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Strategies for neural tissue repair heavily depend on our ability to temporally reconstruct

the natural cellular microenvironment of neural cells. Biomaterials play a fundamental role

in this context, as they provide the mechanical support for cells to attach and migrate

to the injury site, as well as fundamental signals for differentiation. This review describes

how different cellular processes (attachment, proliferation, and (directional) migration and

differentiation) have been supported by different material parameters, in vitro and in vivo.

Although incipient guidelines for biomaterial design become visible, literature in the field

remains rather phenomenological. As in other fields of tissue regeneration, progress will

depend on more systematic studies on cell-materials response, better understanding on

how cells behave and understand signals in their natural milieu from neurobiology studies,

and the translation of this knowledge into engineered microenvironments for clinical use.
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INTRODUCTION

Disfunction in the nervous system due to aging, trauma or neurodegeneration leads to severe
disabilities and is a major concern in an aging society. Regeneration of nerve functions involves
migration and generation of new born cells at the damage site, the oriented growth and branching
of axons to reform nerves, and the formation of functional synapses between adjacent neurons (Liu
et al., 2011; Lee et al., 2014). Over the last two decades neural tissue regenerative therapies based on
stem cell transplantation to the injury site have been explored (Lunn et al., 2011; Gage and Temple,
2013; Casarosa et al., 2014). Different biomaterials have been used as carriers for stem cell delivery
in order to improve the viability and to guide differentiation of implanted cells (Roach et al., 2010).
These biomaterials are conceived, in part, to reproduce the mechanical properties, morphology and
composition of the extracellular matrix (ECM) around neuronal cells.

The next sections present relevant examples of biomaterial designs that support different
neuronal processes (adhesion, proliferation, migration or (directional) differentiation) in 2D or
3D formats in vitro, and also nerve tissue regeneration in vivo. The sections in this review
are organized attending to the biomaterial-elicited cellular response. Inside each section, the
literature is structured along specific material properties exploited to support such response, i.e.,
(i) biofunctionalization with adhesive proteins, mimetic peptides and growth factors used to
mediate specific interactions with cells, (ii) mechanical properties, and (iii) dimensionality and
topographical features for guiding axon extension and directional growth. Within each section the
response from different cell types is presented. At the end of this article the overall progress and
remaining challenges for the future of this field are critically discussed.
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BIOMATERIALS THAT SUPPORT
NEURONAL CELL ADHESION

The most basic requirement for a synthetic biomaterial scaffold
for cell growth and tissue regeneration (beyond toxicity) is its
ability to support cell attachment (Cooke et al., 2010). For this
purpose, synthetic biomaterials for neuronal regeneration are
typically coated or functionalized with either (a) polymers which
are able to interact with the negatively charged cell membrane,
(b) reactive layers that can (covalently) bind to the cell surface, or
(c) specific cell adhesive molecules able to interact with adhesive
receptors at the cell membrane (i.e., integrins) (Berns et al.,
2014; Lu et al., 2014; Akizawa et al., 2016; Hamsici et al., 2017).
Positively charged polymers like polylysine (PL), poly(ornithine)
(PO), poly(ethyleneimine) (PEI), poly(propyleneimine) (PPI) or
poly(allylamine hydrochloride) are traditionally used in neuronal
cell cultures (Roach et al., 2010). These positively charged
layers interact with the negatively charged cellular membrane
and allow cell attachment. Reactive polycatechol coatings like
poly(dopamine) or poly(norepinephrine) (pNE) have also been
used to immobilize neurons (Park et al., 2014; Kim et al., 2015).
Such coatings can form on almost any kind of material. The
polycatechol layer can covalently react with proteins from serum
forming a protein layer onto the biomaterial that supports fast
adhesion of human neural stem cells (hNSCs) (Figure 1A), or
bind secreted adhesive proteins from the cells, or directly bind
to the surface of the cells (Park et al., 2014).

Alternatively to positively charged or reactive coatings,
biomaterials can be functionalized with cell adhesive ECM
proteins, such as laminin (LN), collagen (CO) or fibronectin
(FN) (Yamada, 1989; Belkin and Stepp, 2000; Guarnieri et al.,
2007; Durbeej, 2010; Lei et al., 2012; Lee et al., 2014). These
proteins offer specific binding sites for adhesion receptors at
the cell membrane (i.e., integrins) that mediate cell adhesion.
For example, poly(L-lactic acid) (PLLA) nanofibers coated with
LN enhanced the attachment and proliferation of PC12 cells

Abbreviations: 3D-GFs, 3D porous graphene foam; AFG, Aligned fibrillar fibrin
hydrogel; aNSCs, Adult neural stem cells; BDNF, Brain-derived neurotrophic
factor; BMHP, Bone marrow homing peptide; BMP, Bone morphogenetic
protein; BMSCs, Bone marrow stromal cells; CNGs, Chitosan nerve guides;
CNS, Central nervous system; CO, Collagen; DRGs, Dorsal root ganglion; ECM,
Extracellular matrix; EGF, Epidermal growth factor; ELP, Elastin-like proteins;
EPO, Erythropoietin; ESMN, Embryonic stem cell-derived motor neurons;
FGF-2, Fibroblast growth factor 2; FN, Fibronectin; GDNF, Glial cell line-derived
neurotrophic factor; GO, Graphene oxide; h-iN, Human induced neuronal
cells; hiPSCs, human induced pluripotent stem cells; HNPCs, Hippocampal
neural progenitor cells; hNSCs, Human neural stem cells; hUMSCs, human
umbilical cord mesenchymal stem cells; LN, Laminin; MAC, Methacrylamide
chitosans; MaSp1, Major ampullate spidroin 1; mNSCs, Mouse neural stem cells;
MSCs, Mesenchymal stem cells; NCAM, Neural cell adhesion molecule; NF,
Neurotrophic factors; NGCs, Nerve guidance channels; NGF, Nerve growth factor;
NPCs, Neural progenitor cells; NSCs, Neural stem cells; NSPCs, Neural stem
progenitor cells; P(AAm), Poly(Acrylamide); PAN-MA, Poly(Acrylonitrile-co-
Methylacrylate); PAs, Peptide amphiphiles; PCL, Poly(ε-Caprolactone); PDMS,
Poly(Dimethylsiloxane); PEG, Poly(Ethyleneglycol); PEI, Poly(Ethyleneimine);
PL, Poly(Lysine); PLGA, Poly(L-lactide-co-glycolide); PLLA, Poly(L-lactic
acid); pNE, Poly(Norepinephrine); PNS, Peripheral nervous system; PO,
Poly(Ornithine); PPI, Poly(Propyleneimine); PVC, Poly(Vinyl chloride); RFG,
Random fibrin hydrogel; SAPs, Self-assembling peptides; SF, Silk fibroin; SGN,
Spiral ganglion neurons; TCP, Tissue culture plate.

