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Introducing an interaction parameter γ, we implement modifier interaction and the
mixed-alkali effect into bond constraint theory and apply this extension for simplistic
property prediction on ternary phosphate glasses. The severity of the mixed-alkali effect
results from the interplay of two simultaneous contributions: bond constraints on the
modifier species soften and stiffen with decreasing and increasing γ, respectively. When
themodifier size is not too dissimilar, the decrease in γ reflects that the alkali ions can easily
migrate between different sites, forcing the network to continuously reaccommodate
for any subsequent distortions. With increasing size difference, migration becomes
increasingly difficult without considerable network deformation. This holds even for smaller
ions, where the sluggish dynamics of the larger constituent result in blocking of the fast
ion movement, leading to the subsequent increase in γ. Beyond a certain size difference
in the modifier pair, a value of γ exceeding unity may indicate the presence of steric
hindrance due to the large surrounding modifiers impeding the phosphate network to
reaccommodate deformation.

Keywords: mixed-alkali effect, glass transition temperature, bond constraint theory, phosphate glasses, topolog-
ical constraints

INTRODUCTION

The bond constraint theory (BCT), as originally formulated by Phillips (1979) and Phillips and
Thorpe (1985), rationalizes the glass structure in terms of a simple “ball-and-stick” network. It uses
topological relationships based on the number of linear and angular constraints found on the first
coordination shell of each atom within the glass network. More recently, Gupta and Mauro (2009)
and Mauro et al. (2009) introduced the concept of temperature-dependent constraints, based on
previous work by Naumis (2005, 2006), taking into account the temperature dependence of config-
urational entropy and, hence, the number of bond constraints. This allowed for applying constraint
counting to calculate the compositional trends of properties, such as the glass transition temperature
(Gupta and Mauro, 2009; Mauro et al., 2009; Smedskjaer et al., 2010b, 2011; Fu and Mauro, 2013;
Jiang et al., 2013; Rodrigues and Wondraczek, 2013, 2014; Hermansen et al., 2014a; Rodrigues et al.,
2014), fragility (Gupta and Mauro, 2009; Mauro et al., 2009; Hermansen et al., 2014a), and surface
hardness (Smedskjaer et al., 2010a,c, 2011;Wondraczek et al., 2011; Smedskjaer, 2014).While useful
applications of the BCT need detailed structural information, the strength of this approach lies
in its simplicity, as only the knowledge of the components’ first shell coordination number and a
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reasonable guess about the relative strength of the constraints
considered are required for relatively accurate property predic-
tion. However, the BCT is not without problems, which start
already with its basic assumptions (Rodrigues and Wondraczek,
2015) as how to incorporate structural influences beyond the
short range (Rodrigues and Wondraczek, 2013). In glass science,
one such example is the so-called “mixed-alkali effect” (MAE),
where the mixture of two alkali species results in a non-linear
variation of several properties, such as ionic conductivity, glass
transition temperature, internal friction, and volumetric relax-
ation (Bunde et al., 2004; Changstrom and Sidebottom, 2008).
Here, we, therefore, aim to expand the current understanding
of the BCT toward incorporation of such non-linear interaction
terms, choosing the example of mixed-alkali phosphate glasses
(Fu and Mauro, 2013; Hermansen et al., 2014a; Rodrigues and
Wondraczek, 2014; Rodrigues et al., 2014). We demonstrate how
appropriate interaction terms can be used to incorporate the
MAE into BCT so as to enable accurate calculation of the glass
transition temperature. However, we also show that in doing so,
the empiricism of the approach is further highlighted, because the
physical meaning of the required fitting parameters is presently
not developed.

