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Amphiphilic materials can assemble into a wide variety of morphologies and have 
emerged as a novel class of candidates for drug delivery. Along with a large number 
of experiments reported, computational studies have also been conducted in this field. 
At an atomistic/molecular level, computations can facilitate quantitative understanding 
of experimental observations and secure fundamental interpretation of underlying 
 phenomena. This review summarizes the recent computational studies on amphiphilic 
copolymers and peptides for drug delivery. Atom-resolution and time-resolved insights 
are provided from bottom-up to microscopically elucidate the mechanisms of drug 
loading/release, which are indispensable in the rational screening and design of new 
amphiphiles for high-efficacy drug delivery.
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iNTRODUCTiON

Among the conventional methods for cancer treatment, surgery physically removes tumor in human 
body, chemotherapy uses medicines to destroy cancer cells, and radiation exerts high-energy beam 
to kill or decline the growth of cancer cells (Kumar and Kumar, 2014). Nevertheless, chemotherapy 
and radiation also kill healthy cells. To overcome this limitation, targeted and sustained drug delivery 
has been proposed (Chen and Liu, 2012). Targeted delivery can effectively inhibit the growth of can-
cer cells and reduce damage to healthy cells; meanwhile, sustained release offers several advantages 
such as less frequent administration and better compliance (Natarajan et al., 2014). In targeted and 
sustained delivery, drug carriers play an indispensable role. Over the last decade, there has been con-
siderable interest in the development of new materials as drug carriers (Hubbell and Chikoti, 2012). 
Particularly, amphiphilic materials have emerged as a novel class of candidates for drug delivery 
(Shimixu et al., 2005). They have the ability to assemble into a wide variety of morphologies such as 
micelles, vesicles and fibers. As illustrated in Figure 1, drugs can be loaded in these morphologies, 
transported into cells, and released upon a stimulus (e.g., by altering temperature, pH, or ionic 
strength).

The loading, stability, and release profiles of drugs in amphiphilic materials depend largely on 
the morphologies assembled, which in turn are governed by material structure and functionality. 
Low molecular weight surfactants were initially tested for drug delivery; however, they have insufficient 
micellization capacity and tend to rapidly dissociate in blood (i.e., kinetically unstable) (Lawrence, 
1994; Uchegbu and Vyas, 1998; Drummond and Fong, 1999). Alternatively, amphiphilic copolymers 
(Meng et al., 2009; Tyrrell et al., 2010; Tanner et al., 2011; Li et al., 2012) and peptides (Tian et al., 2012; 
Hosseinkhani et al., 2013) have been under extensive studies, primarily by experiments. Meanwhile, 
computational studies have also been reported to secure quantitative interpretation of experimental 
results and provide microscopic insights from bottom-up (Ahmad et  al., 2010; Loverde, 2014). 
There are enormous synthetic and natural amphiphilic materials, thus it is a formidable task to 
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full-atom                                  coarse-grained 

FiGURe 2 | From full-atom to coarse-grained modeling.

October 2015 | Volume 2 | Article 642

Thota and Jiang Amphiphilic materials for drug delivery

Frontiers in Materials | www.frontiersin.org

experimentally test all materials for drug delivery. In this aspect, 
computations are substantially more economical and feasible to 
screen and identify ideal candidates. Furthermore, new materials 
for drug delivery can be rationally designed through computa-
tions and subsequently tested by experiments.

This review summarizes the recent representative computa-
tional studies for drug delivery in amphiphilic copolymers and 
peptides. First, the computational methodology commonly used 
in this field is briefly described. Then, the computational studies 
of copolymer and peptides are presented and discussed, respec-
tively. Finally, the major concluding remarks are highlighted with 
a few perspectives for future studies.

MeTHODOLOGY

Most of the computational studies for drug delivery use molecu-
lar dynamics (MD) simulations. Following the Newton’s second 
law, a MD simulation mimics the natural pathway of molecular 
motion to sample successive configurations. At a given tem-
perature, the initial velocities of molecules are assigned by the 
Maxwell–Boltzmann distribution. The interactions between 
molecules at each time are computed, and then the equations 
of motion are solved numerically with an appropriate time step 
to update the velocities and positions for the next successive 

releaseloading

FiGURe 1 | Drug loading and release in amphiphilic materials.

steps (Allen and Tildesley, 1987; Frenkel and Smit, 2002). In 
classical MD simulations, molecular interactions are described 
by a force field with certain functional forms and parameters. 
For polymer and peptides, the widely adopted force fields are 
AMBER (Cornell  et  al., 1995), OPLS (Jorgensen et  al., 1996), 
and CHARMM (MacKerell et al., 1998).

Drug loading and release occur in a long-time scale, usually 
in the order of several microseconds or longer. Currently, fully 
atomistic (FA) simulations are too expensive to mimic such phe-
nomena for large systems. With this regard, coarse-grained (CG) 
simulations are more prevailed, in which the number of degrees 
of freedom is reduced (see Figure 2) and thus the simulations 
can be accelerated. In the literature, several CG models have been 
developed on the basis of structure (Go and Taketomi, 1978), sta-
tistical potential (Miyazawa and Jernigan, 1985), elastic network 
(Tama  et  al., 2002), etc. Particularly, Marrink and coworkers 
developed the MARTINI model for lipids, surfactants with a few 
CG bead types (Marrink et al., 2004, 2007), and further extended 
to biomolecules with more classifications of bead types (Monticelli 
et  al., 2008). The MARTINI model uses four to one mapping, 
i.e., four heavy atoms/molecules are collectively mimicked as a 
single bead for linear molecules. Then, four types of interaction 
sites are considered namely polar (P), non-polar (N), apolar (C), 
and charged (Q). Within the four types, subtypes are further 
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divided on the basis of hydrogen-bonding capability (d: donor, 
a: acceptor, da: both and O: none) and degree of polarity (from 
1 being lowest polarity to 5 being highest polarity). The interac-
tions between different beads contain non-bonded and bonded 
terms. The non-bonded includes Lennard–Jones and electrostatic 
potentials, while the bonded includes stretching, bending, and 
torsional potentials. The potentials were parameterized in a 
systematic way to reproduce partitioning free energies between 
polar and apolar phases for a large number of compounds. The 
grouping in the MARTINI model reduces the number of atoms 
in simulations and increases the time scale by three- to fourfold 
compared with FA simulations. It has been demonstrated that the 
MARTINI model can well describe peptides, lipids, membranes, 
etc. Nevertheless, the MARTINI model is associated with several 
limitations: at a low temperature, it may cause rapid freezing and 
nucleation of water; the pairwise electrostatic interactions beyond 
1.2 nm are not incorporated, which may affect the properties of a 
system with a large number of charged beads; the current model 
parameterization prevents examining the transition of secondary 
structure.

