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Shape Transitions in Anisotropic
Multicomponent Lipid Tubules
Timothy J. Atherton*

Department of Physics and Astronomy, Tufts University, Medford, MA, USA

Ternary mixtures of saturated and unsaturated lipids together with cholesterol can
be induced to phase separate by photo-peroxidation into lipid-ordered (lo) and lipid-
disordered (ld) domains. Because these have different mechanical properties, the phase
separation is accompanied by dramatic changes in morphology. This work considers a
tubule composed of ld phase with lo phase inclusions that possess greater rigidity; this
system has been shown experimentally by Yuan and coworkers to spontaneously adopt
either banded or disk configurations following phase separation. The static behavior of
inter-domain interactions is analyzed in each of these geometries by solving the linearized
shape equations. These calculations suggest a possible mechanism by which the two
structures form.
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1. INTRODUCTION

Lipid membranes exhibit a remarkable variety of stable configurations, including bilayers, vesicles,
and tubules. Generically, these equilibrium shapes minimize the energy (Helfrich, 1973; Lipowsky,
1991),

U =

∫
C
σdA+ 4

∫
C
κ(H− H0)

2dA+ κG

∫
C
KdA+ λ

∫
∂C

dl. (1)

This expression has many terms, reflecting the rich physics of these systems. The first three terms
occur in a single component structure: the first term penalizes area with prefactor σ the surface
tension; the second resists mean-squared curvature with elastic constant κ, H the mean curvature,
andH0 the spontaneous curvature; the third term resistsGaussian curvatureK with associated elastic
constant κG. The space of possible equilibrium shapes is increased further if multiple immiscible
lipid types with different mechanical properties coexist in the same structure. In such a case, the
energy must be supplemented by the final term in equation (1), which tries to minimize the contact
line ∂C between immiscible domains, with λ the line tension. In equation (1), numerical prefactors
have been chosen to simplify expressions in the remainder of the paper.

With many terms in the energy equation (1), the equilibrium shape represents a compromise
between these different effects and can include features disfavored by one term if it leads to a net
reduction in the energy because of some other term. For example, a multidomain vesicle deforms
into a bispherical shape (Baumgart et al., 2003), or a spherical shape with multiple inclusions
(Gutlederer et al., 2009), reducing the line tension between the domains at the expense of introducing
additional curvature. Changes in any of the mechanical properties, for example, the membrane
tension (Shi and Baumgart, 2015), are accompanied by dramatic shape changes, such as budding or
tubulation (Shi and Baumgart, 2015). Interplay between curvature and phase separation may lead
to modulated phases (Sunil Kumar et al., 1999).
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Atherton Shape Transitions in Lipid Tubules

Despite the importance of these systems, the complexity of the
energy functional equation (1) and the high order of the cor-
responding Euler–Langrange equations makes theoretical work
challenging. Only nanometer-sized patches of membrane, with
inclusions and solvent molecules, can be simulated with atomistic
resolution (Tieleman et al., 2010). Pioneering work on budding
(Julicher and Lipowsky, 1993) focused on axisymmetric solu-
tions. Similar methods were used to study the shape of extruded
tubules and lipid bridges between membranes (Powers et al.,
2002). Computational differential geometry tools, such as the
Surface Evolver (Brakke, 1992), are useful for single-component
systems. Other mesh-based tools have identified a large number
of stable configurations with more than two domains (Gutlederer
et al., 2009). Coarse-grained models, such as Dissipative Particle
Dynamics have proven successful at modeling processes involv-
ing a topological change, such as the adhesion and fusion of a
vesicle to a membrane (Shillcock and Lipowsky, 2005). Phase
separation has been studied using Monte Carlo sampling (Weikl
and Lipowsky, 2001). Phase field modeling is another promising
approach (Lowengrub et al., 2009).

