, Tibet BGC unclassified
31°44′56″N,
89°26′60″E

6 Dangqiong Co, Tibet DQC unclassified
31°32′50″N,
86°41′13″E

7 Daduo Co, Tibet DDC unclassified
30°51′17″N,
85°40′23″E

8 Dong Co, Tibet DC unclassified
32°12′52″N,
84°41′30″E

9 Lagkor Co, Tibet LGC A. tibetiana
32°19′60″N,
84°10′0″E

10 Nieer Co, Tibet NEC unclassified
32°18′9″N,
82°10′44″E
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Nei diversity index (Nei’s), number of observed alleles (No),

observed heterozygosity (Ho), polymorphism information content

(PIC), and the Shannon-Wiener index (I). Pairwise FST values

between populations were calculated using Stacks (Catchen

et al., 2013).

A neighbor-joining tree (NJ tree) was constructed using MEGA

X software (Kumar et al., 2018) and a maximum likelihood tree (ML

tree) was constructed using IQ-Tree software (Nguyen et al., 2015).

The NJ tree was constructed using the Kimura 2-parameter model

with 1,000 bootstrap replicates. The optimal model obtained by

evaluating the DNA model using ModelFinder was TVM+F+ASC

+R5 (Kalyaanamoorthy et al., 2017), and a ML tree was constructed.

Based on the selected SNPs, the Admixture software was used to

analyze the population structure. The optimal number of groups

was determined based on the valley of the cross-validation error rate

and the clustering results were cross-validated. Principal

component analysis was performed using the EIGENSOFT

software to cluster the samples (Price et al., 2006). The Mantel

test was performed using GenAlEx 6.5 to test the correlation

between the genetic and geographic matrices and to determine

whether the genetic differentiation pattern was consistent with the

isolation-by-distance model (Peakall and Smouse, 2012).
2.4 Gene flow between populations

TREEMIX v.1.13 (Pickrell and Pritchard, 2012) was used to

calculate the level of gene flow observed in the populations.

Genome-wide allele frequency data were used to plot maximum

likelihood trees, which inferred splitting and mixing events between

clades and indicated the magnitude and direction of gene flow in the

phylogenetic tree. To determine the number of gene migration
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events occurring between clades, the migration values were set to 1–

20. To assess the optimal number of migrations, the variance of the

interpopulation correlations was explained using the R package

TreemixVarianceExplained.R (https://github.com), with over 99.8%

of the variance indicating a reliable model (Pickrell and

Pritchard, 2012).
2.5 SDM construction and
parameter optimization

To study the impact of climate change on the distribution of

Artemia, MaxEnt v3.4 (Phillips et al., 2006) was used to establish

SDMs for five time periods: Last Interglacial period (LIG, ~120–140

kya), Last Glacial Maximum (LGM, ~21 kya), Middle Holocene (5–

7.5 kya), present, and future (2070 RCP8.5). Before establishing the

SDMs of Artemia, the distribution data were obtained from three

sources: sampling sites, the Global Biodiversity Information

Network (GBIF, http://www.gbif.org), and literature records

(Supplementary Table S1) (Evans and Jacquemyn, 2020; Wei

et al., 2020). To avoid the effect of distribution data redundancy

on model simulation overfitting, redundancy analysis of the

distribution data for each population was performed using

ENMTools (Warren et al., 2010; Li et al., 2023). Nineteen climate

variables (Supplementary Table S2) were downloaded from

WorldClim (www.WorldClim.org) at a resolution of 2.5 arcmin

for the LGM and 30 arcsec for the other periods. To avoid

multicollinearity, ENMTools was used to perform the correlation

analysis of bioclimatic variables and retain only one variable with a

Pearson correlation coefficient > 0.8. After screening, four

representative variables (bio1: Annual Mean Temperature, bio4:

Temperature Seasonality, bio12: Annual Precipitation, and bio15:
frontiersin.o
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Precipitation Seasonality) were identified, and bio14 (Precipitation

of Driest Month) was identified to affect aquatic organisms in lake

water bodies (Hou et al., 2022).