Another CG method often used in this filed is dissipative par-
ticle dynamics (DPD), which is a higher level CG representation 
introduced by Hoogerbrugge and Koelman (1992) and Koelman 
and Hoogerbrugge (1993) and modified by Español and Warren 
(1995). In a DPD simulation, the system is represented by a set 
of soft particles (beads). The soft and short-ranged interactions 
include four terms: bond stretching between connected particles, 
conservative repulsive interaction for excluded volume effect, 
dissipative interaction for viscous drag between moving particles, 
and random interaction for stochastic impulse among particles. 
The amplitude of these interactions is dictated by the Fluctuation–
Dissipation theorem. A distinguishing feature of DPD method is 
that momentum is conserved between dissipative particles and 
thus it is able to simulate hydrodynamic time and length scales 
much larger than those by conventional MD. However, a major 
limitation of DPD method is the unclear physical time and length 
scales that are actually simulated, and it is difficult to link DPD 
to microscopic dynamics. Other limitations include: the size 
of dissipative particles can be freely tuned and it is to a certain 
extent ambiguous; no unique way exists to estimate the interac-
tion parameters and the parameters are not transferable. Despite 
the above limitations, both DPD and CG simulations can fairly 
well describe the equilibrium thermodynamic and structural 
properties, and have been widely used to investigate amphiphilic 
materials (Sevink et al., 2013; Li et al., 2014).

AMPHiPHiLiC COPOLYMeRS

Consisting of chemically different blocks, amphiphilic copoly-
mers can assemble into a wide variety of morphologies (Mai and 
Eisenberg, 2012). In an aqueous solution, the hydrophobic blocks 
form a core or an inner layer, while the hydrophilic blocks consti-
tute a shell or an outer layer. The morphologies may be affected by 
numerous factors such as polymer concentration, hydrophobic/
hydrophilic ratio, end-group, and solvent content (Hayward 
and Pochan, 2010). Toward the development of stable drug car-
riers, Rösler et al. reviewed the approaches to modify chemical 

structures or physically attach auxiliary agents onto copolymers 
(Rösler et  al., 2001). Gaucher et  al. discussed the synthesis of 
copolymers and the issues of micelle formation, characterization, 
and stability related to drug retention and targeting properties 
(Gaucher et  al., 2005). The effects of polymeric nanostructure 
shape on drug delivery were comprehensively summarized by 
Venkataraman et al. (2011). Recent advances in the design and 
development of copolymers with cleavable linkers for intracel-
lular drug delivery were highlighted by Wei et al. (2013).

While most experimental studies for drug delivery in 
copolymers are focused on loading efficiency and release pro-
file, computations offer insightful microscopic details such as 
molecular interactions between drugs and carriers, equilibrium 
and dynamic properties as listed in Table 1. From FAMD simula-
tions, Patel et al. evaluated the interactions and solubilities of two 
drugs (fenofibrate and nimodipine) in a series of micelle-forming 
poly(ethylene oxide)-b-poly(caprolactone) (PEO-b-PCL) with 
different combinations of blocks. The predicted solubilities were 
in good agreement with experimental data and better than the 
predictions by group contribution method (Patel et  al., 2008). 
Two hydrophobic drugs namely Cucurbitacin B (CuB) and 
Cucurbitacin I (CuI) were further examined by them in PEO-b-
PCL at various ratios of PCL/PEO (0.5, 1, and 2). With increasing 
PCL/PEO ratio, both drugs showed an increase in solubility. This 
was attributed to the increase in favorable polar interactions and 
to the formation of additional hydrogen bonds between drugs and 
PCL rather than to the increase in hydrophobic characteristics 
(Patel et al., 2009). In their subsequent study, PCL was branched 
and linked to PEO as PEO-b-3PCL and tested for various drug 
encapsulations. Containing multiple hydrogen bond acceptors 
and donors, Cucurbitacin in the branched copolymer was found 
to be more soluble than in the linear counterpart; but fenofibrate 
and nimodipine were less soluble in the branched copolymer 
due to the absence of hydrogen bond donors and the clustering 
of hydrogen bond acceptors. This study suggested that multi-
hydrophobic copolymers could potentially increase drug loading 
for hydrophobic drugs with evenly distributed multiple hydrogen 
bond donors and acceptors (Patel et al., 2010).

A combination of MD simulation and docking calculation 
was employed to predict the compatibility between three hydro-
phobic model drugs (curcumin, paclitaxel, and vitamin D3) and 
a triblock copolymer poly(ethylene oxide)-desaminotyrosyl-
tyrosine octyl esters-poly(ethylene oxide) (PEG–DTO–PEG). 
The binding energies of drug-polymer complexes were evaluated 
by a rapid grid-based method. The grid size varied between 
64 × 64 × 64 Å and 126 × 126 × 126 Å using grid spaces between 
0.375 and 0.5 Å. Among three algorithms namely genetic algo-
rithm, Lamarkian genetic algorithm, and simulated annealing, 
the Lamarkian genetic algorithm was found to yield the strongest 
binding affinity. The energetically favorable conformation was 
attributed to strong H-bonding and π–π interactions between 
drug and polymer. However, vitamin D3 exhibited the highest 
loading even with less strong H-bonding and π–π interactions. 
Thus, the study revealed the significant role of subtle structural 
characteristics (e.g., size, flexibility, and rigidity) in drug loading 
and suggested the computations of drug-polymer pairs would be a 
powerful prescreening tool in the development and optimization 
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FiGURe 3 | Snapshot of cyclosporin A (in van der waals surface) 
and PeG–hexPLA (PeG in blue and hexPLA in red) mixture (Kasimova 
et al., 2012). Reproduced with permission from American Chemical Society.

TABLe 1 | Drug delivery in amphiphilic copolymers.