Experimental results on vesicles provide biologically relevant
models of processes, such as raft formation (Veatch and Keller,
2005). Experiments with varying curvature reveal the dynamics
of lipid sorting (Heinrich et al., 2010). Another pertinent mor-
phology is multicomponent lipid tubules, which were investigated
by Yuan et al. (2008) using a ternary mixture of a two lipids
of different melting temperatures and cholesterol. Photoinduced
peroxidation of one of the lipids drives phase separation into
regions of liquid-ordered (lo) and liquid-disordered (ld) phase
(Yeagle, 2011). Since these have different material properties,
including elastic constants, the phase separation is accompanied
by a spontaneous shape change into one of two structures shown
in Figure 1. The first possibility is a banded structure, illustrated
in Figure 1A, where the tubule is divided along its length into
cylindrically symmetric regions of l0 and ld phase, and the lo
regions tend to bulge out from the cylindrical ld regions. In the
second configuration, shown in Figure 1B, the ld tubules are
interrupted by disk structures that comprise two opposite relatively
flat regions of lo with a band of ld phase around the rim. Yuan
et al. (2008) hypothesize that these morphologies arise from the
l0 phase’s higher κ, which explains the tendency of the lo domains
to promote and occupy regions of lower curvature; this is con-
sistent with the flattened vesicles observed in computer simula-
tions (Gutlederer et al., 2009) with anisotropic curvature elastic
constants. The physics determining which structure occurs in a

A B

FIGURE 1 | Experimentally observed possible structures for a
multicomponent lipid tubule. (A) banded structure and (B) disk structure.

particular situation, however, remains incompletely understood
and requires knowledge of their energetics, the dynamical process
by which they form and the chemistry of the phase separation.

In this paper, we perform a theoretical analysis of the statics of
the banded and disk structures, which illuminates the influences
leading the system to adopt one structure or the other. The analysis
is performed in a linearized regime applicable to small domains,
as would be observed in the early stages of the phase separation,
or equivalently small differences in curvature elastic constants κ
between domains. The paper is organized as follows: in section 2,
we derive the equations to be solved; results are presented in
section 3 with discussion in section 4. Finally, conclusions are
drawn in section 5.

2. MATERIALS AND METHODS

2.1. Uniform Tubules
Cylindrical tubules are a well-known equilibrium configuration
that minimizes equation (1) for homogeneous membranes. The
radius ρ is found by substituting a cylindrical solution into equa-
tion (1), obtaining an energy per length,

U
L = 2πρ

[
σ + 4κ

(
1
2ρ

− C
)2

]
, (2)

that is minimized by setting,

dU
dρ = C2κ− κ

ρ
+ σ = 0, (3)

yielding,

ρ =

√
κ√

2C2κ+ σ
. (4)

Hence, the tubule radius represents a balance between curva-
ture elasticity, surface tension, and spontaneous curvature. In this
paper, we assume that it is the difference in mean curvature elas-
ticity that is primarily responsible for the difference in radii and
that the spontaneous curvatureC can be neglected in both phases.
Assuming that κG is the same in each phase allows the Gaussian
term to be eliminated from equation (1) using the Gauss–Bonnet
theorem, so we will focus on the mean-squared curvature and the
line tension terms for the remainder of this work.

2.2. Approximate Analysis of Multidomain
Tubules
The experimentally observed banded and disk structures depicted
in Figure 1 are significantly more challenging to analyze than
the uniform structure, not least because they arise from a com-
plex dynamical process. Before phase separation, the tubules are
uniform cylinders; upon photo-induced peroxidation, domains
are nucleated randomly along these tubules which then grow.
If the elastic constants κo and κd are equal, the shape of the
tubule would be unperturbed and the domains would simply grow
with approximately circular shape and radius a(t) (Figures 2A,B).
Since the ld phase is fluidic, lo domains may diffuse, collide with
other domains, and coalesce. Once the size of a single domain
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A B C

FIGURE 2 | (A) A small domain of lo phase is nucleated and (B) grows; once
it reaches a sufficient size, opposite sides connect, leading to (C) the banded
structure.

reaches a ~ 2πρ, the domain reconnects and forms a continuous
band (Figure 2C). These bands can grow further if they absorb
nearby domains and this process will continue up to the limit of
available lo material once the phase separation is complete. After
this, bands can only grow if the ld phase is able to pass through
the lo phase, leading to Ostwald ripening of larger domains at the
expense of smaller domains. The fact that the banded structures
are stable over at least hours suggests that this latter mechanism is
suppressed.

If the elastic constants are not equal, then the process is modi-
fied. Specifically, lo domains will gradually deform the tubule as
they grow; they may additionally exert a force on one another
through capillary interactions. It is the purpose of the present
paper to understand these interactions, because the disk structure
must be stabilized, at least in its early stages, by some mechanism
that prevents recombination of the two flattened lo domains.