MODIFIER CONSTRAINTS

The BCT was originally developed and applied to chalcogenide
glasses, which are particularly suitable to the “ball-and-stick” anal-
ogy, since the atoms are connected by predominantly covalent
bonds with very well-defined first coordination shells, similar
to the bonds between oxygen and the network formers in most
oxide glasses. It was previously assumed that the number of
constraints associated with each modifier atom within the glass
network depends exclusively on its first coordination shell (Fu
and Mauro, 2013). However, we have later shown that while the
coordination number influences the number of constraints, the
actual interaction strength is mainly a function of the electro-
static forces between the modifier and the non-bridging oxy-
gens (Rodrigues and Wondraczek, 2014), in accordance with the
observations of Eisenberg et al. (1966) several decades ago. The
interactions between the non-bridging oxygens and the network
modifiers have a strongly ionic character. This requires adapta-
tions to the “ball-and-stick” model due to the lower directionality
and longer ranges characteristic of the Coulombic interactions.
This adaptation was achieved by the introduction of the char-
acteristic “constraint strengths” to the model, for which there
are now two ways of implementation: in our previous work
(Rodrigues and Wondraczek, 2014; Rodrigues et al., 2014), we
argue that the “constraint strength” defined as the ratio between
the number of constraints each modifier R adds to the system
(KR) and its coordination number (CNR) represents the number
of constraints each modifier/non-bridging oxygen bond adds to
the system, with the caveat that the numbers are relative to the
absolute strength of all other constraints which are assumed to
be equal to unity. Alternatively, Hermansen et al. (2014b) argue
that the “constraint strength” (qγ in this notation) also represents
the fraction of the modifier constraints that are still intact at the

temperature in question. Both approaches result in equivalent
glass transition temperature predictions for the studied binary
phosphate glasses and both “constraint strength” values are lin-
early dependent on the Coulombic forces between the modifiers
and non-bridging oxygens (Hermansen et al., 2014b; Rodrigues
and Wondraczek, 2014). In this work, we will be using the former
interpretation for two main reasons: first, it provides internal
consistency on how the modifier constraints are treated, being
considered either completely broken or completely intact, the
same as all other constraints present in the system. Second, and
more importantly, the distribution of modifier sites according to
the calculations from Hermansen et al. (2014b) does not seem
to correspond to experimental data. According to Hermansen
et al. (2014b), the number of modifier constraints is given by
2×XR(x) for x≤ xcr and CNR ×XR(x− xcrit) + 2×XR(xcrit) for
x> xcrit, where XR(x) is the modifier’s molar fraction, x is the
compositional variable as in xR2O× (1− x)P2O5 and xcrit is
Hoppe’s critical composition (xcrit = ν/CNR, with the modifier
valency ν) (Hoppe, 1996), above which the number of double-
bonded oxygens is not enough to fully coordinate the modifier
ions, which in consequence begin to share non-bridging oxygens
and effectively repolymerize the phosphate network. One can see
that according to these equations, even at the metaphosphate
composition (x= 0.5), there would still be a finite number of
modifiers that should be surrounded by double-bonded oxy-
gens since 2×R(xcrit)> 0, but from 31P NMR measurements, it
is known that at the metaphosphate composition there are no
(or almost no) Q3 groups and, therefore, double-bonded oxy-
gens (Brow, 2000) and also NMR from the modifiers does not
show evidence for more than one site (Schneider et al., 2013).
On the other hand, for this study, the values of constraints per
modifier (KR) as they are listed in Rodrigues and Wondraczek
(2014) were recalculated, as the previous calculation used an
inconsistent counting of the phosphate network constraints (Her-
mansen et al., 2014a). The final values of KR are shown in
Table 1.

BOND CONSTRAINT MODELING OF THE
MIXED-ALKALI METAPHOSPHATES

Continuous investigation on the nature of the MAE over the
last 30 years has uncovered convincing evidence that the struc-
tural basis for this effect lies in the “mismatch effect” (Angell,
1990, 1992; Huang and Cormack, 1992; Hunt, 1997; Maass, 1999;

TABLE 1 | Number of constraints per modifier, KR, for alkali and silver
metaphosphate glasses.