Copolymer Drug Remark Reference

PEO-b-PCL Fenofibrate, 
nimodipine, CuB, CuI

FAMD Patel et al. (2008, 
2009, 2010)PEO-b-3PCL Drug solubility

PEO Indomethacin FAMD Gupta et al. (2011)
Drug solubility

PEG–DTO–PEG CuR, pentoxifylline 
and vitamin D3

FAMD and 
docking

Costache et al. 
(2009)

Drug affinity
PEG–hexPLA Cyclosporin A, 

Griseofulvin, 
ketoconazole, 
quercetin dehydrate

FAMD Kasimova et al. 
(2012)Drug solubility

PEO-b-PCL and 
PEO-b-3PCL

CuB FAMD Razavilar and Choi 
(2014)Drug diffusion

PEO–PLLA and 
PEO–PDLA

Paclitaxel DPD Guo et al. (2009)
Drug loading 

AmB10 (m = 6–14) 
model polymers

Five model drugs DPD Guo et al. (2012b)
Drug loading/
diffusion

P(MMA-co-
MAA)-b-
PPEGMA

Ibuprofen DPD and 
MesoDyn

Zheng et al. (2011)

Drug loading 
PLA–PEO Nifedipine DPD and FAMD Posocco et al. 

(2010)PLA–PEO–PLA Drug loading 
PEG–PCL Taxol CGMD Loverde et al. 

(2011)Drug delivery
P(ST-DVB) Albendazole DPD Rodriguez-Hidalgo 

et al. (2011)Drug release 
PAE–PEG Camptothecin DPD and FAMD Luo and Jiang 

(2012)Drug loading/
release

4AS-PCL-b-
PDEAEMA-b-
PPEGMA

Doxorubicin DPD Nie et al. (2013)
Drug loading/
release

AlBmCn model 
polymers

Model drug DPD Nie et al. (2014)
Drug release

[(PCL)2(PDEA-b-
PPEGMA)2]

Doxorubicin DPD Lin et al. (2014)
Drug loading/
release 

PEGxCAy 
(x = 2K, 3K, 5K 
and y = 4, 6, 8)

Paclitaxel CGMD Jiang et al. (2015)
Drug loading 

Poly(glycerol 
adipate)

Dexamethasone 
phosphate

FAMD and 
CGMD

Mackenzie et al. 
(2015)

Drug loading 
AB and CB 
model polymers

Hydrophilic model 
drug

CGMD Srinivas et al. 
(2013)Drug delivery 

into a lipid 
vesicle

PEO–PPO–PEO Ibuprofen CGMD Nicola et al. (2014)
Drug delivery 
into a lipid 
bilayer

FAMD, fully atomistic MD; CGMD, coarse-grained MD; DPD, dissipative particle 
dynamics.
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of new drug delivery systems (Costache et al., 2009). Based on 
MD simulation, Kasimova et al. proposed a method to potentially 
measure drug loading capability in a polymer micelle. As shown in 
Figure 3, the method was based on the simulation of a molecular 
system where polymer, drug, and water were tightly compacted 
together, thus reproducing the interior of a real micelle. Then the 
Flory–Huggins interaction parameters were calculated and used 
to estimate drug solubility. The simulation data were validated 

on four drugs (cyclosporin A, griseofulvin, ketoconazole, and 
quercetin dehydrate) with different physical–chemical properties 
in PEG-hexPLA. A linear relationship was observed between the 
solubility and mass fraction for the four drugs. This method could 
be further utilized to estimate drug incorporation efficiency upon 
structural modification of polymer chains (Kasimova et al., 2012).

The above computational studies reported drug solubility, 
miscibility, and compatibility in different copolymers. While 
these equilibrium properties are useful to determine drug load-
ing, dynamic information is also important. Toward this end, 
Razavilar et  al. examined the diffusion of hydrophobic CuB in 
linear and branched PEO-b-PCL at different amounts of water. 
They found the diffusivity was double in linear PEO-b-PCL 
(~2.5 × 10−8 cm2/s) compared with that in branched PEO-b-3PCL 
(~1.3 × 10−8 cm2/s). The slower dynamics in branched copolymer 
was attributed to a cumulative effect of stronger hydrogen bond-
ing and lower swelling. Moreover, the diffusivity was found to be 
insensitive to water amount (Razavilar and Choi, 2014).

DPD method has been commonly applied to simulate drug 
loading and delivery in amphiphilic copolymers. Guo et  al. 
investigated paclitaxel (PTX) loading in poly(ethylene oxide)-
b-poly(l-lactide) (PEO–PLLA) and poly(ethylene oxide)-
b-poly(d-lactide) (PEO–PDLA). It was found that the polymers 
chains assembled around PTX to form core/shell structured 
fibers, with a PTX/PLA core and a PEO shell. The distribution 
of PTX could be affected by the chirality and length of PLA. For 
PEO-b-PDLA and PEO-b-PLLA systems, PLA and PTX were 
distributed homogeneously in the fiber core; however, PTX was 
more populated in the inner core for stereocomplex formulation. 
The simulation results agreed well with measured data (Guo et al., 
2009). Subsequently, they simulated drug diffusion into a micelle 
core. When represented by a short and branched chain, drug 
exhibited easier diffusion. With increasing hydrophobic block 
length of polymer, higher loading efficiency was found. While 
increasing polymer concentration would also lead to higher 
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3%                                        7%

4%                                         22%

A

B

FiGURe 4 | Morphologies of (A) PLA–PeO with 4 and 22% Nifedipine loading (B) PLA–PeO–PLA with 3 and 7% Nifedipine loading. PLA: red, PEO: 
purple, Nifedipine: orange (Posocco et al., 2010). Reproduced with permission from the Royal Society of Chemistry.
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loading, different morphologies like fiber-like structures might 
form due to increased polymer– polymer interactions. Drug 
structure, hydrophobic block length and drug-polymer compat-
ibility were identified to be the key factors governing drug loading 
efficiency and distribution (Guo et al., 2012b).

Posocco et al. reported a systematic DPD simulation study on 
structural and physical factors affecting the assembly of (d-l)-
PLA/PEO di/triblock copolymers for Nifedipine loading. The 
morphological phase diagrams were predicted for racemic PLA 
and PEO copolymers with AB and ABA architectures. Scaling 
laws for micellar dimensions were used to derive micellar charac-
teristics such as aggregation number and degree of hydration. As 
shown in Figure 4, the morphology of PLA–PEO was observed 
to be spherical at a low Nifedipine loading (4%) but switched 
to columnar shape at a high loading (22%). With increasing 
Nifedipine loading in PLA–PEO–PLA (3–7%), the morphology 
rearranged from sphere to bilayer. Such loading-dependent mor-
phology transition suggested the maximum drug loading could 
be accommodated by the copolymers (Posocco et al., 2010).

