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A Commentary on

Transformation of Taxol-Stabilized Microtubules into Inverted Tubulin Tubules Triggered by a 
Tubulin Conformation Switch
by Ojeda-Lopez, M. A., Needleman, D. J., Song, C., Ginsburg, A., Kohl, P. A., Li, Y., et al. (2014). Nat. 
Mater. 13, 195–203. doi:10.1038/nmat3858

Tubulins represent the backbone of a living system. Every cell exists as a complex nanoscale machin-
ery, specifically the cytoskeleton network of microtubules. These building blocks are composed of 
long, very rigid, and hollow charged biopolymers of α- and β-tubulin heterodimer protein subunits. 
These dynamic cylindrical constructs perform a myriad of cellular functions such as intracellular 
transport, cell motility, cell shape, and chromosome segregation during mitosis and act as tracks for 
the kinesin motor proteins (Bertalan et al., 2014; Katsuki et al., 2014). The tubulin dimers form linear 
protofilaments and assemble into a cylindrical structure with ~25 nm outer diameter and ~15 nm 
inner diameter. The length of microtubules can be ~50 μm to several micrometers and are negatively 
charged. Microtubules are dynamically unstable tubulin polymers in equilibrium with monomers 
that interconvert stochastically between growing and shrinking phases, vital for cellular functions. 
This rapid transition phase is referred to as the “turning on-off microtubules” phenomenon. The 
conformational switch is linked to the GTP hydrolysis in β-tubulin. The protofilaments are in straight 
conformation during polymerization of microtubules and in curved shape during depolymerization 
of microtubules (Bertalan et al., 2014; Katsuki et al., 2014). Due to the vital role of microtubules in 
mitosis, they are excellent anticancer drug targets such as Taxol and vinca alkaloids. The rationale 
of this commentary is based on the unique shape-remodeling supernanostructures of microtubules, 
which can be used as novel biomaterials for delivery of nanomedicines.

Microtubule bundles possess a tightly packed geometry. Nanoscale superstructures are the 
sources of inspiration for the design of complex materials, i.e., shape and surface pattern with 
advanced functionalities (Gröschel et al., 2013). By modifying the diameter of microtubules, one 
can control the nanotubes geometric parameters important in biomaterials applications. The basic 
geometry is the shape of nanoparticles, which influences these parameters tremendously with dif-
ferent aspect ratios. For example, nanoscale cylindrical particles with higher aspect ratios (diameter 
of 150 nm and height of 450 nm) internalized rapidly (5.2% of cells/min) into the cervical cancer 
HeLa cells in comparison to the symmetrical particles with lower aspect ratios (diameter of 200 nm 
and height of 200 nm) at a lower rate (1.2% of cells/min) as reported by Gratton et al. (2008). The 
cellular uptake depends on a shape of a nanoparticle and ultimately the designing of the nanoparticle 
for effective nanomedicine delivery (Chun, 2008; Brazil, 2016). Nogales et al. (2003) had reported 
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FIGure 1 | Curves ahead: transformation from straight tubes to 
stacked rings via nanometer scale microtubule assembly and 
disassembly phenomenon for delivering nanomedicine (taxol).
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tubulin ring structures in presence of divalent cations having 
stabilizing effects. The ring curvature is due to a kink between 
dimers and a kink at monomer–monomer interface of similar or 
decreased magnitude. Cheng and Stevens (2014) studied the self-
assembly of tubular structures from macromolecular monomers 
with multiple binding sites on their surfaces and lock-and-key 
interactions to obtain controlled, self-assembled tubule pitch 
(strength of vertical interaction  >  lateral interaction strength 
in microtubules). These unique properties of microtubules can 
be applied in nanoscience to create supramolecular systems. 
A monomer is a single nanoparticle with self-assembled tubular 
structures mimicking microtubules.