MaxEnt provides a set of default parameters when constructing

the distribution model; however, the default parameters are

influenced by subject data. A model with default parameters is

sensitive to subject data and prone to overfitting, whereas the model

prediction results often lead to large differences from the actual

distribution. Therefore, the optimization of model parameters is

crucial for improving both the prediction accuracy and reliability of

the results (Fernández and Morales, 2019). ENMeval data packages

were used to optimize the parameters, analyze the complexity of the

model under various parameter conditions, evaluate the complexity

of the model by testing the Akaike’s Information Criterion (AIC)

value of the MaxEnt model correction under different parameter

conditions (i.e., AIC corrected (AICc)), and select the model

parameter with the lowest complexity. The feature combination

(FC) (L, Q, H, T, P) was used to form 29 combinations, with a

regularization multiplier (RM) range of 0.5–6, interval of 0.5, 12

multiplicity parameters, and 348 parameter combinations. Of the

distribution data, 75% were used as the training set for SDM

correction and the remaining 25% were used to test the validity

of the model. Using the R language kuenm (https://github.com/

marlonecobos/kuenm) package for simulation optimization, the

model with an average omission rate lower than 5% was selected

as the best model (Cobos et al., 2019). Finally, ArcGIS v.10.4 was

used to manipulate and visualize the model output.
2.6 Niche overlap

ENMTools was used to compare SDM models for the four

groups to assess the predicted ecotone distributions and ecotone

differences. Schoener’s D and Warren’s I were used to measure
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ecological niche divergence in Artemia (Schoener, 1968; Warren

et al., 2008; Shengwu et al., 2016).
3 Results

3.1 Sequencing and SNP calling

A total of 316 Mb of read data were obtained by sequencing,

with an average sequencing Q30 of 92.40% and an average GC

content of 37.35%. In addition, 1,224,409 SLAF tags were

developed, containing 260,589 polymorphic SLAF tags with an

average sequencing depth of 19.66 x. In total, 1,274,698 SNP

markers were identified (Supplementary Table S3).
3.2 Phylogenetic inference

The phylogenetic tree showed four major gene clusters in the

neighbor-joining tree and the maximum likelihood tree, consistent

with geographical location (Figure 1). The Tibetan populations were

divided into 2 subgroups (Figure 2), which we defined as the eastern

Nagri populations (Qixiang Co: QXC, Bango Co: BGC, Dangqiong

Co: DQC, Daduo Co: DDC) and the western Nagri populations

(Lagkor Co: LGC, Dong Co: DC, Nieer Co: NEC), Xinjiang

populations (Aibi Lake: ABL and Balikun Lake: BLK), and Shanxi

population (Yuncheng Salt Lake: YC). Based on the valley of the

cross-validation error, the optimal K value was 4 (Supplementary

Figure S1). When K=2, Xinjiang populations and the Shanxi

population were separated from the Tibetan populations; when

K=3, BGC and QXC were separated from the Tibetan populations;

when K=4, Tibetan populations were divided into eastern Nagri

populations (BGC, QXC, DDC, DQC) and western Nagri

populations (DC, LGC, NEC) and Xinjiang populations were
A B

C

FIGURE 2

Phylogenetic inference of 10 Artemia populations in China. (A): Maximum likelihood (ML) tree for 10 Artemia populations yielded four major gene
clusters, namely, Shanxi population, Xinjiang populations, Eastern Nagri populations and Western Nagri populations. (B): Neighbor-joining (NJ) tree
for 10 Artemia populations, and the results were consistent with the ML tree. (C): Optimal population structure of Artemia from 10 inland salt lakes in
China at K = 4. Posterior probabilities are available in Supplementary Figure S3.
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separated from the Shanxi populations (Supplementary Figure S2).

The results were consistent with the phylogenetic analysis. Although

the Tibetan populations were differentiated, intragroup similarity was

high in the principal component analysis. Its differences from the

Xinjiang and Shanxi populations were large, and we then performed

another principal component analysis on the Artemia populations in

the Nagri region; in PC1/PC2, LGC, DC, and NEC could be clustered

together, and in PC1/PC3, QXC, BGC, DDC, and DQC could be

clustered together (Figure 3).

