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Introduction: The motion of a ship at sea is complex. This motion is affected by

environmental factors such as wind, waves, and currents. These factors cause the

ship’s movement to be nonlinear, dynamic, and uncertain. Such complex motion

can impact the ship’s performance and pose a safety risk. This has become an

urgent problem in maritime safety. This study aimed to improve the prediction of

a ship’s roll motion with high accuracy. As such, the study proposes a combined

prediction model. This model integrates data decomposition, dimensionality

reduction, deep learning, and optimization techniques.

Methods: The model uses the variational mode decomposition (VMD) method to

break down the ship’s roll motion data into components at different scales. This

improves the smoothness of the data. Principal component analysis (PCA) is

applied to reduce the dimensionality of the decomposed components. This step

helps remove noise and redundant features that could affect the prediction results.

The core of the model combines temporal convolutional networks (TCNs) and

bidirectional gated recurrent units (BiGRUs). These deep learning techniques

enable the model to extract both spatial features and temporal dependencies

from the data. An attention mechanism is added to focus on the most important

features,improving the prediction accuracy of the model. Finally,the improved

dung beetle optimization (IDBO) algorithm is used to optimize the hyper-

parameters of the model. This step further enhances the model performance.

Results: Simulation experiments were conducted using full-scale data from the

Yukun ship. The results show that the proposed prediction model has a root

mean square error reduction of about 78.25% and an increase of about 65.63%

reliability compared with TCN.

Discussion: The model outperforms traditional methods in terms of accuracy

and stability. This demonstrates its potential for improving the prediction of ship

motion an attitude.
KEYWORDS

ship rolling motion, multi-dimensional data-driven, principal component analysis,
variational mode decomposition, temporal convolutional network, bidirectional gated
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1 Introduction

Ships play a very important role in the foreign trade of countries

worldwide. Therefore, the safety of ship navigation has always been

the focus of research by scholars in the field of marine engineering.

When faced with a complex maritime environment made up of a

combination of wind, waves, currents, and other factors, a ship will

produce six degrees of freedom motions such as roll, pitch, and

heave, among others. These oscillatory motions combine with each

other to form a complex uncertain motion with nonlinear, non-

stationary, and time-varying dynamics. Of these, the roll motion

has great influence on the ship’s motion attitude, which poses a

serious challenge to the maneuverability of the ship during sea

operations and the safety of the takeoff and landing of the aircraft

on board (Cheng et al., 2019; Huang et al., 2014; Fossen, 2011).

Therefore, by grasping the ship roll motion state in a future period

of time, the ship’s motion attitude can be adjusted in advance so

that the ship can maintain a relatively stable motion attitude, which

can improve the safety and efficiency of its maritime operation

(Takami et al., 2021; Peng, 2023). At the same time, as the main

method of maritime management is also carried out through the

boat, the degree of swaying of the law enforcement vessel can be

reduced if we can accurately forecast the angle of the ship roll

motion. This can effectively reduce the fatigue of the managers and

further improve the efficiency and safety of maritime management,

which has a very important significance in the study of ship roll

prediction in the field of engineering.

Researchers and scholars began the study of the accurate

prediction of a ship’s motion attitude very early on. Limited by

the development of computing equipment, the study of a ship’s

motion attitude is based on traditional statistical analysis of a class

of methods. There is also the use of hydrodynamic analysis with the

Kalman filtering method (Kaplan, 1969; Triantafyllou and Athans,

1981). However, this method cannot meet the time-varying

characteristics of a ship’s motion attitude in the complex ocean.

Moreover, it is difficult to achieve a stable and accurate prediction of

a ship’s motion attitude. Therefore, it is obvious that this method

cannot be realized for engineering applications.

Later, it was found that the use of the ship’s historical motion

attitude data to establish a time series model can avoid solving

complex ship state equations and response functions. Firstly, it is

assumed that the ship’s motion attitude data at sea are a smooth

time series, so that an autoregressive (AR) model (Jiang et al., 2020)

and a moving average autoregressive (ARMA) model (Broome and

Hall, 1998; Moon et al., 2021) can be used for short-term forecasting

of a ship’s motion attitude. Under certain conditions, integrating

the moving average autoregressive model (ARIMA) (Wang et al.,

2021; Zafeiraki, 2022) has shown a stronger performance. These

models have the advantages of simple parameter calculations and

relatively small computations, but these presuppose that the time

series is characterized by smoothness and conformity to normal

distribution. However, ships move in complex marine

environments and their data are characterized by complexity,

nonlinearity, and highly time-varying characteristics. Hence, the
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prediction accuracy using these models is low and cannot be applied

in scenarios of ship motion forecasting.

Breakthroughs in high-performance computing equipment

have made machine learning available for practical applications in

many fields. Due to its powerful nonlinear approximation

capability, machine learning can be used for the accurate

forecasting of nonlinear, non-smooth stochastic time series.