Modifier KR Coordination numbera

Li+ 3.07 5
Na+ 2.84 5
K+ 2.53 6
Rb+ 2.55 5
Cs+ 2.37 6
Ag+ 2.03 3

aData from Rodrigues and Wondraczek (2014) rounded to the closest integer.
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Adams and Swenson, 2002; Fang et al., 2003; Bunde et al.,
2004; Hall et al., 2004; Ingram et al., 2006; Puls and Eckert, 2006;
Changstrom and Sidebottom, 2008; Dieterich and Maass, 2009;
Dyre et al., 2009), as described by the dynamic structure model
(DSM) of Bunde et al. (2004) and Ingram and Roling (2003).
A simplified description of the model goes as follows: in a sin-
gle alkali glass, the modifiers A reside in sites that match their
requirements for coordination number and distance between the
modifier and the non-bridging oxygens. The diffusion of such ions
does not require large rearrangements from the glassy network,
since all modifier sites are similar. However, the addition of a
second modifier B to this same glass results in the presence of
two different types of modifier sites, and while it remains possible
for the modifiers to jump from similar to similar sites, there is
also the possibility of jumps between dissimilar sites, especially
as the ratio of A/B cations approaches unity. Ingram and Roling
(2003) argue that the motion of cations to dissimilar sites causes
the network to reconfigure itself so as to minimize the distortions
caused by the presence of an A atom on a B site (or a B atom
on a A site). If the cations are statistically distributed on the
glass structure, one would expect that at the molar ratio of A/B
of unity, the probability of the modifiers to jump to dissimilar
sites is maximized, leading to an increased flexibility of the glassy
network and the often observed depression of the glass transition
temperature at compositions close or at A/B= 1.

From the mentioned concepts, we can assume that the number
of constraints a modifier A adds to the glass network depends
not only on its first coordination shell, comprised solely by
non-bridging oxygens in the case of the phosphate glasses we
are focusing on, but also on the neighboring sites the modifier
can access. Therefore, the number of constraints depends not
only on how strongly the modifiers are bonded to the non-
bridging oxygens but also on how often they jump to sur-
rounding modifier sites. This does not affect the calculated
values shown in Table 1, because for binary metaphosphate
glasses the number of constraints already takes into account the
movement of the modifier to sites previously occupied by the
same modifier (modifier A jumping from an A site to another
A site).

Considering a mixed-alkali metaphosphate glass of composi-
tion yA2O× (0.5− y)B2O× 0.5P2O5, the number of constraints
that the modifiers add to the network (nM) can be written as:

nM(y) = nA(y) + nB(y) (1)

where nA and nB are the number of constraints the cations A and
B add to the network.

According toRodrigues andWondraczek (2014) andRodrigues
et al. (2014), nA and nB are a function of the number of con-
straints per modifier (KR) and their molar fraction (XR). The
weakening of the modifier constraints due to the presence of
cations in dissimilar sites is modeled with the addition of the term
TR. One must note that this should only apply to the sites the
modifier in question can effectively access, or, in other words,
the term TR should only modify the number of constraints of
cross-linking sites; therefore, the use of mixed-metaphosphate
glasses simplifies the calculations, since, at this composition,
all modifier sites are cross-linking or, alternatively, no modifier

exists in isolated sites (Rodrigues et al., 2014), so Eq. 1 can be
written as:

nM(y) = KA × XA(y)× TA(y) + KB × XB(y)× TB(y) (2)

where TA is defined as:

TA(y) =
CNA∑
i=0

GCNA−i,i × pCNA−i,i(y) (3)

CNA is the modifier’s coordination number (or closest integer),
pCNA−i,i is the probability of finding anA site withCNA−i A atoms
and i B atoms surrounding it and GCNA−i,i is defined as:

GCNA−i,i =
[(CNA − i)× γAA] + [i × γAB]

CNA
(4)

Here, γAA and γAB are factors that illustrate how the constraints
are changed as the modifiers migrate to neighboring sites that
are either the same as the original one, or different from the
original one. γAA is fixed at unity, because there is no change to
the constraint strength as the modifiers move to similar sites, as
argued previously. If themodifiers are homogeneously distributed
throughout the glassy network, then the probabilities of finding
the different sites pCNA−i,i can be calculated via a simple binomial
distribution (Eq. 5), akin connections between Q2 and Q3 groups
(Alam and Brow, 1998; Alam et al., 2000).

pCNA−i,i(y) =
(
CNA − i

CNA

)
×

(
XA(y)

XA(y) + XB(y)

)CNA−i

×
(

XB(y)
XA(y) + XB(y)