In summary, the clustering results of the principal component

analysis were consistent with the results of the phylogenetic and

population structure analyses and the populations of the ten salt

lakes from different regions of China were classified into four

geographically and genetically distinct groups.
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3.3 Genetic diversity analysis

Overall, the genetic diversity of the Tibetan populations was

higher than that of the other populations, whereas the Shanxi

population had the lowest genetic diversity. The maximum values

of all genetic diversity indicators were observed in NEC. The

expected number of alleles ranged from 1.132–1.243 and the

expected heterozygosity ranged from 0.076–0.147. The average

number of alleles observed and observed heterozygosity ranged

from 1.217–1.460 and 0.06–0.1. The average polymorphism

information content values ranged from 0.060 to 0.119, Nei´s

diversity index ranged from 0.081 to 0.158, and Shannon Wiener

index ranged from 0.113 to 0.224. Among the Tibetan populations,

the QXC population exhibited the lowest genetic diversity. In the
TABLE 2 Genetic diversity of 10 Artemia populations in China.

Group Ea Oa He Ho Nei’s PIC I

ABL 1.164 1.241 0.091 0.084 0.098 0.072 0.134

BLK 1.207 1.364 0.122 0.086 0.132 0.099 0.185

YC 1.132 1.217 0.076 0.06 0.081 0.060 0.113

QXC 1.212 1.387 0.127 0.079 0.137 0.103 0.193

BGC 1.227 1.423 0.137 0.076 0.148 0.111 0.208

DDC 1.236 1.459 0.143 0.100 0.154 0.117 0.220

DQC 1.231 1.432 0.139 0.100 0.149 0.113 0.212

LGC 1.234 1.432 0.141 0.094 0.151 0.114 0.214

DC 1.221 1.405 0.133 0.082 0.145 0.108 0.202

NEC 1.243 1.46 0.147 0.098 0.158 0.119 0.224
Ea, expected allele number; He, expected heterozygosity; Nei’s, Nei diversity index; Oa, observed allele number; Ho, observed heterozygosity; PIC, polymorphism information content; I, Shannon
Wiener index.
A B

C

FIGURE 3

PCA of Artemia from 10 inland salt lakes in China. (A): PCA of 10 populations. (B): PCA (PC1/PC2) of Nagri populations. (C): PCA (PC1/PC3) of
Nagri populations.
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Xinjiang population, the genetic diversity of ABL was lower than

that of the BLK population. Interestingly, we found that the genetic

diversity of the Tibetan populations tended to be higher in the west

and lower in the east (Table 2).
3.4 Genetic differentiation and Mantel test

Moderate divergence occurred between the Tibetan

populations, with greater genetic differentiation between the

Xinjiang and Shanxi populations than between the Tibetan

populations (Supplementary Table S4). The highest genetic

differentiation between ABL and YC was 0.621 and the lowest

genetic differentiation between DQC and DDC was 0.065. Four

populations (QXC, BGC, DQC, and DDC) were distributed in the

eastern Nagri region and three populations (DC, LGC, and NEC)

were distributed in the western Nagri region. Genetic differentiation

within the eastern and western populations was less than that

between the eastern and western populations. The results showed

a significant positive correlation (R2 = 0.857; P<0.0001) between the

genetic and geographic distances of the ten Artemia populations

(Figure 4), whereas a slightly weaker correlation was obtained by the

Mantel test after excluding the Xinjiang and Shanxi populations (R2

= 0.5052; P<0.01).
3.5 Gene flow between populations

Applying m=10, the model variance explained 99.9%

(Supplementary Figure S4); therefore, this m value was

considered the input value for the model operation. The results of

the TREEMIX software showed that the Tibetan, Xinjiang, and

Shanxi populations formed three large clades, whereas the Tibetan

populations could be divided into eastern and western Nagri

populations. Unidirectional and frequent gene flow was observed

from the Shanxi population to the eastern Nagri population. There

were not only mutual gene flows between the three major clades but

also between the eastern and western Nagri regions, where there
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were two strongly supported events: the first from ABL to BLK and

the second from LGC to DQC (Figure 5).
3.6 SDM parameter optimization

Based on the area under the curve, AICc, and other indicators

(Supplementary Table S5), we determined the FC and RM for

different groups: FC=T and RM=0.5 for Xinjiang populations, FC

=P and RM=0.5 for Shanxi population, FC =LPH and RM=5 for

eastern Nagri populations, and FC =LQPT and RM=0.5 for western

Nagri populations (Table 3).
3.7 SDM

The area under the curve values of all models exceeded 0.95,

indicating model reliability (Supplementary Table S6). During the

three historical periods, the fitness range of all groups, except for the

western Nagri region, showed a gradual expansion. From the mid-

Holocene to the current period, the fitness range of Artemia

populations in the eastern and western Nagri regions expanded,

while the fitness area distribution of the Shanxi and Xinjiang

populations contracted. In the present study, the eastern Nagri

population had the largest fitness area, whereas the western Nagri

population had the smallest (Supplementary Table S7).