By integrating FAMD and DPD simulations, Luo and Jiang 
examined the loading and release of camptothecin (CPT) in 
poly(β-amino ester)–methyl ether capped poly (ethylene glycol) 
(PAE–PEG). FAMD was utilized to estimate the Flory–Huggins 
interaction parameters and miscibility of binary components. 
On this basis, DPD was applied to examine the micellization of 
PAE–PEG, CPT loading and release. As illustrated in Figure 5, 
CPT loading in PAE-PEG was governed by adsorption-growth-
micellization mechanism. CPT was initially adsorbed on the 

small clusters assembled by polymer chains, then the clusters 
grew in size, and finally CPT was loaded into large-size micelles. 
The loading efficiency was predicted as 0.84, close to experi-
mental measured 0.82. Upon protonation, CPT was released 
from micelles/vesicles by swelling-demicellization-releasing 
mechanism. Initially, the micelles were swollen rapidly and 
PAEH chains moved out from the hydrophobic core, then the 
swollen micelles demicellized and CPT moved out, and finally 
the entire micelle was dissociated into free polymer chains and 
CPT (Luo and Jiang, 2012).

Other copolymers were also explored for drug delivery. Nie 
et al. applied DPD simulation to examine doxorubicin (DOX) in a 
four-armed star triblock poly(ϵ-caprolactone-b-poly (2-(diethyl-
amino) ethyl methacrylate)-b-poly(poly-(ethylene glycol) methyl 
ether methacrylate) [4AS-PCL-b-PDEAEMA-b-PPEGMA). The 
assembled core-mesosphere-shell micelles with three layers could 
load DOX at the core and the core/mesosphere interface. Upon 
increasing DOX content from 1 to 7%, the micelle shape changed 
and its shell was partially open for water to access. Due to the 
stretching of pH-sensitive PDEAEMA, cracks were observed in 
the blank micelles at pH = 5, which might facilitate drug release. 
However, the drug-loaded micelles did not exhibit any drug 
release at different pH values. This was attributed to the fact that 
stirring is usually applied in experiment but not incorporated 
in the simulation (Nie et  al., 2013). They also investigated the 
effectiveness of drug distribution in pH-sensitive AlBmCn copoly-
mers with different lengths of hydrophilic block, pH-sensitive 
block and hydrophobic block. From DPD simulation, it was 
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t = 0 ns t = 9 ns t = 360 ns t = 1260 ns

FiGURe 5 | Dynamics process of CPT loading. CPT is shown as orange sphere, PAE and PEG are in green and purple (Luo and Jiang, 2012). Reproduced with 
permission from Elsevier.

FiGURe 6 | Relative concentrations of drugs in (a1) the pH-sensitive layer, (a2) both of the pH-sensitive layer and the core, and (a3) the core. 
The drugs had different compatibilities with the micelles composing different lengths of pH-sensitive B blocks (Nie et al., 2014). Reproduced with permission from 
American Chemical Society.
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demonstrated that the formation of firework-like three layered 
structure (spherical core, pH-sensitive layer, and shell) was cru-
cial to drug release. As illustrated in Figure 6, drug loaded in the 
pH-sensitive layer was easier to release with a much faster rate 
than in the core; drug release in the pH-sensitive layer exhibited 
a remarkable rise upon increasing the length of B blocks. The 
mechanically propelled effect due to the extension of pH-sensitive 
blocks had a significant contribution to drug release. Moreover, it 
was revealed that tuning hydrophilic chain length would promote 
micelle stability and increasing hydrophobic chain length resulted 
in different mechanisms for drug release (Nie et al., 2014). The 
same group further combined DPD simulation and experi-
ment to examine DOX loading and release in 4-miktoarm star 
polymers namely poly(𝛆-caprolactone)2-[poly(2-(diethylamino)
ethylmethacrylate-b-poly(poly(ethylene glycol) methyl ether 
methacrylate)]2 [(PCL)2(PDEA-b-PPEGMA)2] with different 
block ratios. The polymer formed spherical micelles with PCL 
core, pH-sensitive PDEA mesosphere and PPEGMA shell. 
The increase in hydrophobic block length showed higher DOX 
loading from 9 to 19%. Upon increasing concentration, DOX was 
initially loaded in the mesosphere then diffused into the core. 
A  swelling-demicellization-releasing mechanism was suggested 
for the release process. As also observed by experiment, the 
amount of DOX released at pH = 5.0 was larger than at pH = 7.4 
and 6.0. The study demonstrated that the miktoarm star copoly-
mers could be promising for the controlled and sustained release 
of DOX (Lin et al., 2014).

A multiscale simulation in conjunction with experiment was 
adopted by Jiang et  al. to investigate the loading and structure 
detail of PTX in poly(ethylene glycol)-b-dendritic oligo(cholic 
acid) (PEGxCAy, x =  2K, 3K, 5K and y =  4, 6, 8). The systems 
were mimicked by a CG model described by the MARTINI force 
field. The hydrophobic-hydrophilic balance was demonstrated 
to be crucial for forming stable carrier and effective drug load-
ing, and losing balance would lead to less stable micelles with 
limited drug loading capacity or precipitation. Figure 7A shows 
the structure of PTX–PEG5KCA8 loaded with 17% (w/w%) PTX 
at the end of 1.5  μs simulation. PTX was encapsulated within 
the amphiphilic envelope of CA groups. The size distribution of 
PTX-loaded micelles shown in Figure 7B was not uniform, as 
also observed in dynamic light scanning measurement. The CG 
systems were then reversely mapped to FA representations, and 
hydrogen-bonds were found to form between PTX and micelles 
(Jiang et al., 2015).

A handful of simulation studies were targeted to elucidate the 
delivery of drug-loaded carriers into lipid membranes. Srinivas 
et al. examined the delivery of hydrophilic model drugs assisted 
by a patchy polymer across a lipid vesicle. The drugs were 
mimicked as unconnected beads and loaded in patch-forming 
polymer micelles composed of two types of blocks (AB and 
CB). In the first stage, micelle–vesicle interactions were evalu-
ated and the full absorption of micelles was observed without 
the shape change of vesicle. In the second stage, the interaction 
between drug-loaded micelle and vesicle was evaluated, and the 
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FiGURe 7 | (A) PTX–PEG5KCA8 with 17% PTX loading at 1.5 μs. Colors: PTX (orange), PEG (gray), Cholic acid (blue) and lysine (red). (B) Size distribution of PTX–
PEG5KCA8 (Jiang et al., 2015). Reproduced with permission from American Chemical Society.