It is instructive to compare the asymptotic contributions to the
energy of the two structures for very large or very small lo domains.
To do so, suppose that the disk structure comprises two circular
patches of radius a and that the separation between the disks
remains the same as the thickness of the ld tubule to which it is
connected. Contrast this with a banded structure with lo domain
of length b and suppose that the radius of that domain has reached
the equilibrium value ρo =

√
κ/σ. The local mean curvature is,

therefore, H ≈ 1
2ρo

.
First, consider the mean-squared curvature contribution to the

energy. For the disk structure, the curvature of the lo phase is
0; the only contribution comes from the ld phase around the
edge, which is approximately the outer portion of a torus. The
local mean curvature of the ld section is, therefore, approximately
H =

(
R−1 + ρ−1

d
)
/2 if R≫ ρd, which converges on the mean

curvature of a cylinder as R/ρd →∞; from this, we conclude that
the curvature of the ld phase is essentially unchanged by forming
the disk structure relative to uniform tubules for sufficiently large
domain sizes. Additional curvature exists at the point where the
tubule meets the disk, but this depends on ρd not R. We, therefore,
conclude that, at least asymptotically, themean-squared curvature
contribution to the energy for the disk structure converges on a
constant with increasing R. By contrast, the banded structure does
not completely relieve the curvature of the lo phase; it must grow
linearly with the domain length L. The mean-squared curvature
term, therefore, favors the disk structure.

The line tension of the disk structure grows ~λ4πR accounting
for the circular patch on either side; in contrast for the banded
structure, the line tension term lies between λ4πρd and λ4πρo,
i.e., independent of the domain size. Line tension, therefore,

favors the banded structure for large domains. Line tension and
mean-squared curvature, therefore, favor opposing structures:
for smaller domains, the banded structure has lower energy; for
sufficiently large domains, the disk structure has lower energy.

Wenow consider very smallR. Forκo =κd, bands have a higher
line tension that a single circular domain unless 2πR' 2× 2πρd.
For κo >κd, small bands and individual circular domains do
not permit much reduction of the curvature energy to avoid
the mismatch, so we assume that both these configurations have
roughly the samemean-squared curvature energy. These together
suggest that bands below a certain critical size will tend to be
unstable with respect to reorganization into a circular domain.
The disk structure, on the other hand, requires a mechanism
to stabilize the position of two growing domains relative to one
another and preventing them from coalescence during the growth
process.

The approximate argument above has shown that, depending
on the material parameters and domain sizes, either the band
or disk structure could be stable and that, moreover, the band
structure requires a minimum size to be stable. This helps to
explain why both structures are observed in the same experi-
ment. Depending on the growth dynamics, either structure might
form; moreover, the activation energy to convert a metastable
structure to the stable structure might be prohibitively expensive.
To convert a band to a disk, for example, requires a topological
change, i.e., the separation of domains. This incurs a large increase
in line tension and likely involves intermediate highly distorted
structures.

The purpose of the remainder of the paper is to examine
the equilibrium shape of the two structures and determine the
capillary interactions between different domains; these results will
enable us to build a picture of the energy landscape occupied by lo
domains in the initial stages of the phase separation process, and
thereby propose a mechanism for their formation. Since the disk
structures are observed to be stable, we infer that the line tension
between the lo and ld phases is not the important effect and that the
process is driven primarily by mean-squared curvature elasticity
in accordance with the claims of Yuan et al. (2008).

2.3. Band Configuration
First, we examine the banded configuration shown schematically
in Figure 1A and in Figures 2(e) and 2(f) of Yuan et al. (2008).
Looking carefully at the experimental images, we note that the
observed bands inYuan et al. (2008) are approximately cylindrical,
particularly for the larger bands. As discussed above, this implies
that some or all of these parameters in equation (4) are different
in the two domains.