Extreme learning machines (ELMs) have been proposed for the

roll prediction of ships and for very short-term wind speed

prediction (Guan et al., 2018; Wang et al., 2018). One drawback

faced by ELMs in both applications is that, if the inputs are not

reasonable, the prediction results will be poor. In long-time series

prediction, what is often used is the support vector regression (SVR)

model, which is a variant of the support vector machine (SVM)

when applied to regression tasks (Bo and Shi, 2013; Li et al., 2016).

Radial basis function (RBF) networks have also been utilized in ship

motion time series prediction (Yin et al., 2018). Recurrent neural

networks (RNNs) are constructed models dedicated to dealing with

time series problems and have performed very well when facing this

class of problems (Ni and Ma, 2020; Zhang et al., 2019). However,

RNNs run the risk of gradient vanishing and explosion when

dealing with longer time series. Therefore, subsequent long short-

term memory (LSTM) and gated neural networks (gated recurrent

units, GRUs) have emerged to compensate for this shortcoming,

which is realized by adding three special gates: input, output, and

forgetting (Zhang et al., 2021; Su et al., 2020). Although a lot of

effort has been invested in the development of such neural network

algorithms to deal with some complex, strongly nonlinear time

series data, such as the ship motion attitude data, there are still

problems with regard to poor prediction accuracy and unstable

prediction results. Therefore, researchers began to turn their

attention to hybrid prediction.

A hybrid prediction model is an integrated model composed of

different models to achieve a common prediction. Gao et al. (2023)

proposed a ship motion attitude prediction model by combining the

adaptive discrete wavelet transform (ADWT) algorithm and the

spatiotemporal residual recurrent neural network (RRNN), which

can use the ADWT to process the input data and then combine with

the characteristic of RRNN of being able to change the structure and

parameters to effectively improve the prediction accuracy. Zhou

et al. (2023) first used variational modal decomposition (VMD) to

decompose the input data and then to input the decomposed data

into GRU for prediction. At the same time, the binary system

optimization (BSO) algorithm was used to optimize the GRU,

which also made use of the advantages of different algorithms to

complement each other and improve the accuracy of the model

prediction results. Of course, there are many other such hybrid

forecasting models (Zhang D. et al., 2023; Geng et al., 2024; Zhang

et al., 2024; Xu and Yin, 2024), and the selection of appropriate

algorithms for the construction of the hybrid forecasting model is

extremely crucial for the prediction results.

As ship transverse motion data have both temporal dependence

and spatial correlation, in order to obtain the laws between them in

ship transverse motion, most of the hybrid prediction methods that
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combined convolutional neural network (CNN) and RNN have

been previously used (Li et al., 2024; Agga et al., 2022; Cui et al.,

2024). However, this also made the whole model more complicated,

and the results were not too good. Therefore, temporal

convolutional networks (TCNs) were developed (Bai et al., 2018),

which combine the performance of both, with a fast learning speed.

At the same time, it can obtain the temporal relationships in the

sequences very well. One of the major challenges of a long time

series is the huge amount of data involved. In order to facilitate the

model focusing on learning the data with higher importance and

avoiding the impact of less important features, an attention

mechanism that focuses on feature selection learning was

proposed (Bhunia et al., 2019). One of the difficulties of machine

learning is parameter tuning. As such, there are many hybrid

prediction methods that incorporate intelligent optimization

algorithms into the model and use these optimization algorithms

to optimize the hyper-parameters (Zhang B. et al., 2023). Fu et al.

(2024) proposed the dung beetle optimization (DBO) algorithm to

optimize the TCN. The results showed that this model has high

accuracy and generalization. The performance of DBO is more

stable in most cases, and its convergence is faster compared with

other swarm intelligence optimization algorithms. Therefore, its use

as a basis for improvement is a more appropriate direction.

Due to the complexity, nonlinearity, and instability of the ship roll

data, in order to improve the prediction accuracy of the ship roll

motion, a multidimensional data-driven ship transverse motion

prediction model based on VMD–principal component analysis

(PCA) and improved dung beetle optimization (IDBO)–TCN–

bidirectional gated recurrent unit (BiGRU)–Attention is proposed in

this paper. Firstly, VMD can decompose the time series ship motion

data and remove noise according to its characteristics. The processed

data can then effectively reduce its non-stationarity so that the input

data have certain characteristics of smooth randomness, which

improves the accuracy of data prediction. Secondly, the PCA method

was used to extract the important sequences of the time series data after

decomposition of the ship’s motion so as to improve the influence of

the important data and to reduce the influence of the secondary data on

the prediction results. Thirdly, a forecasting model using the IDBO

algorithm combined with the attention mechanism optimized over

time CNN and GRU was used for forecasting. The proposed hybrid

model can improve the accuracy and stability of the ship’s motion

attitude prediction. After verification of the real ship data of the Yukun

ship, the school training ship of Dalian Maritime University, accurate

and real-time prediction of the ship motion attitude is achieved, which

improves the safety of ship navigation and provides certain support for

the improvement of comfort in the process of maritime management,

as well as improving the efficiency and safety in maritimemanagement.
2 Methods

This section introduces the various modules of the hybrid

forecasting model for ship roll motion, mainly including the

VMD and PCA algorithms in the data pre-processing, the time

CNN, the bidirectional gated neural network unit, and the self-
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attention mechanism in the combined forecasting model, as well as