200 ns                                           400 ns 600 ns

FiGURe 8 | Hydrophilic drug molecules (magenta) transport across the lipid vesicle (gray) assisted by polymer micelles (yellow and blue) and release 
inside the inner core of the vesicle (Srinivas et al., 2013). Reprinted with permission from American Chemical Society.
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vesicle reorganized in accommodating the micelles. As shown 
in Figure 8, the drugs were successfully transported across the 
vesicle, released, and distributed into the vesicle. The simulation 
revealed that hydrophilic drugs can be delivered by polymer 
assisted pathway, which is insightful for experimentalists to 
develop better carriers for hydrophilic drugs (Srinivas et  al., 
2013). Alternatively, Nicola et al. performed simulation for the 
delivery of Pluronic micelles across DPPC lipid bilayer. In accord 
with experimental observation, Pluronic chains were found to 
release from the micelles to the bilayer and thus the micelle size 
was changed. In the presence of drug inside the micelle core, the 
release process was significantly affected due to the interplay of 
drug-micelle and micelle-bilayer interactions, and the micelle 
size increased sharply by slightly altering drug hydrophobicity. 
This study provides detailed understanding of fundamental 
mechanism underlying drug delivery (Nicola et al., 2014).

PePTiDeS

Some synthetic polymers are cytotoxic to cells and cannot be 
clinically used. Ideal carriers for drug delivery should possess the 
characteristics of non-toxic, non-immunogenic, biocompatible, 
biodegradable, and kinetically stable (Liu et  al., 2011). In this 
context, amphiphilic peptides have emerged as “smart” materials 
for drug delivery. Composed of hydrophilic and hydrophobic 

residues, amphiphilic peptides can assemble into various mor-
phologies such as micelles, vesicles, fibers, and hydrogels (Hamley, 
2011; Trent et al., 2011). The morphologies are dependent on the 
ratio of hydrophobic to hydrophilic residues, peptide sequence, 
concentration, and other factors. Their sizes are usually <100 nm, 
which is an advantage to prevent from reticuloendothelial system 
of human body (Cui et al., 2010). More intriguingly, the size, sta-
bility, permeability, and elasticity can be fine-tuned by tailoring 
peptide sequence, length, solution conditions, etc. Amphiphilic 
peptides have been tested for delivering drug or gene or both, and 
better therapeutic effects were found on cancer cells or genetic 
disorders (He et al., 2012; Sundar et al., 2014). Every year, about 
17 new peptides enter into clinical tests and about 140 peptides 
are currently under development (Zhang et al., 2012). With 20 
gene-encoded amino acids, it can be envisioned that tremen-
dously large number of peptides would be explored (Ulijn and 
Smith, 2008; Zhao et al., 2010).

Most computational efforts for amphiphilic peptides have 
been focused on self-assembly, rather than drug loading/release. 
Therefore, the studies of self-assembly are also summarized 
here as listed in Table  2. Jeon et  al. simulated the early stages 
of assembly for diphenylalanine (FF) in both capped and zwit-
terionic forms, and compared with X-ray crystal structures. It 
was revealed that electrostatic interactions steered zwitterionic 
FF into more ordered dimers and trimers, while hydrophobic 
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TABLe 2 | Self-assembly and drug delivery in amphiphilic peptides.

Peptide Nature 
of study

Remark Reference

FF Self-
assembly

FAMD Jeon et al. 
(2013)Nanotubes

FF and AA Self-
assembly

FAMD Rissanou et al. 
(2013)In water and methanol

FF Self-
assembly

CGMD Guo et al. 
(2012a)Vesicles and nanotubes, 

bilayers and toroids
FFF Self-

assembly
CGMD Guo et al. (2014)
Nanospheres and 
nanorods

Fmoc-conjugated 
AA

Self-
assembly

FAMD Mu et al. (2012)
Fibrils

Fmoc-conjugated 
RGDS and GRDS

Self-
assembly

FAMD Lopez-Perez 
et al. (2013)Parallel and antiparallel 

configurations
Dipeptides Aggregation 

propensity 
(AP)

CGMD Frederix et al. 
(2011)AP scores of 400 

dipeptides
Tripeptides Aggregation 

propensity 
(AP)

CGMD Frederix et al. 
(2015)AP scores of 8000 

tripeptides

Tri- to 
hexapeptides 

Self-
assembly

FAMD Hauser et al. 
(2011)Fiber aggregates

10-b-10 and 
20-b-20

Self-
assembly

FAMD and CGMD Mondai and 
Yethiraj (2012)Micelles

Branched 
peptides 

Self-
assembly

CGMD Gudlur et al. 
(2012)Nanovesicles

FmKn and FmDn Self-
assembly

CGMD Thota et al. 
(2014)Effect of hydrophobic/

hydrophilic ratio

(AEAK)4, 
((AE)2(AK)2)2, 
(AE)4(AK)4

Self-
assembly

CGMD Emamyari and 
Fazli (2014)Effect of pH

(AF)6H5K15 and 
derivatives

Self-
assembly

CGMD Thota et al. 
(2013), Thota 
and Jiang (2014)

Effects of concentration, 
hydrophobic and 
hydrophilic residues

Model peptides Self-
assembly

CGMD Velichko et al. 
(2008)Different morphologies

C16-
SLSLAAAEIKVAV, 
V2A4E3 and V4A2E3

Self-
assembly

FAMD and CGMD Lee et al. (2011), 
Lee et al. 
(2012a), and Lee 
et al. (2012b)

Nanofibers

C16-
SLSLAAAEIKVAV

Self-
assembly

FAMD Yu and Schatz 
(2013a,b)Free energy analysis

RADA16-I Self-
assembly

FAMD Cormier et al. 
(2013)Nanofibers

Palmitoyl-V3A3E3 Self-
assembly

CGMD Fu et al. (2013), 
Fu et al. (2014), 
and Fu et al. 
(2015)

Roles of electrostatics, 
temperature, 
hydrophobicity, and 
solvent

SA2 Self-
assembly

CGMD and FAMD Rad-Malekshahi 
et al. (2015)Nanovesicles

HR20-Chol and 
HR15-Chol

Doxorubicin 
loading

DPD and FAMD Guo et al. (2010) 
and Guo et al. 
(2012c)