vs. unmodified fibers (Figure 1B) (Koh et al., 2008). In some
cases, protein fragments containing the binding domains or
peptidomimetica are used for surface functionalization instead of
the whole protein (Mizuno et al., 2017). Short peptidomimetics
are easier to control and manipulate in comparison to the full
protein for biomaterial applications. Typical sequences used in
neuronal cell cultures are IKVAV, RKRLQVQLSIRT or YIGSR
peptides derived from LN, or the RGD binding site from
FN (Frith et al., 2012; Kharkar et al., 2013). The YIGSR and
RKRLQVQLSIRT peptides support neural cells adhesion, while
IKVAV sequence is stated to support differentiation, migration
and neurite extension of neural cells (Freitas et al., 2007;
Mochizuki et al., 2007; Thid et al., 2007; Frith et al., 2012; Yamada
et al., 2012). Functionalized PAs with IKVAV enhanced adhesion
by two-folds and aligned neurite extension of hippocampal
neurons in comparison to unmodified fibers (Figure 1C) (Berns
et al., 2014). Neurotrophic factors (NF) and glial cell line-derived
neurotrophic factor (GDNF) have also been combined with
adhesion peptides to promote attachment of hNSCs (Kang et al.,
2011; Yang et al., 2012; Taylor et al., 2017).

In many cases the nonspecific (electrostatic) and specific
(receptor-mediated) functionalization approaches are
used together to improve neural adhesion to surfaces.
Poly(acrylamide) P(AAm) gels covalently derivatized with
IKVAV and PL mixture through orthogonal thiol and
amine coupling chemistries enhanced neuronal maturation
of mouse embryonic neural progenitor cells (NPCs) by 3-fold
in comparison to hydrogels modified only with IKVAV or PL
(Figure 1D) (Farrukh et al., 2017b). Neuronal cells behaved
differently when seeded on laminin micropatterns on glass
or on PEI coated surfaces. Cells on glass/laminin surface
extended neurites only on micropatterned laminin lines, while
on PEI/laminin surface neurites grew randomly and did not
follow the laminin pattern (Liu et al., 2006).

The attachment of the adhesive proteins or ligands to the
biomaterial can be performed either by physical adsorption, or by
covalent reaction of the adhesive molecule with reactive groups
on the materials surface. Physical adsorption is the simplest
method, which only requires incubation of the surface with a
concentrated protein solution. However, physical interactions
are reversible and this might limit the stability of the coating
during cell culture time. In addition, immobilization by physical
interactions lacks spatial orientation of the absorbed protein and
can lead to loss of protein function in the immobilized state.
Covalent binding of the adhesive molecules is expected to lead
to more homogenous and stable coatings, and eventually allow
specific orientation of ligands and more effective binding (Ho
et al., 2006). Amines and thiols are the most common reactive
groups present in peptides or proteins used for derivatization
of functional surfaces. Typically glycidyl, carboxyl or maleimide
groups are the reactive functionalities at the surface (Taylor et al.,
2017). The performance of covalent vs. physical immobilization
strategies for neuronal cell attachment has been addressed in
some reports. NSCs seeded on soft chitosan hydrogels (0.5–0.7
kPa) covalently functionalized with LN showed enhanced cell
spreading vs. hydrogels with physically adsorbed LN (Wilkinson
et al., 2014). In a different study, adult hippocampal NSCs
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FIGURE 1 | Strategies to support adhesion of neuronal cells to biomaterials (A) hNSCs on pNE coated and uncoated substrates. pNE coating after 2 h of cell seeding

significantly enhance cell adhesion (Park et al., 2014) Copyright 2014, Minah Park et al.; (B) PLLA nanofibers coated or covalently functionalized with LN. LN coated

substrates support adhesion and neurite extension of PC12 cells (Koh et al., 2008) Copyright 2008, Elsevier; (C) PAs (Palmitoyl-VVAAEE-NH2 ) functionalized with

adhesive epitope to support adhesion of hippocampal neurons. Aligned PA-IKVAV significantly enhance cell adhesion and directional neurite extension during 2 days

of culture (Berns et al., 2014) Copyright 2014, Elsevier; (D) IKVAV (IK-19) and PL functionalized polyacrylamide hydrogels either by mixed (simultaneous binding) or by

orthogonal coupling chemistries (sequential binding). Sequential binding of PL/IKVAV enhance the cell neurite extension of NPCs, during 5 days of culture in

comparison to simultaneous binding (Farrukh et al., 2017b) Copyright 2017, American Chemical Society.

were cultured on phospholipid bilayers supported on glass
functionalized with different RGD-containing peptides. NSCs
attached to RGD functionalized bilayers in a similar way to glass
substrates coated with LN, and underwent differentiation into
neurons and astrocytes (Ananthanarayanan et al., 2010).