the mechanism of the IDBO algorithm with the hyper-parameter

optimization strategy.
2.1 Variational modal decomposition
algorithm

Due to empirical modal decomposition (EMD) suffering from

endpoint effects and modal component aliasing, Dragomiretskiy

and Zosso (2014) proposed variational modal decomposition

(VMD). VMD is a non-recursive model that searches for the

optimal solution of the variational model in each iteration in

order to determine the center frequency of the components of

each decomposition and the bandwidth (Liu et al., 2024). As it has

very strict constraints, it decomposes the modal components to

obtain the minimum sum of the bandwidth of the center frequency,

and the original signal can be obtained after all modal components

are superimposed.

Its solution process is as follows:

After inputting the ship roll data sequence A(t), in order to

make the decomposed individual k sequence satisfy the constraints,

then the constrained variational model of the VMD is:

m in
(uk ,wk)
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∂t d (t) +

j
p t
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∗ uk(t)

� �
ej

wkt
���� ����2

2
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In Equation 1, uk and wk are the k modal component and the

center frequency, respectively. ∂t is the partial derivative of t With

respect to d (t) is the Dirac distribution function, and ‘ *‘ denotes a

convolution operation.

In order to solve the above constrained variational model, the

augmented Lagrangian function is introduced. The Equation 2 can

be obtained using the quadratic penalty factor and the Lagrangian

multiplier:
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a is the penalty factor; l is the Lagrange multiplier; and hi is the
inner product operator. Based on this unconstrained variational

model, the modal component uk and the Lagrange multiplier wk can

be obtained by using the alternating multiplier method (ADMM),

which was calculated using the Equations 3-4:

û n+1
k (w) =

Â (w)−oi≠k
û i(w)+l̂ (w)=2

1 + 2a(w − wk)
2 (3)

wn+1
k =

Z ∞
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		 		dwZ ∞

0
û k(w)

2
		 		dw (4)
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Here, n represents the number of iterations. The above formula

was calculated by iteration to obtain the optimal solution.

When applying the VMD for data preprocessing, the number of

modal components (k value) and the penalty coefficient (a value) are

the two key parameters to be set. Of these, the choice of the number of

modal components directly affects the decomposition effect: if the k

value is too small, it will lead to insufficient modal components and the

phenomenon of modal aliasing; if the k value is too large, it may

produce spurious components, which will reduce the reliability of the

decomposition results. The penalty coefficient, on the other hand,

determines the bandwidth characteristics of each modal function, and

its value affects the frequency resolution ability of the modal

components. Therefore, a reasonable determination of the values of k

and a is a prerequisite to ensuring the effectiveness of the VMD

decomposition. In practical applications, parameter optimization can

be carried out using the enumeration method, guided by auxiliary

algorithms such as the principle of crag maximum and the principle of

energy difference or combined with intelligent optimization algorithms

to achieve automatic parameter optimization.

The selection of the fitness function is an important factor that

affects the accuracy and efficiency of VMD. Currently, the commonly

used fitness functions mainly include the following four categories:

minimum envelope entropy, minimum information entropy,

minimum arrangement entropy, and minimum sample entropy.

Ep = −oN
j=1pjlgpj

pj = a(j)=oN
j=1a(j)

g (5)

H(x) = −oN
i=1pilgpi (6)

H =
−ok

i=1Pi · lg(Pi)

 �

lg(m ! )
(7)

SampEn(m, r,N) = −ln
Am(r)
Bm(r)

� �
(8)

Equation 5 represents the minimum envelope entropy, which

describes the sparse characteristics of the original signal, when there

is more noise and less feature information in the intrinsic mode

function (IMF). Then, the envelope entropy value is larger and, vice

versa, the envelope entropy value is smaller. Equation 6 is the

minimum information entropy, which is a physical quantity that

describes the degree of uncertainty of the system. When the

uncertainty value of the probability distribution P is proportional

to the corresponding entropy value. Equation 7 is the minimum

alignment entropy, whose value can effectively reflect the

complexity of the time series. The size of the alignment entropy is

inversely proportional to the degree of the time series rules.