Effect of pH

PPO-b-PBLG-b-
PEG

Doxorubicin 
and naproxen 
loading/
release

DPD Chen et al. 
(2014)In core-shell-corona 

micelles

(AF)6H5K15, 
F12H5K15, F16H5K15

Ibuprofen 
loading/
release

CGMD Thota et al. 
(2015)In different morphologies
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side-chain interactions played a strong role in determining the 
structures of large oligomers (Jeon et al., 2013). Simulation as well 
as experiment was performed by Rissanou et al. to study FF and 
AA in two solvents (water and methanol). The assembly propen-
sity of FF in water was found to be stronger than in methanol. 
However, the difference between the two solvents for AA was 
substantially smaller. The simulation results showed good quali-
tative agreement with experimental observations (Rissanou et al., 
2013). Alternatively, Guo et  al. implemented extensive CGMD 
simulations to probe the assembly of FF. Consistent with previ-
ous experiments, nanovesicles and nanotubes were predicted 
(Figures 9A,B); in addition, new ordered planar bilayers and a 
rich variety of other vesicle-like structures including toroid, ellip-
soid, discoid, and pot-shaped vesicles were also observed. The 
assembly was revealed to involve the fusion of small vesicles and 
bilayers at low concentrations but the formation of a bilayer at high 
concentrations (Guo et al., 2012a). They further predicted that 
FFF spontaneously assembled into highly compact nanospheres 
and nanorods (Figures  9C,D). The peptides in nanostructures 
were predominantly anti-parallel-aligned with the capability to 
form β-sheets, and no intermediate bilayers existed. From free 
energy analysis, the assembly of FF and FFF was attributed to the 
aromatic stacking interactions of side chains; however, the fine 
morphologies were governed by the interactions of main chains 
(Guo et al., 2014).

Fluorenylmethoxycarbonyl conjugated peptides were under 
investigation by a few groups. Mu et  al. combined experiment 
and simulation to examine the assembly of Fmoc-AA. The for-
mation of fibrils with Fmoc groups at the center was observed; 
nevertheless, the partial exposure of Fmoc groups to water caused 
the fibrils to aggregate into nanoscale fibers. The radial distribu-
tion calculations agreed well with the d-spacings measured by 
wide angle X-ray scattering for the fibril diameter and π-stacking 
interactions (Mu et al., 2012). Similarly, Lopez-Perez et al. found 
Fmoc conjugated tetrapeptides (Fmoc-RGDS and Fmoc-GRDS) 
retained pre-assembled β-sheet parallel conformations under 
low concentrations, which were dominated by the interactions 
among Fmoc units. The study provided a complete microscopic 
insight into the interactions between Fmoc-peptides comprised 
within the same sheet or among different sheets (Lopez-Perez 
et al., 2013).

Using CGMD simulations, Frederix et al. rapidly screened 400 
dipeptide combinations of 20 amino acids as a potential precur-
sor for assembly. The candidates showing strong aggregation 
tendencies were chosen for longer simulations, and good agree-
ment was found by comparing predicted aggregation propensity 
(AP) scores and supramolecular structures with experimental 
results known in the literature. Extended simulations on FF 
showed the formation of a nanotube. This screening protocol 
allows rapid determination on the capability of peptide assembly 
(Frederix et al., 2011). Subsequently, they predicted the AP scores 
of 8000 tripeptides as a function of hydrophobicity. As shown 
in Figure 10, a weak correlation between AP and hydrophilicity 
was found. The peptides containing charged K, R, D, and E and 
hydrogen-bonding T and S were identified with high AP scores. 
Among these, the top 400 combinations were subject to extended 
simulations for the dynamics and nanostructure of assembly. 
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FiGURe 10 | Aggregation propensity (AP) as a function of 
hydrophobicity for 8,000 tripeptides. Red diamonds represent all 
tripeptides with AP > 2. Green diamonds represent the top 400 tripeptides 
from the APH score with the overlapping candidates shown in orange 
(Frederix et al., 2015). Reproduced with permission from Macmillan 
Publishers Ltd.

A
B

C

D

FiGURe 9 | Nanostructures formed by FF and FFF peptides. (A) FF nanovesicle, (B) FF nanotube, (C) FFF nanosphere, and (D) FFF nanorod. Peptide main 
chain and side chain beads are shown in red and white, respectively. Water beads are shown in blue (Guo et al., 2012a, 2014). Reproduced with permission from 
American Chemical Society and the Royal Society of Chemistry.
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Then, a set of design rules were proposed with aromatic residues 
as the most favorable at positions 2 and 3 in a tripeptide, posi-
tive and hydrogen-bonding residues in position 1 and negative 
residues at position 3. Validated by experiments, the simulation 
results led to the discovery of tripeptides with capability to form 
hydrogels. The tools developed would promote the search of 
peptide sequences for supramolecular properties (Frederix et al., 
2015).

Thota et al. simulated the assembly of a series of short pep-
tides FmDn and FmKn. The peptides consisted of hydrophobic 
phenylalanine, hydrophilic aspartic acid, and lysine. Within 
μs-scale duration, FD and FK formed loose polymeric clusters. 
With increasing the length of Phe residues in FmD and FmK 
(m  =  2–4), larger and more stable micelles were observed to 
form. FmK and FmD appeared to assemble into quasi-spherical 
and sheet-like micelles, respectively. In contrast, smaller and 
less stable micelles were formed with increasing the length of 
hydrophilic Lys residues in both F3Kn and F6Kn. Interestingly, 
F3K4 and F6K8 were found to form quasi-spherical micelles with 
distinct core/shell structure. This suggested the optimal ratio of 
hydrophobic/hydrophilic residues to be 3/4. Upon increasing 
this ratio, quasi-spherical micelles tended to become elliptical 
aggregates; while decreasing this ratio resulted in smaller and 
less stable micelles. This ratio found is significant in the rational 
selection of appropriate FmKn peptides to assemble into spheri-
cal micelles (Thota et al., 2014).

Apart from the short peptides mentioned above, relatively 
longer peptides were also simulated at various conditions. 

Emamyari et al. examined the assembly of three ionic peptides 
(AEAK)4, ((AE)2(AK)2)2 and (AE)4(AK)4 in the presence of a 
hydrophobic surface. The first two peptides assembled into rib-
bons regardless of pH value. However, third peptide assembled 
into ribbons at low and high pH but discs at neutral pH, due to 
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t = 0                       0.05                      1           16 µs

FiGURe 12 | Assembly process of a nanofiber from a random 
configuration (Lee et al., 2012a). Reprinted with permission from American 
Chemical Society.