Typically, neural cells are attached to flat plastic/glass
coated surfaces or thin hydrogel coatings for 2D culture.
Alternative, more complex or conductive materials can be used
in order to implement additional functions to the interface.
For example, LN coated graphene films support adhesion
of hNSCs during long term cell culture (3–4 weeks) and
promote neuronal differentiation (Figure 2A) (Park et al., 2011).
Such 2D cell culture environments are attractive due to their
simple preparation and facile imaging. Eventually a topology,

i.e., a patterned distribution of adhesive molecules, can be
superposed on the substrate using established micropatterning
methods (typically microcontactprinting), in order to provide
directionality or site-specificity to neuronal attachment
(Mammadov et al., 2013). For example, polydimethylsiloxane
(PDMS) substrates were microcontactprinted with FN,
N-cadherin, and Jagged1 proteins to promote spatially resolved
adhesion of NSCs (Figure 2B) (Wang et al., 2014). In contrast
to in vivo cellular environment where cells can adopt a 3D
body shape by attaching to the 3D space, cells in 2D adhere
within a single plane and develop an apical-basal polarization
that might not be representative for the in vivo case (Caliari
and Burdick, 2016). Therefore, 3D culture models of neuronal
cells have developed in recent years. Different biomaterials
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FIGURE 2 | Dimensionality in neuronal cell cultures. Examples of 2D and 3D substrates supporting attachment of neuronal cells (A) hNSCs cultured on laminin coated

glass and on graphene film (Park et al., 2011) Copyright 2011, John Wiley and Sons; (B) NSCs cultured on micro-contact printed patterns of FN, Jag or N-cadherin

adhesive proteins on PDMS films. FN support higher neuronal cell adhesion while combination of FN/Jag support neuronal differentiation (Wang et al., 2014) Copyright

2014, John Wiley and Sons; (C) Neural cultures in 3D gels of soft (Young’s Modulus = 0.4 kPa) photopolymerized hyaluronic acid functionalized with RGD. The soft

hydrogel facilitated neurite extension from encapsulated neurospheres during 17 days of culture (Tarus et al., 2016) Copyright 2016, American Chemical Society;

(D) Neural cultures on 3D fibrous matrices of aligned (-A) and random PLA fibers (-R), modified with polypyrrole (PLAPPY) and poly-ornithine (o-PLAPPY) (Tian et al.,

2016) Copyright 2016, Elsevier.

have been used as scaffolds: carbohydrates (alginate, dextran
or hyaluronic acid), synthetic hydrogels (poly(ethyleneglycol)
(PEG), fibrous matrices of peptide amphiphiles (PAs) nanofibers,
or electrospun membranes from degradable polymers, i.e.,
PLLA, poly(L-lactide-co-glycolide) (PLGA) or silk. These
materials are also coated with adhesive proteins, or modified
with adhesive bioactive peptide for supporting cell attachment
(Cooke et al., 2010). Embryonic stem cell-derived motor neurons
(ESMN) encapsulated in PEG hydrogel showed outgrowth of
neurites only when the gel was functionalized with KGRGDS
sequence (McKinnon et al., 2014). Mouse embryonic stem
cells (ESCs) encapsulated into 3D alginate beads modified with
FN or hyaluronic acid supported adhesion and differentiation
of ESCs into neuronal lineage (Bozza et al., 2014). PEG
hydrogel functionalized with IKVAV derived peptide sequence
(CCRRIKVAVWLC) supported adhesion and proliferation
of hNSCs (Li X. et al., 2014). RGD functionalized hyaluronic

acid based 3D hydrogel enhanced 2 folds adhesion and neurite
outgrowth of hippocampal NPCs (Figure 2C) (Tarus et al.,
2016). Hydrogels formed by nanofibers of peptide amphiphiles
(PAs) containing the repeating RADA sequence and different
peptidomimetica (RGD for cell adhesion, PFSSTKT for signal
transduction and SKPPGTSS for apoptosis inhibition) allowed
attachment, survival and proliferation of NSCs into NPCs,
neurons, astrocytes and oligodendrocytes during 5 months of
cell culture (Koutsopoulos and Zhang, 2013; Zweckberger et al.,
2016). The enhanced cell survival on hydrogels of PAs modified
with SKPPGTSS (69%), RGD (58%), and PFSSTKT (56%) was
significantly higher than on matrigel (37%) or collagen-1 (25%)
gels (Koutsopoulos and Zhang, 2013). PA hydrogels containing
RGD and IKVAV motif showed enhanced adhesion and
proliferation of embedded NSCs in comparison to unmodified
fibers (Sun et al., 2016). Spider silk based 3D scaffold has also
been used for neural cell culture due to biocompatibility, tunable
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surface charge and mechanical properties. Primary cortical
neurons showed growth, extension and higher expression of
neural cell adhesion molecule (NCAM) on recombinant major
ampullate spidroin 1 (MaSp1) spider silk. The modification of
MaSp1 with GRGGL adhesive sequence (N-cadherin binding
site) lead to a significant improvement in neuronal growth (An
et al., 2015). The Self-assembling peptides (SAPs) nanofiber
scaffolds from K2(QL)6K2(QL6)-IKVAV and RADA16-I-BMHP-
1 were tested for spinal cord injury (SCI) model. These peptides
increased the stem cell viability and facilitated differentiation
into neurons (Zweckberger et al., 2016). A hybrid nanofiber
scaffold based on PLGA and RADA16 and modified with bone
marrow homing peptide-1 (BMHP-1) supported adhesion and
proliferation of rat Schwann cells for application in peripheral
nervous system (PNS) repair (Nune et al., 2016).

Topological and topographical features at micro- and
nanoscale influence the behavior of neurons in multiple ways,
not yet well understood (Micholt et al., 2013; Kulangara
et al., 2014; Yang et al., 2014; Nagamine et al., 2015). Line
micropatterns with 1–10µm width and several mm length are
the preferred geometrical designs to meet the characteristic
elongated morphology of neurons. Either adhesive protein
micropatterns on planar substrates (Figure 2) or microchannels
have been used for this purpose. Different examples demonstrate
positive effect of topographical features in supporting neuronal
adhesion. hNSCs showed a two folds enhanced adhesion to LN
coated graphene films vs. glass, presumably due to the surface
roughness (Park et al., 2011). A micro-grated PDMS substrate
coated with PO/LN were designed with dimensions of different
heights (0.35–4µm), width (2µm), and spacing (2µm). Higher
cell adhesion, alignment (10–50 %), and neuronal differentiation
(∼10–20%) of murine NPCs was reported in deeper (2 and
4µm) PDMS channels vs. shallow channels (Chua et al., 2014).
Electrospun PLGA nanofibers with smooth and nanorough
surfaces (∼100–400 nm) were used to culture A-172 cell line
derived from human brain. The PLGA fibers with rough surface
enhanced the adhesion and up to 50% increase in viability of cells
(Zamani et al., 2013). A scaffold of aligned electrospun PLLA
nanofibers coated with PO enhanced adhesion and proliferation
of PC-12 cells by two-fold in comparison to randomly oriented
PLLA-PO fibers (Figure 2D) (Tian et al., 2016). In some cases
microtopographies are used to define the direction for neurons
to attach and grow. Alginate hydrogels containingmicrochannels
functionalized with RGD supported adhesion and differentiation
of bonemarrow stromal cells (Lee et al., 2015). Electrospun PLLA
fibers coated with graphene oxide (GO) supported adhesion of
Schwann cells and PC12. The surface roughness was introduced
by coating of GO nanosheets (Zhang et al., 2016).