To find the equilibrium configuration of a single band of higher
elastic constant κ embedded on an infinite cylinder, the surface is
first parameterized by a cylindrical Monge form,

X = {r(z) cosϕ, r(z) sinϕ, z} , (5)

where r(z)= ρ+αR(z). Here ρ is the equilibrium radius of the
cylinder in the absence of the patches, R(z) is the deformation
profile from cylindrical shape, and α is an expansion parameter
that will be used to linearize the problem.
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To calculate the energy, it is necessary to calculate the
coefficients of the first fundamental form,

E = Xz · Xz = 1+ α2R′2

F = Xz · Xϕ = 0

G = Xϕ · Xϕ = (ρ+ αR)2, (6)

the surface normal,

N = Xz × Xϕ/ |Xz × Xϕ| , (7)

and the second fundamental form,

e = Xzz · N = −αrR′′/s
f = Xzϕ · N = 0

g = Xϕϕ · N = r2/s. (8)

where s2 = r2(1+ αR′2). These quantities together are sufficient
to determine the area element,

dA =
√
EG− F2dϕdz (9)

and the mean curvature,

H =
1
2
eG+ gE− 2Ff

EG− F2
(10)

as required. Using these formulae, the energy is

U
2π

=

∫ L

−L

√
r2(1+ αR′2)

σ +
κ(z)

(
1+ αR′2 − αrR′′

)2

r2(1+ αR′2)
3

 dz

(11)
where we assumed that the elastic parameter κ is a function
of position z. To obtain linearized Euler–Lagrange equations,
equation (11) must be expanded to quadratic order in α yielding,

U
2π

=

∫ L

−L
R2κ− R(κ− 1)

+
1
2

{
2+ R′2 − κ

[
R′2 − 2

(
R′′ − 1

)]}
dz (12)

where the other constants were removed by setting them to σ= 1
and ρ= 1. An ansatz form for κ(z) of

κ =
κo + κd

2
− 1

2
(κo − κd) tanh [λ(z− z0)] (13)

was adopted, where κo is the curvature elastic constant in the lo
domain and κd is the equivalent constant in the ld domain. The
parameter λ is the width over which κ varies from κo to κd, and
z0 is the location of the boundary between the two phases. Taking
variations of equation (22) with respect to R yields the following
Euler–Lagrange shape equation,

κ
(
2R′′′′ + R′′ + 2R− 1

)
+ κ′ (R′ + 4R′′′)

+
(
R′′ − 1

) (
2κ′′ − 1

)
= 0. (14)

We solved this equation numerically; results are presented in
section 3.

2.4. Disk Configuration
To study the disk structure, similar approximations to the previous
section must be made. Neglecting the spontaneous curvature and
line tension, the shape of the lipid tubule minimizes the energy,

U =
∑
i

∫
Ci

(σi + 4κiH2)dA (15)

where Ci represents the domain enclosed by the ith patch that has
surface tension and elastic constant σi and κi, respectively. The
surface is parameterized in cylindrical coordinates as above, but
the radius r(z,ϕ)= ρ+αR(z,ϕ) is now a function of both z andϕ,

X = {r(z, ϕ) cosϕ, r(z, ϕ) sinϕ, z} . (16)

With this parameterization, the tangent vectors lie parallel to
Xz and Xϕ where subscripts indicate derivatives with respect to
the stated coordinates. The coefficients of the first fundamental
form are

E = Xz · Xz = 1+ α2R2
z

F = Xz · Xϕ = α2RϕRz

G = Xϕ · Xϕ = ρ2 + 2αRzϕ + α2
(
R2 + R2

ϕ

)
(17)

where subscripts are used to denote the respective derivatives and
the surface normal is

N = Xz × Xϕ/ |Xz × Xϕ| , (18)

where |Xz × Xϕ| = s2 = r2 + α2 (r2R2
z + R2

ϕ

)
. The coefficients

of the second fundamental form are

e = αrRzz/s
f = α (αRzRϕ − rRzϕ) /s

g =
[
ρ2 + α

(
2ρR+ αR2 + αR2

ϕ + αr2R2
ϕϕ

)]
/s. (19)

The energy functional is readily obtained by inserting the
coefficients in equations (17) and (19) into the expressions in
equations (9) and (10), and, thence, into the energy equation (15);
it is not displayed here due to its length. The Euler–Lagrange
equations are constructed as usual,

∂U
∂R − ∂i

∂U
∂Ri

+ ∂ij
∂U
∂Rij

= 0, i, j ∈{z, ϕ}. (20)

Having constructed these equations, they are linearized as
above by Taylor expansion in powers of α about α= 0 and retain-
ing terms only up to quadratic order. At first order in α is an
equation representing the equilibrium cylindrical shape,(