F4H5K15 F8H5K15                                      F12H5K15 F16H5K15

FiGURe 11 | equilibrium snapshots of F4H5K15, F8H5K15, F12H5K15, and F16H5K15 (Thota and Jiang, 2014). Reprinted with permission from American Chemical 
Society.
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strong intrachain electrostatic interactions among similar charged 
blocks. These observations were consistent with experimental 
and theoretical investigations (Emamyari and Fazli, 2014). Thota 
et  al. simulated amphiphilic peptide (AF)6H5K15 (FA32), which 
was observed to form micelles with Ala and Phe in hydrophobic 
core, Lys in hydrophilic shell and amphiphilic His at the interface. 
The assembly process and microscopic structures were analyzed 
in terms of the number of clusters, the radii of micelle, core and 
shell, and density profiles. A three-step process was proposed for 
the assembly: aggregation of small clusters, merging into large 
clusters, and formation of micelles. With increasing peptide con-
centration, quasi-spherical micelles changed to elongated shape 
and micelle size generally increased. The micelle size was pre-
dicted to be around 2~4 nm, much smaller than experimentally 
measured, as attributed to two factors: the simulation was not 
sufficiently long thus prohibiting the formation of larger micelles; 
the CG model adopted might not be accurate to describe FA32 
(Thota et al., 2013). The derivatives of FA32 were further studied 
to examine the roles of hydrophobic and hydrophilic residues in 
assembly. Upon increasing the length of Lys from (AF)6H5K10, 
(AF)6H5K15 and (AF)6H5K20 to (AF)6H5K25, assembly capability 
was reduced with the formation of smaller micelles or the pres-
ence of individual peptide chains. When Ala was replaced by 
more hydrophobic Phe in (AF)6H5K15, (AF3)3H5K15, and F12H5K15, 
larger micelles were formed. With increasing the length of Phe 
in F4H5K15, F8H5K15, F12H5K15, and F16H5K15, the micelle size 
increased and the micelles shifted from spherical to fiber-like as 
shown in Figure 11. This study reveals that assembly capability is 
reduced by increasing hydrophilicity, whereas increasing hydro-
phobicity leads to morphology transition (Thota and Jiang, 2014).

Simulations were also carried out for peptide amphiphiles 
(i.e., lipid-like peptides). By FAMD simulation starting from 
a predefined configuration, Schatz and coworkers observed the 
assembly of C16-SLSLAAAEIKVAV into a cylindrical nanofiber. 
With a radius of 4.4  nm, the nanofiber was found to contain 
a broad distribution of secondary structure. The β-sheet popula-
tion of the SLSL and IKV segments was approximately 25%, as 
experimentally observed. The stability of nanofiber was attributed 
to the electrostatic interactions between peptides and sodium 
ions, as well as the van der Waals interactions between peptides 
(Lee et  al., 2011). The same peptide was simulated by CGMD 
method from a random configuration. As shown in Figure 12, 

spherical micelles were initially formed, then aggregated into a 
three-dimensional network, and finally merged into a nanofiber. 
Consistent with FAMD simulation, water molecules were 
excluded from the hydrophobic core (Lee et al., 2012a). Two pep-
tide amphiphiles with variation in the content of valine and ala-
nine ratios (PA1: V2A4E3 and PA2: V4A2E3) were also investigated 
by them. Though both formed fibers with a size of 8 nm, PA2 
showed higher β-sheet content and more hydrogen bonds than 
PA1 because of higher valine content. The hydrogen bonds might 
be a cause for the difference in mechanical properties of fibers as 
observed experimentally (Lee et al., 2012b). Based on a collective 
assembly coordinate, they further analyzed the free energy pro-
file and mechanism for the assembly of C16-SLSLAAAEIKVAV. 
The  free energy, enthalpy, and entropy differences between the 
free state and cylindrical nanofiber were found to be −126 kcal/
mol, −185 kcal/mol, and −0.19 kcal/(mol⋅K), respectively. It was 
revealed that the enthalpic driving force for assembly originated 
from the conformation energy, electrostatic and van der Waals 
energy between solvent molecules, as well as between solvent and 
peptide. This study demonstrates the substantially important roles 
of peptide structural change, solvation, and solvent redistribution 
in hierarchical assembly (Yu and Schatz, 2013a,b).

In addition, Nguyen and coworkers developed an extension 
of the protein intermediate resolution model (ePRIME) in 
large-scale simulations to examine the effects of electrostatics 
and temperature in the assembly of 800 peptide amphiphiles 
(pamitoyl-V3A3E3). Starting from random configurations, they 
found nanostructures of various sizes and shapes. At optimal 
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FiGURe 13 | Phase diagram between electrostatics and temperature (Fu et al., 2013). Reprinted with permission from John Wiley and Sons.

A pH > 6

B pH < 6

FiGURe 14 | Simulation snapshots of DOX-loaded micelles at 
(A) pH > 6 and (B) pH < 6 (Guo et al., 2010). Reprinted with permission 
from American Chemical Society.
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conditions, the assembly mechanism for the formation of cylin-
drical nanofibers was disclosed. A phase diagram between elec-
trostatics and temperature was constructed shown in Figure 13 
for the delineating morphological regions in response to external 
stimuli (Fu et  al., 2013). In terms of hydrophobicity, they 
observed the progressive transition from open network to closed 
cylindrical structure with increasing hydrophobicity (Fu  et  al., 
2014). Furthermore, they examined solvent effects on peptide 
assembly. The assembly was found to occur via a multistep 
process with transient intermediates ultimately leading to stable 
nanostructures. Different kinetic mechanisms were compared on 
the basis of solvent-accessible surface area, radius of gyration, 
relative shape anisotropy, intra/intermolecular interaction, and 
aggregate size (Fu et al., 2015).