Equation 8 is the minimum sample entropy, the physical

meaning of which is similar to that of the approximate entropy. It

is used to measure the probability of the emergence of a new pattern

in the signal and to determine its complexity. It is calculated

independently of the length of the data and possesses better

consistency compared with the approximate entropy. The sample
Frontiers in Marine Science 04
entropy value is inversely proportional to the self-similarity of the

sample sequence. In practical applications, it is necessary to choose

the appropriate fitness function according to the characteristics of

the specific problem in order to achieve the optimal VMD effect.
2.2 Principal component analysis method

The PCA method is a widely used algorithm for dimensionality

reduction of data (Sadrara and Khorrami, 2023; Eckert-Gallup et al.,

2016). It can construct a new dimensional principal component

dataset with the highest variance based on the dimensionality of the

original dataset. In fact, the new dataset retains most of the more

important features in the original dataset, which can improve the

computational efficiency while maintaining a certain degree of

accuracy. In this paper, PCA was used to pick out the most

important dimensional principal components in the decomposed

ship roll data. Its main calculation process is as follows:

1) For an n-dimensional ship roll data A, it is first decentered by

Equation 9:

xi = xi −
1
no

n

j=1
xj (9)

2) Calculation of the covariance matrix XXT of the ship’s roll

data A.

3) Eigenvalue decomposition of the covariance matrix is

performed to determine the eigenvector (w1,w1,⋯,wm)

corresponding to the largest m eigenvalue, and all of the

eigenvectors are normalized to form the eigenvector matrix B.

4) The principal component dataset Am is obtained by

multiplying each of the data xi in the ship roll dataset with the

transpose of the eigenvector matrix B.
2.3 Temporal convolutional network

TCN is a temporal convolutional network model based on

CNN, and it has the ability to capture high-dimensional data

features of the CNN. At the same time, TCN also has the ability

to memorize long time series of temporal sequences of temporal

neural networks. TCN has the advantage of being able to deeply

mine large-scale temporal data in parallel, which is suitable for

application in multivariate time series feature extraction. TCN

consists of three main structures: causal convolution, dilation

convolution, and residual connection.

2.3.1 Causal convolution
Causal convolution is a strictly one-way structured time-

constrained model where each time step can only rely on its own

previous data and cannot see future data. As shown in Figure 1, (a):

when the input data X = x1, x2, x3,⋯, xtf g, the TCN outputs a

prediction of the same length, Y = y1, y2, y3,⋯, ytf g. Where the

prediction yt is only related to the input values before xt+1 and not

to the input values after xt .
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2.3.2 Dilation convolution
Due to the existence of causal convolution, TCNs can only

increase the network depth to obtain the timing information of

sequences and obtain this feature from historical data. When

applied to scenarios that require long-term historical information,

in order to obtain sufficient temporal features, the traditional

convolutional kernel must attempt to increase the depth of the

network due to linear stacking, which makes it difficult for TCNs to

face large-scale temporal tasks. The problem becomes simple when

dilation convolution is applied, which introduces the concept of the

expansion coefficient and allows the existence of interval samples in

the convolutional inputs, thus allowing the sensing field of the

convolution kernel to become exponentially expanded. As shown in

Figure 1, the expansion coefficient of the first layer is 1; when the

second layer is 3, the relationship between the receptive field and the

number of hidden layers reaches an exponential level. The

combination of causal and expansion convolution can greatly

increase the receptive field of causal convolution, thus achieving

historical information acquisition for long time series.

2.3.3 Residual link
Residual connection occurs when the input data can be directly

connected to the subsequent layers for output across the previous

intermediate layers. Neural networks have the problem of vanishing

and exploding gradients, which is due to errors that keep stacking

up and passing on as the network structure deepens, leading to the

degradation of the neural network. To ensure that the outputs of the

two branches have the same dimension, a one-dimensional

convolution operation is used to control the data dimension. As

shown in Figure 1, the left side is a two-layer causal expansion

network, while the right side is the residual direct connection, which

can be directly added to the convolution result. The mathematical

expression is as Equation 10:
Frontiers in Marine Science 05
h(x) = x + f(x) (10)

where x is the residual connection input; h(x) is the residual

connection output; and f(x) is the nonlinear transformation.
2.4 Bidirectional gated recurrent unit
model

The GRU is improved based on the LSTM neural network

(Elmousaid et al., 2024), which has a simpler structure compared

with the LSTM neural network that uses three gates. It has a

reduced number of two gates, the updating and resetting gates,

and is more effective. The formulas for the specific gate unit update

are as Equations 11-14:

rt = s (Wr · ½ht−1, xt � + br) (11)

zt = s (Wz · ½ht−1, xt � + bz) (12)

~ht = f(Wℏ · ½rt � ht−1, xt � + bh) (13)

ht = (1 − zt)� ht−1 + zt � ~ht (14)

where: xt ,ht−1,ht are the vectors of the input data; f is the

hyperbolic tangent function; and zt and rt are the update gate and

the reset gate, respectively. s is the sigmoid function. The update

gate is used to control the percentage of information that is brought

from the previous state to the next state. The reset gate controls how

much information from the previous state is retained by the current

candidate set. The principle is shown in Figure 2.