)i
(5)

So, the number of constraints the modifier A adds to the
network can be written as:

nA(y) = KA × XA ×
[
GCNA,0 × pCNA,0 + GCNA−1,1 × pCNA−1,1

+ . . .+ G0,CNA × p0,CNA

]
(6)

nA(y) = KA × XA(y)×
[(

CNA × γAA + 0 × γAB
CNA

)
× pCNA,0 +

(
CNA − 1 × γAA+1 × γAB

CNA

)
× pCNA−1,1 + . . .+

(
0× γAA +CNA × γAB

CNA

)
× p0,CNA

]
(7)

As γAA = 1:

nA(y) = KA × XA(y)×
[
pCNA,0 +

(
CNA − 1 + γAB

CNA

)
× pCNA−1,1 + . . .+

(
1 + CNA − 1 × γAB

CNA

)
× p1,CNA−1 + γAB × p0,CNA

]
(8)
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Rearranging Eq. 8, we get:

nA(y) = KA × XA(y)× [JA(y) + γAB × LA(y)] (9)

with

JA(y) =
CNA−1∑

i=0

(
CNA − i
CNA

)
× pCNA−i,i(y) (10)

LA(y) =
CNA∑
i=1

(
i

CNA

)
× pCNA−i,i(y) (11)

which can be rewritten as:

nA(y) = J∗A(y) + γAB × L∗A(y) (12)

If

J∗A(y) = KA × XA(y)× JA(y) (13)

L∗A(y) = KA × XA(y)× LA(y) (14)

Substituting Eq. 12 for both A and B cations in Eq. 1 yields:

nM(y) = J∗A(y) + γAB × L∗A(y) + J∗B(y) + γBA × L∗B(y) (15)

Assuming that γAB = γBA = γ, we have that:

nM(y) =
(
J∗A(y) + J∗B(y)

)
+ γ ×

(
L∗A(y) + L∗B(y)

)
(16)

or, [
nM(y)− J∗A(y)− J∗B(y)

]
= γ ×

(
L∗A(y) + L∗B(y)

)
(17)

Equation 17 presents an important formulation, because it
states that the number of constraints the modifiers add to the
glassy network is linearly proportional to J∗A, J∗B , L∗A, and L∗B ,
the quantities that can be calculated with knowledge of the glass
composition and the coordination number of the modifiers in
question. In order to test the applicability of Eq. 17, we took
glass transition temperature data for Li–Na, Li–Ag, Li–K, Li–Rb,
and Li–Cs metaphosphate glasses from the literature (Eisenberg
and Saito, 1966; Denoyelle et al., 1990; Doreau and Robert,
1991; Green et al., 1999; Sidebottom et al., 1999; Bandaranayake
et al., 2002; Changstrom and Sidebottom, 2008; Hall et al., 2009;
Tsuchida et al., 2012), since it has been shown by NMR mea-
surements that there is no modifier clustering (Schneider et al.,
2013), which we assumed in our derivation. Noteworthy, the
present approach, therefore, cannot be used for analyzing glasses
where the modifier distribution shows a pronounced divergence
from random mixture, such as Na–K, Na–Rb, or Na–Cs mixed-
metaphosphate glasses (Tsuchida et al., 2012).

RESULTS AND DISCUSSION

Figure 1 shows the plots of [nM(y)− J∗A(y)− J∗B(y)] as a func-
tion of L∗A(y) + L∗B(y) for the five aforementioned glass sys-
tems, whereas Figure 2 shows the parameters from the linear
regression of the data as a function of the difference in atomic

FIGURE 1 | Plots of [nM(x) − J∗A(x) − J∗B(x)] × L∗A(x) + L∗B(x) for mixed Li–Na (A), Li–K (B), Li–Rb (C), Li–Cs (D), and Li–Ag (E), metaphosphate
glasses. The straight line shows the linear regression of the plotted data.
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FIGURE 2 | Parameters of the linear regressions [intercept (A) and slope γγγ (B)] shown in Figure 1 plotted as a function of the difference between the
radius of the modifier R and Li.

radius between both modifiers. It should be noted that while the
expected linear behavior is observed for all glasses, there is some
scatter especially on Figures 1C,D, mainly because there are fewer
datasets available for the Li–Rb and Li–Csmixedmetaphosphates,
so that the number of constraints on Table 1 are not exactly
representative.