Interestingly, the mid-Holocene and future periods (2070

RCP8.5) were very similar. It should be noted that the range in

Tibet will contract rapidly, with the range in the western Nagri

region contracting to almost zero under 2070 RCP8.5 (Figure 6).
3.8 Niche overlap

The ecological niche overlap between populations was small,

except between the Xinjiang and eastern Nagri populations

(Schoener’s D: 0.000885–0.2237, Warren’s I: 0.007397–0.514372,

Table 4). This implies that biological invasion is relatively easy

for Artemia.
A B

FIGURE 4

Correlation between genetic differentiation (FST) and geographic distance among Artemia populations. (A): Mantel test of 10 populations. (B): Mantel
test of Nagri populations.
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4 Discussion

Genetic diversity is the basis of species diversity and an

important prerequisite for the study of any species, affecting the

evolutionary and reproductive potential of the species or population

(Reusch, 2014; Schrieber and Lachmuth, 2017). In this study, ten

individuals from each salt lake were used to develop SNP and the

genetic diversity of the Tibetan populations was found to be higher

than that of the other populations, while the Shanxi population had

the lowest genetic diversity. This result was inconsistent with our

previous findings in these populations (Han et al., 2019), in which

the Shanxi population had the highest genetic diversity and the

Tibetan population had the lowest. This may be due to the

differences in the types and numbers of molecular markers,

evaluation methods, and populations. In addition, salt lakes with

higher Artemia cyst production (YC, QXC, and ABL) had lower

genetic diversity. This is likely due to human activities, such as cyst

collection and mineral extraction, which may also cause a decrease

in the biomass of Artemia and changes in the chemical

characteristics of the lake. Interestingly, within Tibetan Artemia

populations, genetic diversity tended to be higher in the west and

lower in the east. There are several possible explanations for this.

One reason for this may be that the complex geographical

environment and evolutionary history of the QTP have a long-

lasting impact on species survival and promote species adaptation

to local conditions (Mao et al., 2021; Shen et al., 2021). Studies have
Frontiers in Marine Science 08
indicated that local adaptations may affect the genetic diversity of

populations (Escalante et al., 2020; Zhao et al., 2020). For

commercially exploited salt lakes (ABL, YC, and QXC) that have

low genetic diversity, exploiters must consider rational exploitation.

Research on Artemia has shown that some morphological features

could differ significantly not only in different species (Zheng and

Sun, 2008) but also in different salt lakes with different hydro

chemical characteristics (Zheng and Liu, 2009; Qi et al., 2021),

suggesting that Artemia populations could develop local adaptation

and exhibit different adaptive characteristics and that local

adaptation may further affect the genetic diversity of Artemia

populations in different lakes. Studies have also found that some

invasive species of Artemia show decreased genetic diversity when

they enter new habitats (Kappas et al., 2004). Thus, the relatively

low genetic diversity in the DQC may be due to an introduction

event nearly 20 years ago (Jia et al., 2015).

This study revealed the genetic structure of ten geographical

populations of Artemia in inland salt lakes in China. Unlike

previous studies on Asian Artemia (Kappas et al., 2011; Eimanifar

et al., 2015), our results suggest that the genetic structure of Artemia

in Tibet is more complex. The selection of the best K value for cross-

validation must be performed carefully, and multiple datasets, such

as phylogenetic trees and PCA, should be combined to determine

the final genetic structure of the species (Liu et al., 2022; Mamat

et al., 2023). Population structure analyses showed that ten 10

populations from different regions of China could be classified into

four geographically and genetically distinct groups. Notably,

clusters were more abundant in the Nagri region, suggesting the

existence of a more refined population genetic structure. The

combination of genetic structure and FST values further showed a

high level of genetic differentiation among different Artemia groups.