A unidirectional GRU can only focus on the state before the

prediction moment. However, the multidimensional ship traverse

data have the bidirectionality of the time sequence; that is, the state
FIGURE 1

Architecture of the temporal convolutional network (TCN). (a) Dilated causal convolution. (b) Residual block.
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in the forward and backward two time directions will have a certain

impact on the prediction of the current moment. Therefore, a

BiGRU network was adopted by connecting the unidirectional

GRUs forward and backward, as shown in Figure 3. The BiGRU

layer, which is able to analyze the states before and after two

moments while expanding the field of view, is more in line with

the actual characteristics of the multidimensional ship roll data.
Frontiers in Marine Science 06
2.5 Self-attention mechanism

Self-attention is a type of attention mechanism that correlates

different positions of a ship’s transverse motion sequence to

compute a representation of the same time series. The self-

attention mechanism is not concerned with the relationship

between the data source and the output: it will only focus on the
FIGURE 2

Flowchart of the gated recurrent unit (GRU).
FIGURE 3

Flowchart of the ship roll prediction model.
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relationship between the different elements of the same sequence,

even if these two elements are far away from each other. Therefore,

the self-attention mechanism is very good at dealing with long-

distance sequences and global information.

Its working principle, which is also known as the attention

formula, is Equation 15:

Attention(Q,  K ,  V) = softmax
QKTffiffiffiffiffi

dk
p !

(15)

Here, the sources of the key values are all products of the input

data matrices and are therefore all a linear transformation of the

input data, which is where self-attention comes from.
2.6 Improved dung beetle optimization
algorithm

The DBO algorithm is a new swarm intelligence optimization

algorithm proposed by Xue and Shen (2023), which was developed

from the behavior of dung beetles in nature and has been verified to

have better performance than other swarm intelligence optimization

algorithms. According to the behavioral characteristics of dung beetles,

the algorithm was designed with five behavior patterns: dung beetle

rolling, dancing, spawning, foraging, and stealing. In this case, both ball

rolling and dancing behaviors can be classified as different behavioral

patterns of the dung beetle ball rolling behavior in terms of whether or

not it encounters an obstacle. According to the experience summarized

from the simulation experiments for ship roll behavior prediction, the

initial position and foraging stage is improved to make it more in line

with the requirements of ship roll motion prediction.

Firstly, the mathematical model of the dung beetle individual

position can be expressed as Equation 16:

xi(t + 1) = xi(t) + akxi(t − 1) + bDx

Dx = xi(t) − xwj j
(16)

where t is the number of iterations; xi(t) is the position

coordinate of the i-th dung beetle at the t-th iteration; k is the

deflection coefficient; b ∈ (0, 1); a is either −1 or 1; xw is the global

most unfavorable position; and Dx is the value of the change of

intensity of the light source. The initial position of the dung beetle is

randomly generated, but an undesirable random position may make

the individual dung beetle fall into a local optimum. Furthermore,

the addition of chaotic mapping will speed up its convergence and

improve its performance. The use of cubic chaotic mapping can

increase the particle diversity, which can reduce the particle

optimization time and increase the convergence speed of the

algorithm. The principle is shown in Equation 17:

xn+1 = rxn(1 − x2n) (17)

Secondly, the initial dung beetle foraging location update model

is expressed as Equation 18:
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xi(t + 1) = xi(t) + C1(xi(t) − Lb)+

C2(xi(t) − Ub)
(18)

where xi(t)   denotes the position coordinates of the i-th adult

dung beetle at the t-th iteration; C1 and C2 denote random

numbers and random vectors belonging to (0,1) with normal

distribution; and Lb and Ub are the upper and lower boundaries of

the optimal foraging range, respectively. The food position must

be reached before it can go to the next point. However, the

triangular walking strategy does not need to be directly close to

the food, but can walk around the food, increasing the

randomness of the dung beetle. The formula for the triangle

walk strategy is as Equation 19:

L1 = posb(t) − posc(t)

~L2 = rand()�~L1
(19)

Afterward, the direction of travel b is defined according to the

Equation 20.

b = 2� pi� rang() (20)

The Equation 21 is then used to obtain the position acquired

after the little dung beetle has wandered away.

P = L21 + L22 − 2� L1 � L2 � cos (b)

Posnew = posb(t) + r + P
(21)

This can improve the foraging speed of dung beetles, improve

the convergence speed of the whole algorithm, and avoid falling into

the local optimum.
2.7 Prediction model for ship roll motion
(IDBO–TCN–BiGRU–Attention)

In this paper, we first combined TCN and BIGRU to

construct a hybrid ship roll motion prediction model. As TCN

has a strong ability to capture spatial information, and is

dependent on the existence of causal convolution operation, it

can also obtain historical information in long sequences.

However, as it is after all a shallow neural network, TCN alone

cannot fully obtain historical information. It can obtain the time

series information in the data when combined with BiGRU.