BIOMATERIALS THAT SUPPORT
PROLIFERATION OF NEURONAL CELLS

Low cell proliferation ratio is a major barrier in the clinical
success of cell therapies (Karow et al., 2012; Ortega et al., 2013).
Similar to adhesive behavior, proliferation varies with material

parameters such as coating chemistry, mechanics, dimensionality
or morphology.

Functionalization of biodegradable polyesters with
hydrophilic and charged functional groups has a positive
effect in proliferation ratios. Hydrophilic O2 plasma treated
PCL fiber meshes enhanced by ∼2 folds the viability and
proliferation of mouse ESCs after 3 days of cell culture (Abbasi
et al., 2014). Schwann cells showed doubled proliferation ratio
on PCL surfaces treated with hexamethylenediamine than on
non-functionalized ones during 5 days of cell culture (Luca et al.,
2014). Electrospun PLLA-co-PCL/silk fibers loaded with vitamin
B5 supported 20% higher proliferation of Schwann cells due to
increased surface hydrophilicity (Bhutto et al., 2016).

Several reports demonstrate the positive effect of
surface anchored adhesive proteins and peptidomimetics in
proliferation. Matrigel functionalized PCL nanofibers enhanced
∼2.5 times proliferation of nerve precursor cells during 4 days
of cell culture compared to bare PCL (Hiraoka et al., 2009;
Ghasemi-Mobarakeh et al., 2010). Laminin peptides from α1
(LP3) or γ1 (LP) chains improved cell survival in in vivo collagen
implants. Implanted NSCs encapsulated in the functionalized
collagen at striatum of healthy rats showed enhanced cell
viability (Nakaji-Hirabayashi et al., 2013). GRGDS modified
gellan gum used to culture neural stem progenitor cells (NSPCs)
showed 3-fold increase in proliferation than unmodified gellan
gum (Silva et al., 2012). Collagen hydrogels functionalized with
peptide sequence PPFLMLLKGSTR from LN α3 chain enhanced
the viability and proliferation (∼4 folds) of neurosphere isolated
from striatum of embryonic rat. Schwann cells cultured on
core-shell electrospun PLLA-co-PCL nanofibers (316 ± 110 nm)
coated with LN showed a 78% enhanced proliferation after 7
days of culture (Kijenska et al., 2014). Hydrogels formed by PA
nanofibers functionalized with IKVAV and RGD promoted ∼1
fold higher proliferation ratios of Schwann cells after 7–14 days of
cell culture. The RGD-PA hydrogels were slightly (∼20%) more
effective in supporting cell proliferation and maintaining cell
viability than IKVAV during 21 days of culture (Li A. et al., 2014).
IKVAV functionalized poly(ester carbonate) fibers enhanced cell
proliferation (20%) and neurite outgrowth (∼5 folds) of PC12
cells compared to unmodified fibers (Xing et al., 2014).

Improvement in cell proliferation was also reported on natural
matrices modified with adhesive peptides in combination with
NGFs. The fibroblast growth factor-2 (FGF2) embedded in a
collagen sponge enhanced the viability and proliferation of NSCs
(Ma et al., 2014). Slow release of NGFs (10 ng/mL) from collagen
gel enhanced the viability and decreased apoptosis of PC12 cell
during 4 days of cell culture more effectively than NGFs directly
added to medium (Bhang et al., 2009).

It is now well accepted that the mechanical properties of
the natural cellular microenvironment influence the behavior of
embedded cells. In a similar manner, the mechanical properties
of the culture substrate in 2D or 3D impact cellular processes
(Laura et al., 2008; Norman and Aranda-Espinoza, 2010; Hanein
et al., 2011). In general culture conditions tend to match the
properties of the natural environment. In the case of brain
tissue, which belongs to the softest in the body, biomaterials
with stiffness 0.1–20 kPa are preferred. For the retina tissue,
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the stiffness with 1–20 kPa is the preferred mechanical designs
for biomaterials. Several reports show how the stiffness of
the biomaterial influences proliferation of neuronal cells. Soft
P(AAm) hydrogels (2 kPa) functionalized with PL/IKVAV
enhance proliferation (11–24%) of NSCs during 4 days of
culture vs. glass or stiff gel (20 kPa) (Figure 3A) (Farrukh
et al., 2017a). A soft N-carboxyethyl chitosan/oxidized sodium
alginate hydrogel with Young’s Modulus between 0.1 and 1 kPa
was demonstrated to support proliferation and differentiation
of NSCs. Enhanced cell proliferation (∼1 fold) and a 38%
increase in neuronal differentiation was observed in the hydrogel
with Young’s Modulus 0.5 kPa. This hydrogel is also injectable
and, therefore, it could be a suitable carrier for NSCs based
regeneration (Wei et al., 2016). A study of NSCs proliferation
in materials with different stiffness was reported using thermo-
responsive polyurethane hydrogels with varying compositional
ranges with Young’s Modulus between 0.68 and 2.4 kPa. NSCs
on 0.68 kPa gels proliferated 30% faster than cells on 2.4 kPa
hydrogels (Figure 3B). Low stiffness facilitated NSCs survival
and growth (Hsieh et al., 2015). Electrospun blends of silk fibroin
(SF) and poly(L-lactic acid-co-ε-caprolactone) (PLLA-co-PCL)
with Young’s Modulus between 13 and 120 MPa supported
adhesion, proliferation and preferential differentiation of retinal
progenitor cells (RPCs) into retinal neurons. The cells show
highest proliferation on 105 MPa SF:PLCL (1:1) substrates
(Zhang et al., 2015).