Materials scientists are motivated by technological advance-
ments to alter or tailor the material of interest. This process 
has lead to discovery of a new class of functional materials and 
superior functionality as evidenced by a novel concept in the field 
of nanotechnology and microtubule dynamics. This commentary 
is based on the work published in Nature Materials in 2014 by 
Ojeda-Lopez et al. (2014) from University of California and other 
institutions who unveiled a remarkable change in the architecture 
of microtubule cytoskeletal assembly called as the inverted tubulin 
tubules. This conformational switch was induced by a polyamine 
spermine with 4+ cationic charge. The transition from bundles 
of Taxol-stabilized microtubules (26  nm) to inverted tubulin 
tubules bundled phase (40.4 nm) was detected by transmission 
electron microscopy and synchrotron small-angle X-ray scatter-
ing (SAXS). These compact polymeric assemblies resembled like a 
stack of rings with the inside-out model system, wherein the outer 
surface of inverted tubulin tubules corresponds to the inner lumen 
of microtubules (Figure 1). The different aspects of hierarchically 
ordered nanostructures, electrostatic interactions, conformational 
transition, and nanoparticle assemblies have been elucidated. 
Experimental results have shown that the microtubules lateral 
and vertical surfaces cause the transition to form inverted tubulin 
tubule structures. SAXS data have shown microtubules bundled 
at 15  mM spermine concentration, whereas, at 30  mM, it was 
completely in the inverted tubulin tubule bundled phase at room 
temperature after 10 days. This suggested that the ring formation 
leading to such inverted structures are induced by highly charged 
spermine localized in small volume between the lateral contacts in 
microtubule. Spermine lowers the straight-to-curved energy bar-
rier with increasing concentrations. In addition, at 2.5 mM constant 
spermine concentration at ~2.5°C, the transformation to inverted 
phase occurred rapidly after 12 h in contrast to stable microtubule 
bundled phase for >10 days at room temperature (Ojeda-Lopez 
et al., 2014). The structural properties of microtubules are crucial 
for nanotechnological applications. Needleman et al. (2004) had 
reported higher-order, nanometer scale microtubule assemblies in 
the presence of large trivalent, tetravalent, and pentavalent coun-
terions form nanowires, sieves, tightly packed hexagonal bundles 
due to the large internal volume. Whereas, in the presence of small 

divalent cations, highly anisotropic living necklace bundles were 
formed due to the large surface area. Thus, microtubule bundling 
architectures of controlled dimensions as templates can be tailored 
for miniaturized materials. From the technological viewpoint, 
these nanomaterials find interesting applications in microtubule-
binding drug, MAP-tau protein, dynamin protein, tubulin 
GTPase enzyme (Safinya et al., 2011; Ojeda-Lopez et al., 2014), 
and DNA gene (Koltover et al., 1998) encapsulation systems in the 
inside luminal surface of microtubules and release on triggered 
disassembly. They also find applicability in circuitry components 
such as carbon nanotubes and conducting polymers, thermore-
sponsive polymer (Thess et  al., 1996; Kaiser, 2001; Needleman 
et al., 2004; Schroeder et al., 2013), in hierarchical nanostructures 
templates such as liposomes–microtubule complexes (Raviv et al., 
2005; Safinya et al., 2011), and in biosensing devices (Malcos and 
Hancock, 2011).

In conclusion, microtubules represent an ideal biopolymer for 
investigating the nanoscale superstructures. The work by Ojeda-
Lopez and colleagues represents a new strategy for nanoinspired 
structures with well-defined shape and reversed surfaces (i.e., 
inside luminal surface of microtubules) via a small molecule, 
spermine triggered conformation switch in comparison to the 
conventional straight polymeric microtubule structures. The 
assembly and disassembly of microtubules forms a novel, solid 
platform for supernanostructures with on-demand triggered 
release of encapsulated biomolecules and distinct functions. The 
quest for innovative biomaterials like microtubules is a unique 
advancement in nanoscience and nanotechnology.
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