Geographical barriers and distances typically cause genetic

differentiation (Goetze, 2003; Binks et al., 2019; Fu et al., 2022;

Liang et al., 2022). The altitude of the Tibetan region is very high

(above 4500 m), whereas Yuncheng Salt Lake (320 m), Aibi Lake

(189 m), and Balikun Lake (3300 m) are relatively low. These low-

elevation regions may act as barriers to geographic dispersal (Milá

et al., 2013). In addition, the Kunlun, Qilian, Tianshan, and Qinlian

Mountains separate Artemia populations and impede genetic flow

between the populations in these three regions (Funk et al., 2005;

Chen et al., 2006; Von Oheimb et al., 2013). The Mantel test

revealed that the genetic differentiation among Artemia

populations likely stemmed from the geographical distance

between clades. Given the high correlation between geographical

distance and genetic distance in 10 populations (R2 = 0.857;

P<0.0001), we can speculate that geographic distance

and geographic barriers are major contributors to genetic

differentiation among Artemia populations. In the Tibetan

Nagri region, these Artemia populations can be divided into

eastern Nagri populations (BGC, QXC, DDC, and DQC) and

western Nagri populations (DC, LGC, and NEC), with a

moderate correlation between geographical distance and genetic

distance (R2 = 0.5052; P<0.01). The climate of Tibet is unique and

complex, with overall characteristics of severe cold in the northwest

and humid in the southeast, and a variety of regional climates and

obvious vertical climate zones due to the complex topography
FIGURE 5

Interpopulation migration events inferred from TreeMix.
TABLE 3 Optimal MAXENT model parameters for 4 Artemia groups.

Group FC RM

Xinjiang T 0.5

Shanxi P 0.5

Eastern Nagri LPH 5

Western Nagri LQPT 0.5
T, Threshold; P, Product; L, Linear; H, Hing; Q, Quadratic.
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(Deng et al., 2019; Shi et al., 2022), which may explain the

divergence of populations in the eastern and western Nagri regions.

Geological events occurring at certain times in history, such as

the uplift of a mountain range, downcutting of rivers, and formation

of deep valleys, disrupt the original balance of genetic exchange and

cause genetic differentiation of species. These genetic divergences

often appear as divisions between clades and usually coincide with

geological events (Lemmon et al., 2007; Akın et al., 2010; Pickrell

and Pritchard, 2012; Yan et al., 2013; Favre et al., 2015).

Undoubtedly, the uplift of the QTP is one of the most prominent

recent geological events on a global scale. The current mainstream

view is that the QTP originated from the collision of the Indian and

Eurasian plates at approximately 55–40 Mya (Hu et al., 2016),

which began in the middle to late Eocene and ended in the late

Miocene, with some areas reaching altitudes of 4,000 m (Li, 2008;

Du, 2021). Previous studies on the timing of Artemia differentiation

(Eimanifar et al., 2015) indicated that A. sinica separated from other

populations at 19.99 Mya (95% HPD 9.37–36.69 Mya), a period

corresponding to the second accelerated uplift of the QTP. This was

mainly due to the change in landform. Gene flow between the

Shanxi population in central China and the western population was

hindered, resulting in genetic differentiation. Similarly, the

differentiation of parthenogenetic Artemia and A. tibetiana

occurred at 5.41 Mya (95% HPD 2.19–9.99), a period

corresponding to the third accelerated uplift of the QTP.

Therefore, it is likely that the differentiation of Artemia was
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related to successive geological events (three accelerated uplifts of

the QTP). Each stage of these movements may produce fragmented

habitats that limit the dispersal of previously contiguous

populations owing to geographical isolation, thus promoting the

formation of allopatry patterns (Liao et al., 2015; Scotti-Saintagne

et al., 2019). Considering that Artemia is distributed in inland salt

lakes with a relatively weak diffusion ability, this genetic

differentiation effect is more obvious. Populations living in

different regions have developed local adaptations that increase

their genetic differentiation (Orsini et al., 2013; Colautti and Lau,

2015; Zhang et al., 2022).

Treemix analysis revealed that A. sinica underwent

unidirectional gene flow in four salt lakes: QXC, BGC, DQC, and

DDC. Despite the large environmental differences between habitats,

the relatively small ecological niche overlap between Artemia

populations makes invasion and successful colonization possible.