Nonetheless, when dealing with long sequences, self-attention

has more advantages. Therefore, the self-attention mechanism is

added and the IDBO algorithm is finally used to optimize the

four hyper-parameters of the learning rate, the number of

neurons in BiGRU, the key value of the attention mechanism,

and the regularization parameters. Subsequently, the optimal

value is assigned to the hybrid prediction model so that a better

prediction effect can be obtained. The workflow is shown

in Figure 3.
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3 Simulation experiments and analysis
of results

3.1 Experimental data

The experimental data were based on the measured data of the

training ship “Yukun” of Dalian Maritime University. “Yukun” was

carrying out the “L”maneuver in the northeast sea area ofWeihai when

the data were collected. The ship motion attitude data were collected

using the “ADU2” data acquisition instrument installed on the bow and

stern and the side of the ship, with a collection frequency of 1 Hz. Data

collection was from 10:48:00 on August 12, 2012, to 11:06:20 on August

12, 2012, with a total of 1,100 sets of data. For the purpose of training

and testing the proposed prediction model, the data were partitioned

into two subsets: the first 80% of the data, corresponding to 880 data

points, was designated as the training set, while the remaining 20%, or

220 data points, was reserved as the test set. This division ensures that

themodel is both rigorously trained on a substantial amount of data and

evaluated on an independent set to assess its generalization capability.

3.2 Performance evaluation indicators

The root mean square error (RMSE), mean absolute error

(MAE), mean square error (MSE), mean absolute percentage

error (MAPE), and coefficient of determination are commonly

used in a regression task. The smaller the value, the higher the

prediction accuracy of the model, and the higher the coefficient of

determination, the higher the model credibility. Therefore, we

utilized the RMSE, MAE, MSE, and MAPE to evaluate the

performance of the prediction model. Equation 22 is the related

formulas:
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MAE = 1
non

i=1 yi − ~yij j
MSE = 1

non
i=1 yi − ~yij j2

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
non

i=1 yi − ~yij j2
q

MAPE = 1
non

i=1
yi − ~yij j
yi

(22)

where yi denotes the true value at moment t; ~yi denotes the

predicted value at moment t; and n denotes the number of true values.

R2 = 1 −oi(byi − yi)
2

oi(yi − yi)
2 (23)

Equation 23 is the formula for the coefficient of determination,

where the numerator part represents the sum of the squared

differences between the true and the predicted values, similar to

the mean square deviation, while the denominator part represents

the sum of the squared differences between the true and the mean

values, similar to the variance.
3.3 Fitness function of VMD

According to the collected experimental data of the “Yukun,”

we used four fitness functions to decompose the roll motion data of

the ship. The results are shown in Figure 4. When the minimum

envelope entropy (Figure 4A), the minimum permutation entropy

(Figure 4B), and the minimum sample entropy (Figure 4D) were

used as the fitness functions, the ship roll motion data were

decomposed into more than seven modal functions. Even

Figures 4B, D were decomposed into more than nine modes.

Only the minimum information entropy (Figure 4B) was used as
FIGURE 4

(a–d) Decomposition results on the roll status data.
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the fitness function for decomposition into six eigenmodal

functions. The residuals of the reconstructed data were obtained

when the decomposed data were reconstructed, and the difference

between the original data in Figure 5 can be clearly seen to be not

much different. However, the effect in Figure 5D looks better. From

the data in Table 1, it can be seen that the residuals of the

decomposition of the four fitness functions are not much

different. The difference in the minimum sample entropy was the

smallest, but the time taken was more than five times that of the

minimum information entropy. Moreover, the residuals and the

time of the minimum information entropy were less than those of

the minimum envelope entropy. Hence, it is more suitable to choose

the minimum information entropy after verification.
3.4 Comparison of the forecast results of
the different algorithms

The roll motion data of the ship were a time series with

complex, nonlinear, and non-stationary characteristics. There are

many algorithms for time series prediction. Which algorithm to use

is also the first problem in the study of the prediction of the roll

motion of ships. In order to use appropriate algorithms for research

on ship roll forecasting, this paper used a number of commonly

used algorithms, namely, back-propagation (BP), SVM, relevance

vector machine (RVM), CNN, LSTM, GRU, TCN, and BiGRU, to

conduct simulation and comparison experiments using the

measured ship roll motion data. Based on the results of the

comparisons, it was determined which method is more appropriate.

As shown in Figure 6, the prediction results of these eight

algorithms were compared with the actual data. It can be seen that
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these algorithms can correctly predict the trend of ship roll motion;

however, BP and CNN both had large fluctuations around the end

of the 210-s prediction. The prediction results of GRU, RVM, and

LSTM tended to be flat, and there was a large error with the actual

value. The prediction effect of SVM was quite good, but its

determination coefficient was low. The prediction results of TCN

and BiGRU had certain advantages compared with the other six

algorithms. As shown in Figure 7, except for the obvious large

deviation of CNN, the rest of the differences were small. Of course,

it can be observed that each prediction effect was not very ideal,

which may be related to the fact that unprocessed multidimensional

data input was used. However, the residuals of the other seven

algorithms were very stable, and there were no large fluctuations, as

can be seen from Table 2. The evaluation indicators of the TCN and

BiGRU algorithms were in the forefront, particularly the coefficient

of determination being close to 60%. It can be seen from Figure 8

that, in addition to the coefficient of determination, the other four

evaluation indicators showed a downward trend in the TCN and

BiGRU algorithms. This indicates that these two models are more

suitable for the prediction of ship roll motion.
3.5 Comparison of the prediction results of
the combined model

