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In order to enhance adjustable mechanical properties of a specific magnetorheological
elastomer (MRE), this study presents a new exterior structure of MRE by punching circular
honeycomb holes on the MRE samples. Seven silicone rubber MRE samples with the same
component are fabricated and then punched holes with different numbers and diameters.
The influence of different porosities on the mechanical properties of MRE under various
magnetic fields is experimentally investigated by using a rheometer with electromagnetic
suite. It is shown from experimental investigation that the porosity of MRE samples has a
significant impact on the performance of MRE; the shear storage modulus (MR effect), and
the loss factor is greatly increased. It is also observed that all the field-induced mechanical
properties of the samples attain their respective maximum performance when the porosity
increases to a critical value. The experimental results presented in this work directly indi-
cate that high performances of the field-dependent mechanical and rheological properties
can be achieved by means of external alternative structures such as honeycomb holes.

Keywords: magnetorheological elastomer, mechanical property, rheological property, honeycomb holes, ordinary
silicon rubber

INTRODUCTION
Magnetorheological elastomer (MRE) is a relatively new branch
of magnetorheological (MR) material family, whose rheological,
mechanical, and magnetic properties can be varied continuously,
rapidly, and reversibly under applied magnetic field (Jolly et al.,
1996; Gong et al., 2005). MRE mainly consists of soft magnetic
particles in a rubber-like non-magnetic matrix material. The out-
standing field-control characteristic means that MRE has wide
application prospects in smart isolator (Opie and Yim, 2011; Li
et al., 2012, 2013), adaptive absorber (Deng et al., 2006), and
controllable actuator (Böse et al., 2012). Simultaneously, it is
well known that the compromise between mechanical proper-
ties and MR effects of existing MRE materials limits their engi-
neering applications in which suitable quasi-static and dynamic
mechanics performances are coordinately demanded. In order to
develop high-performance MRE, many researchers and investiga-
tors improved formula, raw material selection, as well as manu-
facturing process (Hu et al., 2005; Böse, 2007; Chen et al., 2007; Li
et al., 2008; Ge et al., 2013). However, a few academics have studied
the approaches of altering exterior structure of MRE to improve
the mechanical performance of MRE. In the literature, York et al.
(2007) designed MR fluid-elastomer (MRF-E) composite through
encapsulating MR fluids into an elastomer to achieve both the stiff-
ness and damping capability controlled by an external magnetic
field. Zhang et al. (2008) fabricated the patterned MREs with pre-
designed lattice and body centered cubic (BCC) structures. Zhang
et al. (2010) prepared a type of hybrid MRE, in which MRFs and
magnetorheological gels (MRGs) were injected into the punched

holes, to improve mechanical performance. Ju et al. (2012) fabri-
cated isotropic porous MRE by using the decomposition reaction
of filled NH4HCO3 to generate the porous structure. They showed
that both MR effect and damping property of the porous MRE
reached a higher level than that of the MRE without pores.

To this end, generally, circular cell honeycomb solids provide
an alternative exterior structure with the potential for improved
mechanical properties, which have small solid volume fractions or
relative densities. Furthermore, the reasonable place to start this
study is to investigate the influence of circular honeycomb struc-
ture in the field-dependent performance without changing the
formula and process of the original MRE. Consequently, a techni-
cal novelty of this work is to propose a new silicone rubber MRE
with circular honeycomb holes. In order to validate high perfor-
mances of the proposed MRE, several MRE samples with different
porosities are tested under shear mode in an increasing magnetic
field. The dynamic magnetic-controllable mechanical properties
of MRE such as shear storage modulus, MR effect, and loss factor
are confirmed by calculation and analysis of experimental results.
It is reasonably addressed that this study can propose an effective
approach to improve the mechanical properties of MRE by chang-
ing external alternative structures without modification of MRE
formula.