Topography and alignment also influence neuronal cell
proliferation. Electrospun gelatin nanofiber meshes with
randomly oriented nanofibers showed enhanced adhesion
(20%) and proliferation of Schwann (RT4-D6P2T) (30%)
and sensory neuron-like (50B11) (40%) cell lines, while
aligned fibers enhanced the differentiation (Gnavi et al.,
2015). Similarly stimuli responsive biomaterials also influence
cell proliferation. Electrically conducting aligned PLLA and
polypyrrole electrospun nanofibers coated with PO support
proliferation (40%) and differentiation of PC-12 cells while
on electric stimulation it improves the neurite out growth
(Tian et al., 2016). Table 1 presents an overview of biomaterials
reported to support cell proliferation.

BIOMATERIAL DESIGNS TO SUPPORT
DIFFERENTIATION OF STEM CELLS INTO
NEURONAL CELL LINEAGES

The success of nerve regeneration therapies is based on optimized
differentiation of stem cells into different nerve cell lineage.
The undifferentiated multipotent NSCs can differentiate into
unipotent neurons, astrocytes, and oligodendrocytes lineage. The
following section describes biomaterials to guide differentiation
of stem cells into neural cells.

Several adhesive proteins and peptidomimetics have been
reported to support neuronal differentiation on different
biomaterials. Micropatterned FN/N-cadherin on PDMS
substrates allows formation of cell-cell and cell-matrix contacts
and stimulate differentiation of NSCs into neural linage (Wang
et al., 2014). LN coated graphene films preferential enhance

neuronal differentiation of hNSCs during 2–4 weeks culture
(Park et al., 2011). Bioactive IKVAV peptide functionalized
phospholipid bilayers supported differentiation of embryonic
NSCs into neuronal lineage over the glial phenotype (Thid
et al., 2008). YIGSR modified aligned PLLA-DIBO nanofibers
prepared by metal-free click chemistry promoted neurogenic
differentiation of mouse ESCs (Callahan et al., 2013). Gelatin
coated PCL electrospun fibers in combination with retinoic
acid were reported to trigger differentiation of embryonic stem
cells (ESCs) into neural progenitors (Xie et al., 2009). Hybrid
scaffolds such as silk-carbon nanotube scaffold coated with
PO promoted ∼1 fold increase in neuronal differentiation of
human ESCs compared to bare silk fibers (Chen et al., 2012).
Similarly, silk fibroin films decorated with integrin-binding LN
peptide motifs (YIGSR and GYIGSR) triggered differentiation
of human Mesenchymal stem cells (MSCs) into neurogenic
cells (Manchineella et al., 2016). Growth factors such as ciliary
neurotrophic factor (CNTF) pattern printed on P(AAm)
hydrogels promoted astrogenic differentiation of MSCs at
the printed areas, while cells remained undifferentiated on
fibroblast growth factor-2 (FGF2) printed area (Ilkhanizadeh
et al., 2007). MSCs cultured on gold surfaces modified with
FN, RGD (cyclic and linear form), or KRDGVC ligands
developed into different phenotypes. Neurogenesis was observed
at low surface concentration of linear RGD ligand, and
myogenesis when cultured on high concentrations of linear
RGD. The rest of adhesive ligands promoted osteogenesis
(Kilian and Mrksich, 2012).

Biofunctionalization of biomaterials for 3D cultures with
adhesive ligands also influences neural differentiation. Aligned
electrospun cyclodextrin nanofibers conjugated with admantane-
IKVAV increased neuronal differentiation (∼1 fold) and oriented
neurite extension (Hamsici et al., 2017). IKVAV modified
hyaluronic acid–PEG hydrogel supported neural differentiation,
neurite outgrowth and growth of long axons (Xing et al.,
2017). Recombinant 3D spider silk (4RepCT) matrices enhance
differentiation of NSCs isolated from the cerebral cortices
into neurons (Lewicka et al., 2012). Electrospun PLC fibers
coated with GO result in PCL-GO hybrid nanofibers. NSCs
undergo differentiation into neuronal lineage at low GO
concentration, while into oligodendrocyte lineage at high
GO concentration. The authors predict that differentiation
is based on interaction of cells with material, influenced
by high elasticity and flexibility of GO (Shah et al., 2014).
Soft 3D hydrogels formed by self-assembling of RADA16

sequence containing RGD support differentiation of adult
mouse NSCs into neurons (Gelain et al., 2006). RADA16

based SAPs functionalized with RGD or LN derived BMHP-
1 and BMHP-2 were used for 3D cell culture of adult
mouse NSCs. The RADA16-RGD promoted cell differentiation
while RADA16-BMHP supported proliferation (Cunha et al.,
2011). DNA nanotubes functionalized with RGD also supported
differentiation of NSCs into neurons (Stephanopoulos et al.,
2014). NSCs cultured on 3D porous graphene foam (3D-
GFs) functionalized with LN supported cell differentiation into
neurons and astrocytes (Nasir et al., 2013). Super porous
2-hydroxyethyl methacrylate with 2-aminoethyl methacrylate
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FIGURE 3 | Influence of the stiffness of the biomaterial in cell proliferation and differentiation (A) Soft (2 kPa) 2D polyacrylamide hydrogels functionalized with PL and

IKVAV support proliferation of NSCs during 4 days of culture (Farrukh et al., 2017a) Copyright 2017, The Authors; (B) Soft (0.68 kPa) 3D polyurethane hydrogel

encapsulating NSCs enhance proliferation of encapsulated cells (Hsieh et al., 2015) Copyright 2015, Elsevier; (C) Soft (<1 kPa) 2D methacrylamide chitosan hydrogel

on glass, preferentially support neuronal differentiation of NSPCs during 8 days of culture (Leipzig and Shoichet, 2009) Copyright 2009, Elsevier; (D) Soft (0.5 kPa) 3D

hyaluronic acid hydrogels trigger neurite extension from hiPSC-NPC spheroids, while stiff (1.4 kPa) hydrogel failed to support neurite extension, after 28 days of culture

(Wu et al., 2017) Copyright 2017, Royal Society of Chemistry.