Comparatively, only few simulation studies have been 
reported on the loading/release of drugs in amphiphilic peptides. 
Guo et al. conducted FAMD simulations to calculate solubility 
parameters and molar volumes, then used DPD method to 
examine the microstructures of blank/DOX-loaded micelles of 
cholesterol conjugated oligopeptides His10Arg10 (HR20-Chol). 
DOX was efficiently loaded in the core of core/shell micelles at 
pH >6. As illustrated in Figure 14, all the DOX could be loaded in 
the micelle with most DOX distributed in the cholesterol core and 
some also inside the histidine middle layer. Upon decreasing pH, 
the micelle appeared to be swelling from dense conformation and 
some DOX molecules were not inside the micelle leading to lower 
loading. The structural transformation at low pH was attributed 
the protonation of imidazole group in histidine side chains. The 
results were found to be qualitatively consistent with experiment 
(Guo et  al., 2010). They further applied multiscale simulations 
to develop structure–performance relationships for DOX load-
ing in HR20-Chol and HR15-Chol. The simulation showed 

qualitative consistency with in  vitro experiment (Guo  et  al., 
2012c). Chen et al. combined experiment and DPD simulation 
to design polypeptide-based micelles for dual-drug delivery. The 
micelles were formed by poly(propylene oxide)-b-poly(γ-benzyl-
l-glutamate)-b-poly(ethylene glycol) (PPO-b-PBLG-b-PEG) 
and two drugs, doxorubicin (DOX) and naproxen (Nap). A 
core-shell-corona structure was observed for the micelles with 
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FiGURe 15 | ibuprofen release from FA32 micelles and F16H5K15 
nanofiber (Thota et al., 2015).

October 2015 | Volume 2 | Article 6412

Thota and Jiang Amphiphilic materials for drug delivery

Frontiers in Materials | www.frontiersin.org

ReFeReNCeS

Ahmad, S., Johnston, B. F., Mackay, S. P., Schatzlein, A. G., Gellert, P., Sengupta, D., 
et al. (2010). In silico modelling of drug-polymer interactions for pharmaceu-
tical formulations. J. R. Soc. Interface 7, S423–S433. doi:10.1098/rsif.2010.0190.
focus 

Allen, M. P., and Tildesley, D. J. (1987). Computer Simulation of Liquids. Oxford: 
Oxford University Press.

Chen, L., Jiang, T., Cai, C., Wang, L., Lin, J., and Cao, X. (2014). Polypeptide-based 
smart micelles for dual-drug delivery: a combination study of exepriments 

and simulations. Adv. Healthc. Mater. 3, 1508–1517. doi:10.1002/adhm.201 
300638 

Chen, Y., and Liu, L. H. (2012). Modern methods for delivery of drugs across 
the blood–brain barrier. Adv. Drug Deliv. Rev. 64, 640–665. doi:10.1016/j.
addr.2011.11.010 

Cormier, A. R., Pang, X., Zimmerman, M. I., Zhou, H. X., and Paravastu, A. K. 
(2013). Molecular structure of RADA16-I designer self-assembling peptide 
nanofibers. ACS Nano 7, 7562–7572. doi:10.1021/nn401562f 

Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., 
et  al. (1995). A second generation force-field for the simulation of proteins, 

PPO/Nap, PBLG/DOX and PEG in the core, shell, and corona, 
respectively. Moreover, the dual-drug-loaded micelles were dem-
onstrated to be biocompatible at normal physiological conditions 
and retained anti-cancer efficiency (Chen et al., 2014).

Thota et al. conducted CGMD simulation to investigate ibu-
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and F16H5K15. Upon IBU loading in FA32, quasi-spherical core/
shell structured micelles were formed. IBU was predominantly 
located at the core along with Phe and Ala, whereas Lys and His 
were in the shell and core/shell interface, respectively. Compared 
with blank FA32, the size of IBU-loaded micelles was larger. With 
increasing ratio of drug/peptide, the micelles became larger as 
attributed to increased hydrophobic interactions. In FA32 
derivatives, however, IBU loading led to different morphologies; 
particularly, a well-structured nanofiber was formed in F16H5K15. 
As shown in Figure  15, IBU release from FA32 micelles upon 
pH change was found to be slower than from F16H5K15 nanofiber, 
suggesting the former might be better in controlled release. The 
simulation study reveals that IBU-loaded morphology can be 
altered by changing the type of peptide and has a significant effect 
on IBU release profile (Thota et al., 2015).

SUMMARY AND OUTLOOK

In this review, the recent computational studies for drug delivery 
in amphiphilic copolymers and peptides are summarized. Most 
studies have used CG models for a wide variety of copolymers 

(e.g., PEO/PEG, PCL, and PLA based) and peptides (e.g., di-, 
tri-, short, and long peptides). The effects of chemical structure, 
hydrophobicity, and hydrophilicity of building blocks, and drug-
carrier compatibility are examined. The key factors governing 
drug loading efficiency and release profile are identified. These 
microscopic insights are useful to quantitatively understand 
experimental observations and deeply unravel fundamental 
issues in drug delivery.

To overcome the long simulation duration involved in drug 
loading and release, advanced techniques such as metadynamics 
and targeted MD may be applied in future computational endeav-
ors. By choosing a set of collective variables and reconstructing free 
energy landscape, metadynamcis method allows for accelerating 
simulation. However, it is far from trivial to choose appropriate 
collective variables; additionally, the simulation system tends to 
reside in high-energy region due to the fluctuation around free 
energy landscape. By applying a time-dependent geometrical 
constraint, targeted MD gradually steers a simulation system 
toward a specified target structure. Nevertheless, equilibrium 
properties cannot be calculated, the final structure has to be 
known in prior and the order of events may depend on simula-
tion direction. While simulations with CG models are widely 
adopted in this field and provide mesoscale insights, the atomistic 
information of drugs and carriers is not captured. An alternative 
approach is to mimic the solutes (drugs and carriers) and solvent 
(water) by atomistic and CG models, respectively. Such a hybrid 
approach can improve simulation efficiency, meanwhile, provide 
atom-resolution details. Currently, almost all the simulation 
studies in this field are focused on a single drug. Experiments 
have demonstrated that drugs and genes could be simultane-
ous delivered into cell with better therapeutic effects. Thus, it 
is intriguing to simulate the loading and delivery of both drugs 
and genes, and unravel their complex interplay from bottom-up. 
Furthermore, the transport of drug-loaded carriers through 
biomembranes into cells is scarcely investigated; however, this 
transport is of central importance to drug delivery. It is foresee-
able that increasingly more computational studies will be carried 
out to clearly reveal transport mechanisms; thereafter, the entire 
process of drug delivery including loading, transport, and release 
can be comprehensively elucidated to facilitate the development 
of new amphiphilic materials for drug delivery.
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