MRE SAMPLES AND TESTING SYSTEM
Magnetorheological elastomer specimens were composed by
magnetic particles in an elastic matrix. To prepare MREs, a
two-component room temperature vulcanizing (RTV) silicone
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FIGURE 1 |The flow chart of samples preparation.

rubber (Type: SC-2110, Beijing Sanchen Industrial New Mater-
ial Co. Ltd., China) was selected as the base elastomer materials,
while a silicone oil with a kinetic viscosity of 500 cSt was mixed
within the specimen to change the ductility of the rubber base. The
filler particles dispersed in the matrix were carbonyl iron particles
(Type: JCF2-2, Jilin Jien Nickel Industry Co. Ltd., China) with the
size distribution d50= 5 ~ 8 µm. In all specimens, the mass frac-
tion of the carbonyl iron particles, silicone rubber, and silicone oil
was 70, 20, and 10%, respectively. A flow chart of MRE samples
preparation was shown in Figure 1. The fabrication procedure of
MREs was as follows: firstly, the iron particles were mixed into
the silicone rubber in a beaker and then stirred for about 10 min
at room temperature. Secondly, after all ingredients were evenly
mixed, the resulting material was put in a vacuum drying oven
to remove air bubbles and then packed into an aluminum mold.
Finally, the mixture was cured for 24 h at room temperature in a
self-developed permanent magnet device with the magnetic field
of 600 mT.

In this study, seven anisotropic MRE samples with the uni-
form size of 20 mm in diameter and 1 mm in thickness were cut
from the prepared MRE specimens. Different numbers and sizes
of holes were punched regularly in the MRE samples by using the
punch with a suitable drill, as shown in Table 1. Moreover, the
holes positioned parallel to the direction of the chain-like struc-
ture in the MREs. Figure 2 is the photograph of samples used in
this experimental study.

Dynamic mechanical properties of MRE specimens were mea-
sured by using an advanced commercial rheometer (MCR 301,
Anton Paar Co., Austria). The rheometer and its operating princi-
ple were shown in Figure 3. A parallel-plate rotor and a Magneto
Rheological Device (MRD 170, Anton Paar Co., Austria) were
installed in the rheometer. The diameter of the plate was 20 mm
and the parallel-plate gap was fixed at 1 mm. The testing magnetic
field perpendicular to the direction of the shear flow was gener-
ated by adjusting the current value supplied to the electromagnetic
coil, and testing temperatures were controlled by a water bath. A

FIGURE 2 | Photo of prepared MRE samples.

Table 1 | Specification of the prepared MRE samples.

Sample name Hole

number

Hole

diameter (mm)

Porosity (%)

MRE-N0-D0 0 0 0

MRE-N5-D2 5 2 5.00

MRE-N9-D2 9 2 9.00

MRE-N13-D2 13 2 13.00

MRE-N17-D2 17 2 17.00

MRE-N9-D3 9 3 20.25

MRE-N9-D4 9 4 36.00

sample was placed between the rotating disk and the base with-
out slip effect. When the rotating disk rotated, the sample worked
in oscillation shear mode, in which the direction of the oscilla-
tion was represented by green arrow. This system applied a desired
oscillatory strain amplitude and frequency to the sample and mea-
sured the amplitude and phase of the output force, from which the
shear storage modulus and loss modulus were calculated. In the
experiment, the MRE sample was sandwiched between rotating
disk and base in parallel, in which the particle chains were distrib-
uted along the thickness direction. MRE samples were tested under
shear mode at room temperature controlled by a water circulator.
The shear oscillation frequency and shear strain amplitude were
set as a constant 10 Hz and 1%, respectively. To avoid the slid-
ing effect between the sample and the parallel plate, a constant
normal force of 10 N was applied during the tests. As shown in
Figure 4, the shear stress appears to be a linear relationship with
the increasing shear strain amplitudes ranging from 0.1 to 10%
at 10 Hz during the previous dynamic strain sweep experiments
without magnetic field, in which demonstrated that there is no
sliding effect in the rheometer testing system. In addition, each
sample was measured for three times at the same condition with
the magnetic flux density changing from 0 to 1.2 T.

RESULTS AND DISCUSSIONS
STORAGE MODULUS AND MR EFFECT
The shear storage modulus G ′ for the punched MRE samples
with different numbers of holes (different porosities) is shown
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FIGURE 3 | Configuration of testing system.