scaffolds modified with IKVAV support cell adhesion and the
differentiation of human fetal NSCs into neurons (Kubinová
et al., 2010). IKVAV grafted 3D silk fibroin-based hydrogel
promote differentiation of progenitor cells into neuronal cells
(Sun et al., 2017). Alginate hydrogels biochemically conjugated
with Fc-tagged recombinant N-cadherin (N-Cad-Fc) protein
promoted a∼80% increased neurogenic differentiation of neural
cortical cells of rat embryo (E18) compared to unmodified
hydrogel (Lee et al., 2016). IKVAV modified self-assembled 3D
PAs nanofibers, preferentially promotes neuronal cell growth
over glial cells (Silva et al., 2004). Rat embryonic NPCs
embedded in 3D graphene oxide (GO) scaffold coated with
PL developed interconnected synapsis and differentiated into
neurons (∼62%) and astrocytes (∼41%) during 14 days of
cell culture (Serrano et al., 2014). The differentiation of neural
precursor cells in 3D collagen gels modified with PO/LN,
growth factor-reduced matrigel (gfrMG) or PuraMatrix R© gels
depicted enhanced (∼2 folds) neurogenic differentiation in
gfrMG modified matrices (Uemura et al., 2010). IKVAV
functionalized 3D collagen hydrogels enhanced (∼5 folds)
differentiation of dorsal root ganglions (DRGs) into neuronal
phenotype in comparison to unmodified collagen matrix
(Hosseinkhani et al., 2013). Hybrid 3D matrices formed by

collagen and PAs nanofibers modified with IKVAV were reported
to support survival and dendritic growth of purkinje neurons
(PC) (Sur et al., 2014). High PA-IKVAV to collagen ratio
(1:0.45) promoted dendritic growth (∼4 folds) and axonal
guidance of PC neurons (Sur et al., 2014). Gradient of IKVAV
on photochemically modified PCL fibers supports neuronal
differentiation and expression of β-III-tubulin in PC12 cells,
and neurite growth in the direction of increasing peptide
concentration (Kim et al., 2015).

The stiffness of the biomaterial also plays an important role
in defining cell phenotype. MSCs cultured on soft P(AAm) gels
(i.e., Young’s Modulus of 0.1- 1 kPa, mimicking the stiffness
of brain tissue) developed into neurogenic cells, while the
culture conditions rendered myocytes or osteogenic phenotypes
when harder gels were used for culture (8–17 or 25–40 kPa
respectively).(Engler et al., 2006) These findings have been
supported by other reports as well (Wen et al., 2014). ESCs
differentiation was studied on covalently crosslinked gelatin gels
with Young’s Modulus ranging from 2 to 35 kPa. Soft 2 kPa
substrate preferentially supported differentiation of ESCs into
mature neurons, while a 83% decrease in neuronal differentiation
was reported on gelatin of higher (35 kPa) stiffness (Ali et al.,
2015). Neuronal differentiation of mouse embryonic NPCs
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TABLE 1 | Biomaterial scaffold for neural cell proliferation.

Biomaterial Functionalization Cells References

Polydopamine

coating

YIGSR and RGD NSCs Taylor et al., 2017

PEG hydrogel CCRRIKVAVWLC NSCs Li et al., 2015

RADA16 SAPs RGD, PFSSTKT,

SKPPGTSS

NSCs Koutsopoulos and

Zhang, 2013

RADA16 SAPs RGD and IKVAV NSCs Sun et al., 2016

RADA16 SAPs BMHP-1 Schwann cells Nune et al., 2016

PLCL fibers LN Schwann cells Kijenska et al.,

2014

PLLA nanofibers LN PC 12 Koh et al., 2008

PLLA fibers GO Schwann cells,

PC12

Zhang et al., 2016

Gellan gum GRGDS NSPCs Silva et al., 2012

PLCL nanofibers LN Schwann cells Kijenska et al.,

2014

PCL Matrigel NPCs Ghasemi-

Mobarakeh et al.,

2010

Collagen gel NGFs PC 12 Bhang et al., 2009

Gelatin fibers Gelatin Schwann Cells Gnavi et al., 2015

Pas RGD and IKVAV Schwann cells Li A. et al., 2014

on P(AAm) hydrogels (0.2–20 kPa) covalently functionalized
with IKVAV and PL showed a 6 folds enhancement of NPCs
neuronal maturation on 2 kPa gels vs. IKVAV/PL coated glass,
while the 20 kPa hydrogel enhanced (30% increase) neuronal
differentiation of adult neural stem cells (aNSCs) (Farrukh
et al., 2017a). Methacrylamide chitosan (MAC) hydrogels
(1–10 kPA) functionalized with LN showed the highest neuronal
differentiation of NSPCs at <1 kPa (30%), low density of
astrocytes (2%) between 1 and 3.5 kPa, and oligodendrocyte
differentiation (70%) on stiff 7 kPa hydrogel (Figure 3C) (Leipzig
and Shoichet, 2009).

3D cultures of hyaluronic acid hydrogels with tunable stiffness
(1.5–7 kPa) coated with PL showed differentiation of NPCs into
neurons at low stiffness (1.5 kPa) and into astrocytes at higher
stiffness (7 kPa) (Seidlits et al., 2010). mNSCs encapsulated
in soft elastin-like proteins (ELP) hydrogel modified with
RGD (G′ = 0.36 kPa) showed enhanced viability ∼97% and
differentiation into neurons (Madl et al., 2016). ELPs without
RGD sequence or scramble RDG sequence failed to support cell
survival or differentiation. RGD functionalized 3D hyaluronic
acid hydrogel with different stiffness (G′ 400 and 800 Pa) is
reported for culture of hippocampal NPCs. Neurite extend
through the hydrogel with enhanced neurite outgrowth and
branching on soft hydrogel (G′ 400 Pa) (Tarus et al., 2016).
Hydrogel films of 3-hydroxybutyrate and 3-hydroxyhexanoate
copolymers promoted neuronal differentiation of NSCs during
2D cell culture. The same polymers used as 3D matrices
supported attachment, synaptic outgrowth and synaptogenesis
(Xu et al., 2010). Chitosan 2D films promoted astrocytic
differentiation of NSCs, while chitosan porous scaffolds and
chitosan multimicrotubule conduits supported neuronal