As an aquatic invertebrate, the dispersal capacity of Artemia is

limited and geographic isolation caused by geologic events

contributes significantly to differentiation among Artemia

populations; however, gene flow among Artemia populations can

still be detected based on SLAF-seq data. We suggest that this is

passive dispersal, mainly from anthropogenic introductions and

birds (Vest and Conover, 2011; Reynolds et al., 2015). The genetic

structure of Tibetan Artemia is complex and its taxonomic status

remains controversial (Sainz-Escudero et al., 2021). The Treemix

results demonstrated that a certain amount of gene flow exists
FIGURE 6

SDMs of four Artemia groups in five different historical periods. Mid-Holocene, 5–7.5 kya, last glacial maximum [LGM], 21 kya and the last interglacial
[LIG], 120–140 kya) times. Warmer colors indicate higher probability of occurrence as predicted by MAXENT. Eastern Nagri, Western Nagri, Xinjiang,
Shanxi respectively represent the distribution of the populations in the corresponding period.
TABLE 4 Comparison of niche overlap among 4 Artemia groups using Schonner’s D (upper diagonal) and Warren’s I (lower diagonal).

Groups Shanxi Xinjiang Eastern Nagri Western Nagri

Shanxi 1 0.159508 0.101253 0.000885

Xinjiang 0.347882 1 0.2237 0.038422

Eastern Nagri 0.271914 0.514372 1 0.167561

WesternNagri 0.007397 0.149041 0.396476 1
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between Artemia populations and that geological events and gene

flow promote interspecies hybridization, leading to hybrid

polyploidization and the formation of isoploid hybrid species

(Wu et al., 2022), which may have contributed to the current

complex genetic structure of Tibetan Artemia. Considering the

effects of climate change on bird migration routes, the genetic

structure of the Tibetan Artemia populations may undergo further

changes in the future.

Pleistocene climate fluctuations and periodic glaciations have

contributed to the current patterns of genetic variation in biological

species (Shepard and Burbrink, 2009; Neaves et al., 2012; Evans and

Jacquemyn, 2020). During glaciation, especially during LGM, which

had a dry climate, low temperatures, and massive glacial coverage

globally (Gasse, 2000; Clark et al., 2009), many species experienced

severe habitat range contractions and survived only in restricted

geographic range refuges (Hewitt, 2004). The present study found

that the distribution of the Tibetan and Shanxi populations shrank

during the LGM and the Xinjiang populations experienced range

expansion but a significant decrease in the proportion of suitable

habitats. During warm interglacial periods, the retreating ice cap

created new suitable habitats and species began to expand away

from their refuges (Hewitt, 2000; Jenkins et al., 2018). Our SDM

results were consistent with this phenomenon, with all populations

having optimal suitable areas during the LIG, except for the western

Nagri populations, which had almost no suitable areas during the

LIG. The Pleistocene has experienced many alternating glacial and

interglacial periods and is one of the most volatile periods in history.

Climatic fluctuations had a strong impact on Artemia suitable areas,

especially in Shanxi, where populations experienced strong

contraction and expansion. We hypothesize that the influence of

Pleistocene climate fluctuations on the distribution patterns of

Artemia may be common in the aquatic life of inland salt lakes in

China. In the future (2070 RCP8.5), the suitable area of Tibetan

populations will shrink, while Shanxi and Xinjiang populations will

expand. Today, the world’s glaciers are retreating and speeding up

due to relatively rapid global warming. Given the importance of

salinity to Artemia (Abatzopoulos et al., 2003), it is not difficult to

understand that the lake expansion and salinity reduction in QTP

salt lakes will pose a serious threat to the survival of Artemia in

these plateau salt lakes. Thus, efforts should be made to establish

and improve corresponding monitoring, assessment, and

protection systems for Artemia resources.
5 Conclusion

A large number of SNPs were identified in 10 Artemia

populations. These populations can be classified into four groups

(Shanxi, Xinjiang, eastern Nagri, and western Nagri), with both

Nagri groups exhibiting the highest levels of genetic diversity. The

Shanxi population showed unidirectional gene flow to the eastern

Nagri population. SDMs were established for Artemia populations
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for the first time, which will help us understand the impact of

climate change on Artemia distribution worldwide. The genetic

diversity results and declining trend of Tibetan populations indicate

that Artemia germplasm resources require protection to ensure the

sustainable development of Artemia resources.
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