σi −
κi

ρ2

)
= 0, (21)

which has a positive solution if ρ =
√

κi/σi. At second order in
α is the desired linearized equation for R(z, ϕ),

0 = 2κi

(
Rϕϕϕϕ + 2ρ2Rzzϕϕ + ρ4Rzzzz

)
+

(
5κi − ρ2σi

)
Rϕϕ +

(
κiρ

2 − σiρ
4
)
Rzz + 2κiR (22)
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which is an anisotropic biharmonic equation. To avoid a specialist
finite element discretization, equation (22) may be separated into
two coupled PDEs of quadratic order,

∇2R = S

2(1− S) + 2κ(S+ 2R− 1) + 4κ∇2S+ 8κRϕϕ = 0 (23)

where∇2 = ∂ϕϕ + ∂zz andwherewe have also set ρ= 1 andσ= 1
as before. Results are presented in section 3 below.

3. RESULTS

3.1. Band Configuration
Equation (22) was solved numerically on the domain [0, L] subject
to mirror boundary conditions R′′ = 0 and R′′′′ = 0 at z= 0, and
R= 0, R′ = 0 at z= L. The parameter L was chosen to be much
greater than the position of the domain interface z0. Results are
shown for different values of zo in Figure 3. Clearly, as the lo
domain gets bigger, its radius approaches that of a single domain
lo tubule.

3.2. Disk Configuration
The computational domain used to solve equation (22) consists
of a rectangle defined by ϕ ∈ [−π, π] and z ∈ [−L, L] where
L≫π. Two interior circular patches labeled i ∈ {1, 2} are located
at (z, ϕ) = (zi0, ϕi

0) with radius ai. Periodic boundary condi-
tions are enforced on the top and bottom edges, and the left
and right boundaries are intended to be sufficiently remote from
the patches that R and all derivatives vanish upon them, i.e., the
natural boundary conditions of the Euler–Lagrange equations are
enforced.

A commercial finite element solver, FlexPDE 6 (PDE Solu-
tions), is used to solve the Euler–Lagrange equation (23). Typi-
cal results are shown in Figure 4A: notice that the distortion in

z

R
(z

)

FIGURE 3 | Equilibrium solutions of the linearized shape equation for
the banded structure. The lipid membrane between 0< z< z0, composed
of lo phase, has κ= 1.2; the remaining ld lipid has κ= 1. Only one half of the
parity symmetric R(−z)=R(z) shape is shown. The solid horizontal line
represents the equilibrium radius of the lo phase with these parameters if it
formed a uniform cylinder.

height function R bridges the two domains if they are relatively
close. The surfaces corresponding to this solution are recon-
structed in Figure 4B and shown with Rmagnified by a factor of 4
in Figure 4C to aid visualization. Corresponding plots for several
other domain positions are shown in Figures 4D–I.

The energy of the surface obtained by solving the
Euler–Lagrange equations can readily be computed from
the solution. It is helpful to separate the terms in the energy
functional in powers of α,

1 : 1+ κ

α : 2κS− R(κ− 1)

α2 : 2κR2 + (1+ κ)R2
z + (3κ+ 1)R2

ϕ + 8κRRϕϕ − κS2, (24)

because the quadratic term is found, as expected, to be substan-
tially smaller than the linear term; this separation allows the
adaptive refinement algorithm to strategically place additional
mesh points to resolve this contribution accurately.

By shifting around the position of the domains, solving the
Euler–Lagrange equations and calculating the corresponding
energy, it is possible to reconstruct the energy landscape expe-
rienced by two lo domains on the surface of the ld tubule. The
landscape for two equal sized domains is shown in Figure 5,
where the energy is plotted as a function of the ∆z and ∆ϕ
separation of the centers of the domains; note that some regions
of the parameter space are excluded as they would imply domain
overlap. Two important features are observed: first, the global
minimum is located at (∆z, ∆ϕ)= (0, π), i.e., the two domains
located on opposite sides of the tubule. As the domains are pushed
apart, either along the tubule or azimuthally, the energy increases.
The energy landscape becomes flat as |z|≫ 2π, corresponding
to a longitudinal separation much greater than the radius of the
tubule.