differentiation (Wang et al., 2010a). Methacrylated hyaluronic
acid (0.5–1.5 kPa) 3D hydrogels promoted differentiation
of human induced pluripotent stem (hiPSCs) derived NPCs
and Down syndrome patient-specific hiPSCs derived NPCs
spheroids into neurons (Figure 3D). Soft (0.5 kPa) hydrogels
enhanced neuronal phenotype (∼1 fold), suppressed (∼40%)
astrocytic differentiation and triggered neurite outgrowth (Wu
et al., 2017). RGD functionalized 3D ELP based polymeric
hydrogels (0.5–2.1 kPa) enhanced DRGs neuronal viability
and promote neurite outgrowth from DRGs explant. Soft 0.5
kPa ELPs-RGD promoted neurite extension up to ∼1,800µm
from DRS during 7 days of cell culture, in contrast to ∼500µm
neurite extension on 2.1 kPa hydrogel (Lampe et al., 2013).
Gelatin-hydroxyphenylpropionic acid hydrogels with tunable
stiffness (G′ 0.28–0.84 kPa) modulated differentiation of hMSCs.
Low stiffness (0.28 kPa) hydrogels promoted neurogenesis, while
high stiffness (0.84 kPa) increased cell proliferation (Wang et al.,
2010b). Thixotropic 3D PEG-silica hydrogel with 7, 25, and
75 Pa stiffness functionalized with RGD promoted neuronal
differentiation of MSCs only above 75 Pa. Very soft hydrogels
failed to support cell viability, proliferation and differentiation of
cells (Pek et al., 2010).

Several reports demonstrate the effect of geometry
and topography of substrates on cell differentiation.
Rat hippocampus-derived adult NSCs on laminin-coated
electrospun polyethersulfone fiber with different fiber diameter
(∼ 250–1,500 nm) showed a 40% increase in oligodendrocyte
differentiate on small diameter mesh (280 nm), while a 20%
increase in neuronal differentiation was observed on meshes
with diameter 750 nm. Authors attribute this effect to random
spreading of cells on densely packed small fiber mesh vs.
aligned extension of cell along single fiber of large diameter
(Christopherson et al., 2009). PCL loop mesh, bimodal, and
biaxially aligned electrospun scaffold (fiber diameter ∼40–
85µm) promoted neuronal differentiation and guided the
neurite outgrowth of human iPSCs along the fiber, as depicted
in Figure 4A. Biaxial aligned scaffolds promoted the highest
viability (95%) and neurite extension along the fibers (Mohtaram
et al., 2015). Micro-patterned PDMS with PL and LN stripes
directed differentiation and guidance of adult human stem
cells. Microstripes significantly wider than the cell soma (3µm)
promoted neural differentiation, while stripes narrower than
10µm hindered differentiation (Figure 4B) (Béduer et al.,
2012). LN functionalized P(AAm) hydrogels (0.6 kPa) with
un-patterned or with circular (50µm) geometrical patterns,
trigger preferential differentiation of MSCs into neurogenic cells
(90%) on un-patterned substrate while adipogenic cells (60%) on
circular geometry (Lee et al., 2013).

BIOMATERIALS SUPPORTING NEURONAL
MIGRATION

Regenerative strategies for neural tissue involve the recruitment
and instruction of endogenous neural stem cells or Schwann
cells by using scaffolds containing relevant features of the
migratory environment in brain tissue and assist cells to
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FIGURE 4 | Substrate topography modulates cell differentiation. (A) PCL loop mesh, bimodal and biaxially aligned electrospun scaffold (fiber diameter ∼40–85µm)

influence on differentiation of iPSCs. Biaxially aligned fibers preferentially promoted the highest neurite extension as labeled by Tuj1 immunostaining (Mohtaram et al.,

2015) Copyright 2015, John Wiley and Sons; (B) Micro-patterned PDMS with PL and LN stripes directed differentiation and guidance of adult hNSCs. Microstripes

>10µm promote neuronal differentiation, while < 10µm hinder differentiation, during 7 days of culture (B1-B4 represents individuals with 4 different biopsies) (Béduer

et al., 2012) Copyright 2012, Elsevier.

organize and relocate at appropriate positions. Similar to neural
attachment, neural migration is influenced by biochemical
(adhesive ligands, growth factors), mechanical factors and
topographical of the extracellular matrix, and also by adhesive
contacts to neighboring cells. Examples of reported migratory
responses of neural cells to these material parameters are detailed
below.

The type and concentration of adhesive ligand on a
biomaterial influences migration of neural cells by stabilizing the
attachment of the growth cone of neurites. LN, for example, has
been demonstrated to stimulate and guide migration of olfactory
epithelial neurons in vitro (Calof and Lander, 1991). Depending
on the cell type, different responses to the same adhesive coating
can be expected. For example, aNSCs and astrocytes migrated
on PL surfaces and became less migratory on PL/LN mixtures,
while neuron preferred to spread and not move on PL (Joo et al.,
2015a,b). A recent article describes morphological features on the
migration of neuronal cells on different protein coatings FN, LN,
LNmimetic peptides, reelin etc. Using micropatterned substrates
with contrasting regions with different proteins, the role of
specific adhesive cues in triggering, guide or stop migration of
Early postmitotic cortical neurons on a biomaterial surface was
explored (Zhao et al., 2017). In particular the role of adhesion for
terminal somal translocation, i.e., the specific migratory behavior
of cortical neurons when they position in the cortex layers, was
studied. Somal translocation could be efficiently triggered when
the growth cone of a neurite spread and stabilized on an area
of stronger adhesive interactions, for example with a higher
concentration of adhesive molecules (Figure 5A). In vivo, LN
coated scaffolds promote migration of neuroblasts to injured

brain tissue, contributing to neuronal regeneration after stroke
in mice (Figure 5B) (Fujioka et al., 2017).

Gradients of soluble neurotrophic factors and
neurotransmitters influence neuronal migration (Li Jeon
et al., 2002). These molecules can be added to cell cultures,
or secreted by other co-cultured cells like astrocytes (Mason
et al., 2001). Glial and neural migration through hydrogels
was demonstrated to be enhanced through delivery of soluble
growth factors such as nerve growth factor (NGF) from fibrin in
in vitro cultures (Wood and Sakiyama-Elbert, 2008). In vivo, the
delivery of stimulating molecules to the CNS represents a clinical
challenge because the blood–brain barrier limits the diffusion
of molecules into the brain by traditional oral or intravenous
routes. Injectable hydrogels have the capacity to overcome the
challenges associated with drug delivery to the CNS (Pakulska
et al., 2012). Intraventricular sequential delivery of epidermal
growth factor (EGF) and erythropoietin (EPO) into a stroke
injured rat brain showed enhanced migration of endogenous
NSPCs to the injury site, resulting in neurogenesis and improved
functional recovery (Kolb et al., 2007).