Based on the results of the comparative experiments on the

algorithms, TCN and BiGRU were found to be more suitable for

ship roll prediction. Therefore, based on these two algorithms, a

hybrid ship roll motion prediction model was built, this time using

the VMD algorithm to decompose the input roll data. The PCA was

then used to reduce the dimensionality. The original data were
FIGURE 5

(a–d) Reconstruction error based on different fitness functions.
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reconstituted into the input data, and the input data were compared

with VMD–PCA–TCN and VMD–PCA–BiGRU.

Firstly, after Pearson’s correlation analysis, it can be seen from

Figure 9 that the correlation coefficient between the ship’s longitude

and latitude displacement, ground course, and ground speed and

the ship’s roll motion was greater than 0.5, and its correlation was

large. After the comparative experiments, it can be seen from

Figure 10 that the prediction results of VMD–PCA–BiGRU were

very close to the measured data, with the data from VMD–PCA–

TCN being second only to the former. However, there was a large

error. The results of TCN and BiGRU were still relatively stable,

basically consistent with the trend of the measured data, and the

error was not very large. It can be seen from Figure 11 that the error

of VMD–PCA–TCN was the smallest and has been very stable,

while those of the other two had large fluctuations. In particular, the

TCN error was the largest compared with those of the other three.

According to Figure 12 and Table 3, it is noticeable that the

evaluation indicators of VMD–PCA–TCN and VMD–PCA–
FIGURE 7

Comparison of the prediction errors of the different algorithms with actual data.
TABLE 1 Residuals and decomposition time for the four fitness functions.

Comparison
indicators

Minimal
envelope entropy

Minimum
information entropy

Minimum
permutation entropy

Minimum
sample entropy

Residual 0.2524 0.2062 0.2040 0.2054

Time 17.997275 17.229658 24.619645 117.865774
F
rontiers in Marine Science
 10
FIGURE 6

Comparison of the prediction results of the different algorithms with actual data.
TABLE 2 Comparison of the evaluation metrics for the
different algorithms.

Algorithms MSE RMSE MAE MAPE R2

BP 2.5208 1.5877 1.1882 0.253231 0.078949

CNN 2.995 1.7306 1.144 0.30272 −0.128516

GRU 1.553 1.2462 0.96644 0.276724 0.4285

LSTM 1.6371 1.2795 1.0385 0.327983 0.422207

RVM 1.4444 1.2018 0.92175 0.257941 0.386225

SVM 1.8456 1.3585 1.0395 0.263886 0.256942

TCN 1.2 1.0954 0.853 0.255416 0.564635

BiGRU 1.263 1.1238 0.84056 0.237574 0.525853
fro
MSE, mean square error; RMSE, root mean square error; MAE, mean absolute error; MAPE,
mean absolute percentage error; BP, back-propagation; CNN, convolutional neural network;
GRU, gated recurrent unit; LSTM, long short-term memory; RVM, relevance vector machine;
SVM, support vector machine; TCN, temporal convolutional network; BiGRU, bidirectional
gated recurrent unit.
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FIGURE 9

Pearson’s correlations.
FIGURE 8

Numerical curves of the different algorithms for mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), mean absolute
percentage error (MAPE), and R2.
FIGURE 10

Comparison of the prediction results of the combined models with the actual data.
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BiGRU nearly doubled compared with those of TCN and BiGRU,

except for the MAPE, which showed a relatively flat decline.

3.6 Ablation experiments

Ablation experiments were carried out. Each time the removal of a

module in the hybrid ship roll prediction model is experimented, each

round of experiments is carried out for 10 rounds. The average value

was taken to exclude the influence of accidental factors, as observed in
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Figure 13. It can be seen from the comparison between TCN–BiGRU

and VMD–PCA–TCN–BiGRU obtained after adding the data

processing module that the four evaluation indicators declined

rapidly, while only the MAPE decreased slowly. The comparison

between VMD–PCA–TCN–BiGRU and VMD–PCA–TCN–BiGRU–
FIGURE 12

Numerical curves of the combined models for mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), mean absolute
percentage error (MAPE), and R2.
FIGURE 11

Comparison of the prediction errors of the combined models with the actual data.
TABLE 3 Comparison of the evaluation metrics for the
combined models.

Combined
models

MSE RMSE MAE MAPE R2

TCN 1.2 1.0954 0.853 0.255416 0.564635

BiGRU 1.263 1.1238 0.84056 0.237574 0.525853

VMD–
PCA–TCN

0.26929 0.51893 0.37412 0.118042 0.899942

VMD–
PCA–BiGRU

0.3661 0.60506 0.46652 0.15558 0.862162
MSE, mean square error; RMSE, root mean square error; MAE, mean absolute error; MAPE,
mean absolute percentage error; TCN, temporal convolutional network; BiGRU, bidirectional
gated recurrent unit; VMD , variational mode decomposition; PCA , principal
component analysis.
TABLE 4 Comparison of the evaluation metrics for the ablation
experimental models.

