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Graphene has many advantages that make it an attractive two-dimensional (2D) support for
heterogeneous catalysts. It not only allows the high loading of targeted catalytic species
but also facilitates the mass transfer during the reaction processes. These advantages,
along with its unique physical and chemical properties, endow graphene great potential as
catalyst support in heterogeneous catalysis.
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A large variety of carbon materials (activated carbons and carbon
blacks, in particular) have been exploited as catalyst supports in
heterogeneous catalysis. The advantages of carbon supports can be
attributed to their large surface area, inert property that endows
their resistance to both acidic and basic media, as well as the con-
venience to recover the active phase (especially for the supported
noble metal catalysts) by direct burning away the carbon supports.

Compared with the traditional carbon materials, as well
as other supports such as zeolite, porous silica, and MCM41,
graphene possesses many unique properties that make it an attrac-
tive support in heterogeneous catalysis. In particular, with a huge
surface area (theoretical value of 2630 m2/g) (Stoller et al., 2008),
two-dimensional (2D) structures (Rao et al., 2009), a high elec-
tron mobility (Castro Neto et al., 2009), and the availability of
surface functionalization (Dreyer et al., 2010; Georgakilas et al.,
2012), it not only allows the high loading of targeted catalytic
species but also achieves exceptional performance in various cat-
alytic applications (Scheuermann et al., 2009). The unique 2D
structures of graphene, which can facilitate the mass transfer dur-
ing the reaction processes should firstly account for the excellent
results (Figure 1). To be specific, for the heterogeneous catalysts
with common porous supports, there are seven steps in a catalytic
reaction process: (1) diffusion of the reactants from the liquid or
gas phase to the external surface of the catalyst (external diffu-
sion); (2) diffusion of the reactant from the pore mouth through
the catalyst pores to the immediate vicinity of the internal cat-
alytic surface (internal diffusion); (3) adsorption of reactants on
the inner catalytic surface; (4) reaction at active sites on the cata-
lyst surface; (5) desorption of the products from the inner surface;
(6) diffusion of the products from the interior of the catalyst to
the pore mouth at the external surface (internal diffusion); (7)
diffusion of the products from the external pellet surface to the
bulk fluid (external diffusion). The activity of heterogeneous cat-
alysts is proportional to the active surface area per unit volume

of catalyst, provided that transport limitations are not present.
However, diffusion control is very common in heterogeneous cat-
alytic processes. So the reaction rate is principally relied on the
mass transfer or diffusion steps. As external diffusion can be pro-
moted by raising the stirring intensity and reaction temperature,
numerous reactions are restricted to the internal diffusion step,
especially when the pore sizes are quite small or just compara-
ble with the reactant molecules. For graphene supported catalyst
with good suspending ability in the fluid phase; however, the mass
transfer of the reactants to the active sites is unlimited, as the reac-
tants can easily access the catalytic active sites on both sides of
the suspended 2D graphene sheets without an internal diffusion
process (Ji et al., 2011). Besides the facile mass transfer, the versatile
electronic behaviors of graphene also render it great potential for
chemical and energy conversion applications, especially in elec-
trocatalytic and photocatalytic processes. As the catalytic species
(metal nanoparticles, in particular) are directly distributed on the
graphene surface, there should be a strong metal-support interac-
tion. The conductive graphene may cause electronic perturbations
as well as constraining the geometries of the dispersed metal cat-
alysts, which may display synergetic promotion effect to catalytic
conversion. What is more, the high electron mobility also facilitates
the rapid diffusion of electrons. For instance, in electrocatalytic
processes, the conversion can be greatly promoted by the rapid
electron transfer between the reactant and the electrode with the
graphene support. For photocatalytic reactions, graphene serves as
a charge carrier transport“highway,”mitigating the recombination
of charge carriers and leading to an enhanced photocatalytic per-
formance. Consequently, graphene derivatives, such as nitrogen-
doped graphene that can increase the electrical conductivity of
graphene and improve the graphene-metal binding interactions,
have been widely exploited in related applications.

These advantages, along with its unparalleled high ten-
sile strength (Dikin et al., 2007), excellent thermal property
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Fan 2D support for heterogeneous catalysts

FIGURE 1 | Facile mass transfer of graphene supported heterogeneous
catalysts.

(Balandin et al., 2008), and a high optical transparency (Bae
et al., 2010), endows graphene great potential as a catalyst sup-
port for the chemical industry, electrochemistry, photocatalysis,
energy conversion, energy storage, etc.
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