We also considered the interaction between a small lo domain
and the edge of a band. Sample results shown in Figure 6; the left-
hand side of the domain is all lo phase, and a single circular lo
domain is placed with center at (z0, 0). The energy of the equi-
librium solution for different values of z0 is plotted in Figure 7;
clearly the lo domain is attracted to the band at distances z0 < 2π.
It appears that theremay be a small repulsion as the lo domain gets
very close to the edge, the contribution coming from the α2 term
in equation (24).

4. DISCUSSION

These energy landscapes provide information on the forces expe-
rienced by lo domains embedded in the tubule, as allow us to
propose a mechanism behind the formation of the two struc-
tures illustrated in Figure 8. For disks, suppose two lo domains
are simultaneously nucleated by photo-induced peroxidation,
and subsequently grow (Figure 8A). If they are separated by
a longitudinal distance less than approximately 2πρ, they will
be attracted toward one another. Depending on kinetic effects,
they may collide and merge, leading to a larger domain, or
be pushed to the opposite sides of the tubule by the capillary
interaction characterized above (Figure 8B). As the two domains
grow from the opposite sides of the tubule the disk structure
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FIGURE 4 | (A) Contour plot of R(z, ϕ) for tubule with two included circular domains and κo = 2. (B) It depicts the surface reconstructed from the solution; (C) It
shows the same solution, but the radial variation R is magnified by a factor of 4 to aid visualization. (D–F) and (G–I) show corresponding plots for different domain
locations.
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FIGURE 5 | Energy landscape for multidomain interactions; ∆z and
∆ϕ represent the separation between the domain centers; some
regions of (∆z, ∆ϕ) space are excluded because they imply domain
overlap.

emerges (Figure 8C). Band formation requires one initial domain
that grows (Figure 8D) deforming the tubule and self-intersect
(Figures 8E,F), forming the banded structure. As the band struc-
ture is forming, additional domains that are nucleated nearby will
tend to be attracted to the band and will merge with it, progres-
sively increasing its area. We assume in both cases that the more
flexible and fluid ld phase changes conformation to accommodate
either structure. The maximum size of the domains is ultimately
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FIGURE 6 | (A) Contour plot of R(z, ϕ) for tubule with a circular domain and
part of a band structure, both with κo = 2; (B) corresponding reconstructed
surface where R is magnified by a factor of 2 to aid visualization. (C–F) show
corresponding plots for different locations of the circular domain relative to the
band edge.
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FIGURE 7 | Energy landscape for a small circular domain of radius 1/2
centered at z0 to the right of a band edge.

A B C

D E F

FIGURE 8 | Disks form when (A) two nearby lo domains migrate to
opposite sides of the tubule and are stabilized by capillary forces;
(B) these then grow, and the inter-disk structure being filled in by ld
resulting in the final disk state (C). Bands form by (D) growth of an initial lo
domain that (E) wraps around the tubule, and (F) finally connecting and
creating the banded structure.

limited when all of free molecules of the relevant lipid from the
ternary mixture has migrated into the lo domains.

In this view, the discriminant between disk and banded struc-
tures is controlled by the rate of growth of lo phase: if it is
sufficiently slow that lo domains are able to migrate to their equi-
librium position on opposite sides of the tubule, the disk structure
will emerge; on the other hand, a faster growth rate – at least

locally – will lead to the band structure as single, isolated domains
of lo phase grow to the point that they self-intersect.

5. CONCLUSION

We have investigated the energy landscape experiences by lipid
patches embedded in a tubule geometry. If these components
have a different curvature elastic constant than the surrounding
structure, they deform the tubule and attract one another through
capillary interactions. Depending on the growth rate, they may
self-intersect as they grow around the tubule, forming the band
structure, or settle into a stable configuration with domains on
opposite sides of the tubule that then grow to form the disk
structure. This prediction is experimentally testable by dynamic
imaging of the early stages of the phase separation process.

In order to construct this model, we have neglected many
effects, such as line tension and anisotropy in the resistance to
Gaussian curvature; moreover, we have only studied linear equa-
tions describing the static process. A full non-linear study of these
shapes should be conducted to gain amore quantitatively accurate
picture of the energy landscape, althoughwe expect that evenwith
the approximations made, our model should accurately capture
the qualitative features present in early stages of the growth.
Moreover, the emergence of the structures is the result of a growth
process, and so a dynamic model is needed to test whether the
mechanism proposed is kinetically feasible.
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