Ablation exper-
imental models

MSE RMSE MAE MAPE R2

TCN–BiGRU 1.1882 1.0563 0.8365 0.221657 0.586581

VMD–PCA–
TCN–BiGRU

0.22302 0.47225 0.35338 0.118829 0.887433

VMD–PCA–TCN–
BiGRU–Attention

0.19572 0.4424 0.3291 0.117062 0.90088

VMD–PCA–DBO–
TCN–

BiGRU–Attention

0.14522 0.2421 0.2265 0.096542 0.91421

VMD–PCA–IDBO–
TCN–

BiGRU–Attention

0.14126 0.2383 0.2121 0.095321 0.93521
fron
MSE, mean square error; RMSE, root mean square error; MAE, mean absolute error; MAPE,
mean absolute percentage error; TCN, temporal convolutional network; BiGRU, bidirectional
gated recurrent unit; VMD, variational mode decomposition; PCA, principal component
analysis; DBO, dung beetle optimization; IDBO, improved dung beetle optimization.
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FIGURE 13

Numerical curves on the ablation experimental models for mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE),
mean absolute percentage error (MAPE), and R2.
FIGURE 14

Comparison of the prediction results of the ablation experimental models with the actual data.
FIGURE 15

Comparison of the prediction errors of the ablation experimental models with the actual data.
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Attention with the self-attention mechanism showed that the MSE and

RMSE in the evaluation index had a significant decrease, while the rest

of the values were not obvious. This trend was very noticeable after the

addition of the optimization algorithm, while the downward trend was

not too obvious after the addition of the IDBO algorithm. It can be seen

from Table 4 that the four evaluation indicators, i.e., MSE, RMSE,

MAE, andMAPE, decreased. The coefficient of determination was also

increased, as shown in Figure 14. The prediction results of VMD–

PCA–TCN–BiGRU–Attention, VMD–PCA–DBO–TCN–BiGRU–

Attention, and VMD–PCA–IDBO–TCN–BiGRU–Attention were the

closest to the measured data, which was very noticeable around 80 s.

Figure 15 shows that the VMD–PCA–TCN–BiGRU–Attention model

was consistent and stable, fluctuating greatly around 190 s, but quickly

regaining stability. The rest of the combinations remained in a stable

error range.
4 Conclusion and discussion

Due to the complex maritime environment and the powerful

rocking motion of ships, it is necessary to carry out an accurate

prediction of a ship’s roll motion in order to improve the safety of

ship navigation, the comfort of the ship’s personnel, and the efficiency

of offshore management. Therefore, this paper proposed a hybrid

ship roll motion prediction model based on the decomposition

algorithm and the deep learning model. The roll motion data of

the ship were decomposed and reduced using the VMD–PCA

algorithm to reconstruct the new input data. Subsequently, the

TCN–BiGRU–Attention model was input for forecasting, and the

IDBO algorithm was used to optimize the hyper-parameters. The

results showed that: 1) the VMD–PCA–IDBO–TCN–BiGRU–

Attention hybrid prediction model proposed in this paper had high

prediction accuracy and good prediction effect; 2) the data processing

method of the VMD–PCA proposed in this paper had a significant

effect on the data of the unstable time-varying characteristics of the

ship roll motion and improved the accuracy of prediction models

such as the TCN, BiGRU, and TCN–BiGRU; 3) the effect of

improving the DBO algorithm was noticeable, which can improve

the prediction effect of the high-precision model; and 4) the effect of

the self-attention mechanism was not very noticeable when dealing

with short sequences, with the self-attention effect being better when

dealing with large databases. Overall, the ship motion prediction

model showcased outstanding performance on complex datasets,

effectively capturing the temporal dynamics and nonlinear

behaviors of ship motion. It was proven to be superior in terms of

prediction accuracy, convergence speed, and adaptability, offering

valuable insights into the future of ship navigation and safety

management. By providing a reliable support tool for maritime

operations, this model holds significant promise for enhancing the

safety and efficiency of ship navigation.

However, several limitations remain, which warrant further

investigation. The current model focuses solely on the ship’s intrinsic

motion state, without considering external environmental factors such

as wind, waves, and currents, which also play a crucial role in a ship’s

movement. In addition, the model’s current implementation is based
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on short-term, off-line predictions, whichmay not be sufficient for real-

time, online forecasting in dynamicmaritime environments. This raises

the need for further research into the feasibility of deploying the model

in an online, real-time setting. Moreover, exploring the potential for

lightweight deployment on embedded devices could enhance the

practical applications and efficiency of the model, particularly in real-

world maritime operations, where real-time prediction is critical. These

future directions could expand the utility and scalability of the model,

paving the way for broader use in maritime safety and

management systems.
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