Figure 2A shows that the intercept is very close to 0, practi-
cally independent of the pair of modifiers, while the value of γ
(Figure 2B) shows an interesting dependence on themodifier size
difference. Theminimumpresent at size differences around 40 pm
seems to indicate that the severity of the MAE results from the
interplay of two simultaneous responses: one that softens the con-
strains on mixed sites and another that stiffens them (decreasing
and increasing γ, respectively). When the modifier size is not too
dissimilar, the net decrease in γ reflects that the alkali ions can
easily move to different sites, forcing the network to continuously
reaccommodate itself for the distortions caused by the presence
of the modifiers in different sites. As the size difference increases,
it becomes increasingly difficult for the modifiers to reach sites
smaller than themselves without considerable network deforma-
tion, up to a point where the larger ions are bound to jump only to
their own sites as they do not fit inside the others. So, even if the
smaller ions can easilymove between their own sites and the larger
sites, the sluggish dynamics of the larger ions block the movement
of the faster ions, decreasing the amount of reaccommodation the
network suffers and subsequently increasing γ.

Another very interesting feature on Figure 2B is that beyond a
certain size difference (roughly between 85 and 115 pm), the value
of γ becomes greater than unity. This effectively means that the
constraints would be stiffer in mixed sites, in contrast with what is
expected from the current theoretical understanding. We suggest

that this effect happens due to the larger ions sterically hindering
the phosphate network. This is important because Ingram and
Roling (2003) argue that the flexibility of the network, which
allows for it to rearrange itself as the ions move in and out of
dissimilar sites, is the rationale behind the observed decrease on
the constraints.

These results highlight some of the advantages and disadvan-
tages of using the BCT to model the glass transition temperature
of oxide glasses. It is definitely advantageous that the theory is
flexible enough to be easily modified to account for non-linear
effects, such as the repolymerization of the phosphate network
and the MAE. It is also simple enough so that almost any result
can be adapted and remain self consistent. The analysis developed
by Rodrigues et al. (2014) and this present paper can be used in
conjunction to model the glass transition of a ternary phosphate
system with knowledge of the coordination number of the two
modifiers and the glass transition of only four compositions: vit-
reous phosphorus, both binary metaphosphates, and the A/B= 1
mixed metaphosphate (Figure 3 for the Li–Na metaphosphate
system). This is a very quick and effortless way to generate the
complete ternary diagramwith aminimumof four glass transition
temperature measurements. On the other hand, the BCT does
not provide the tools to allow for the calculation of the values
of constraint strength and γ, so, while they tie in reasonably well
with some material properties, in order to use the correct values,
one must always resort to use experimental data. Another open
question is whether the trend observed in Figure 2 is valid for all
modifier pairs and all other glass-forming oxides (such as silicates,
borates, and germanates), or if the values of γ depend on the
network, themodifiers are embedded within, much like the values
of the constraint strength (Rodrigues and Wondraczek, 2015); or
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FIGURE 3 | Ternary diagram showing the calculated glass transition
temperatures glasses within the wLi2O× zNa2O× (1−w− z)P2O5

with 0≤ (w+ z)≤ 0.5 using the proper values of constraint strength
and γγγ.

if they also depend on the pair of modifiers in question, meaning
that the data points for mixed Na–Rmetaphosphate glasses would
be shifted from the Li–R and so on.

CONCLUSION

We showed that the BCT can be extended to model the glass
transition temperature of mixed-alkali metaphosphates and that
the “mixed-alkali effect” can be parameterized with the addition
of a single variable γ, which can be calculated with the knowledge
of the coordination numbers of the two modifiers and the glass
transition temperatures of the two binary metaphosphate glasses
and the A/B= 1 composition. The reported results follow the
same pattern of other BCT applications, showing good agreement
between model and experimental data with few fitting parame-
ters. But BCT does not present a way of estimating the fitting
parameters ab initio, and their physical meaning is presently not
developed.
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