FIGURE 4 | Stress-strain curve of samples without magnetic field at
10 Hz.

in Figure 5. As can be seen from the experimental data, the
field-dependent storage modulus G ′ of each samples exhibit an
increasing trend with increasing magnetic flux density, which
was because the interaction among iron particles filled in the
matrix resulted in an increase in mechanical stiffness. As shown
in Figure 6, the zero-field storage modulus of non-porous MRE
sample is larger than that of porous MRE samples. This is due
to the integrity of sample. However, the modulus of the sam-
ples firstly increases with increasing porosity up to 9.00% (Sam-
ple MRE-N9-D2) and then modulus decreases with increasing
porosity. A linear fitting results for the initial storage modu-
lus and Gaussian fitting for the maximum modulus at magnetic
saturation are presented in Figure 6. It can be easily seen that
the field-induced storage modulus is reached a maximum of
1.3 MPa when the porosity is 9.00%. With the increase of poros-
ity, the shear storage modulus at magnetic saturation showed
greater than that of non-porous MRE, as the chain-like struc-
tures of iron particles highly reduced. The MR effect is a critical

FIGURE 5 | Shear storage modulus of MRE samples under different
magnetic fields.

FIGURE 6 | Initial storage modulus G0 and maximum storage modulus
G_max′ f or different porosities.

parameter for evaluating MRE performance, and is defined as
follow:

GMR−effect = 100%× (G ′max − G0)/G0

where G ′max is the shear storage at magnetic saturation, G0 is
the initial modulus. Figure 7 shows the relation between the
MR effects and different porosities, in which the red curve has
been given with a feasible Gaussian peak fitting. Obviously, the
MR effects for the prepared samples reached a maximum of
300% when the porosity of MRE samples was 13.00% (Sample
MRE-N13-D2). Due to a lower initial modulus, the MR effect of
MRE-N13-D2 was higher than that of MRE-N9-D2, which had the
largest magnetic modulus. As a result, it is obvious that MR effects
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FIGURE 7 | MR effect of MRE samples with different porosities.

FIGURE 8 | Loss modulus of MRE samples under different magnetic
fields.

can be dramatically improved by punching circular honeycomb
holes.

LOSS MODULUS AND LOSS FACTOR
The damping property of MRE with circular honeycomb holes is
also investigated. The loss factor is an important factor of damping
capability expressed as follows:

tan δ = G ′′/G ′

where G ′′ is the loss modulus. And to be clear, in the measurement
of viscoelastic material, the loss modulus represents the level of
dissipating energy by the viscous portion while the loss factor is

FIGURE 9 | Loss factor of MRE samples under different magnetic fields.

FIGURE 10 | Maximum loss factor for different porosities under
magnetic field.

the ratio of loss modulus to storage modulus. Figures 8 and 9
show the loss modulus and loss factor of MRE samples with dif-
ferent porosities under different magnetic flux densities. It can be
seen that both the loss modulus and the loss factor of punched
MRE samples are higher than that of un-punched MRE sample
to a variable extent. Furthermore, the two damping parameters
have showed firstly increasing and then decreasing trend with the
increasing porosity. It is seen from Figure 10 that the sample MRE-
N13-D2 with a porosity of 13% and the sample MRE-N17-D2 with
a porosity of 17% are reached to the best damping capacity. Due to
the exterior structural changes after punching holes on the MRE
samples, the damping property of MRE improved under various
magnetic fields.
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CONCLUSION
In this work, a series of MREs with different numbers of two-
dimensional circular honeycomb holes were developed based on
the ordinary silicon rubber MREs. The influence of circular hon-
eycomb holes or porosities on the mechanical properties of MRE
under different magnetic fields was experimentally investigated.
The dynamic mechanical properties including storage modulus,
MR effect, loss modulus, and loss factor have been significantly
improved by punching holes on the MRE samples, which adopted
various exterior structure of MRE samples. It has been also
observed that the field-induced mechanical performance increases
first and then decreases with the increasing porosity. The shear
storage modulus, MR effect, loss modulus, and loss factor reached
a maximum when the porosity of MRE samples were 9.00, 13.00,
13.00, and 17.00%, respectively. The experimental results pre-
sented in this work indicate that high-performance properties of
MRE can be achieved without changing its preparation in the spe-
cific formula. In addition, this work can be a useful guideline to
choose optimal number of porosity, which can produce maximum
performances of mechanical and rheological properties of MRE
under the same magnetic field.
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