During growth and migration cells sense and can be
guided by the variation of mechanical properties of their
microenvironment. The relevance of mechanical signaling in
different contexts of cell function is a current vivid area of
research, also related to neural tissue. Stiffness gradients have
been reported in CNS tissue (Franze, 2011, 2013; Wrobel and
Sundararaghavan, 2013). LN-coated P(AAm) hydrogel with high
stiffness (20 kPa) greatly promoted the migration of Schwann
cells progenitors from embryonic DRGs compared to low
stiffness hydrogel (1 kPa)(Rosso et al., 2017).
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FIGURE 5 | Neuronal migration on biomaterials. (A) Hydrogel coated glass slides modified with mircopatterens of PL/IKVAV to trigger neuronal migration and somal

translocation of cortical neurons in vitro (Zhao et al., 2017) Copyright 2017, Elsevier; (B) Migration of neuroblasts along a LN coated hydrogels toward the injured area

in vivo (Fujioka et al., 2017) Copyright 2017, Elsevier.

During development, migration of neuronal cells often occurs
in a directional way. Neurons attach and migrate along fibers
of the ECM or along glial cell tracts (Malatesta et al., 2008).
The sensitivity of neurons to topographical features has been
exploited in vitro and in vivo (Hoffman-Kim et al., 2010; Gumera
et al., 2011). Oligodendrocytes (Webb et al., 1995) and neurons
(Gomez et al., 2007), have been shown to migrate along grooved
topographies. The average migration speed of cells was higher
on microgrooved substrates than on flat surfaces (Nikkhah et al.,
2012). In 3D environments, DRGs cells exhibited unidirectional
migration into micro-channels of the PEGylated fibrinogen
hydrogel (Sarig-Nadir et al., 2009).

Neuronal migration has been also modulated via cell-cell
contacts, specifically involving glial cells in cocultures. The
membrane proteins connexin 46 and 23 expressed by radial
glia (Valiente and Marín, 2010) and the cell adhesive proteins

L1-CAM and neural cell adhesion molecule (NCAM) (Schmid
and Maness, 2008) seem to play a relevant role in neuronal
migration.

BIOMATERIALS FOR DIRECTIONAL
NEURITE EXTENSION

In order to achieve successful regeneration of nerve tissue,
sprouting axons from the proximal stump of one neuron need to
grow and establish a new connection with the distal stump of the
next neuron (Shin et al., 2003). Following injury, the remaining
functional neurons will try to grow processes and reestablish
connections with neighboring partners, but they often meet an
impenetrable scar tissue composed of myelin, cellular debris, and
other cells (astrocytes, oligodendrocytes, microglia) at the injury
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site. The scar tissue blocks existing neurons from reaching their
synaptic target and hinder the regeneration process (Schmidt and
Leach, 2003). Guidance in neurite growth plays a vital role in
nerve repair. Many approaches to support nerve regeneration,
therefore, have focused on the development of biomaterials that
provide guidance cues for directional neurite growth.

Topographical Cues for Guiding Neurite
Extension
The topography of the neuronal microenvironment, including
fibrillar ECM proteins and elongated glial cells, plays a major role
for the directional growth of neurites. In the biomaterials field
nerve guidance channels, surface topographies and 3D fibrillar
meshworks have been used as supportive scaffolds for directional
neural regeneration.

Nerve Guidance Channels (NGCs) for Peripheral

Nerve Regeneration
Nerve guidance channels (NGCs) are tubular constructs with
a hollow lumen through which the neuron axon should grow.
This geometry has several advantages for spatial guidance of
peripheral nerve regeneration: protection of the regenerating
nerve against compression by the surrounding tissue, isolation of
the regenerating axons from surrounding tissue, and longitudinal
directional guidance of the regenerating neurites toward target
tissue. Hollow nerve conduits have been widely used in
research and clinical applications. Porous and not porous
NGCs providing longitudinally oriented grooves in their lumen
surface, (Göpferich, 1996) and eventually functionalized with
cell adhesive ligands (e.g., LN-derived peptides YIGSR and
IKVAV (Chiono et al., 2009) or controlled released growth
factor (neurotrophic factors (Pfister et al., 2007) promote
directional axon growth in vivo in small animals test. However,
in some cases dispersion of the regenerating axons through the
comparatively large lumen of the NGCs leads to inappropriate
target reinnervation or polyinnervation of different targets by the
axonal branches of the same neuron. Single hollow lumen NGCs
are thus only recommended for small lesions (<30mm) in the
sensory nerves (Weber et al., 2000). In vitro neuronal, Schwann
and DRGs culture were used to test the NGCs and in vivo a
thy-1-YFP-H mouse common fibular nerve injury model or a
nerve gap in the rat sciatic nerve were normally used. Generally,
typical NGCs dimensions for experimental use in small animals
are inner diameters of 1–2mm and lengths of several millimeters,
depending on the experimental gap.

Considerable effort has been focused on the development of
more effective NGCs, in which a microstructured lumen of the
NGC provides higher directionality. Structured lumens including
multichannels, porous matrices or oriented fibrous conduits have
been proposed (Figure 6). Multichannel NGCsmimic the natural
compartment structure of nerves (He et al., 2009; Chiono and
Tonda-Turo, 2015). They reduce axon dispersion, offer higher
surface area for functionalization, cell adhesion and migration
as compared to single lumen NGCs. The disadvantages of the
multichannel NGC design reduced permeability and mechanical
flexibility. In fact, multichannel NGCs did not lead to significant
functional improvement in the repair of a 1-cm nerve gap in

the rat sciatic nerve compared to single lumen nerve tubes (de
Ruiter et al., 2008). NGCs might also incorporate fillers to form
an internal porous or aligned 3D matrix. Fillers may include
longitudinally aligned fibers (Matsumoto et al., 2000; Wang
et al., 2005), porous sponges (Tonda-Turo et al., 2011) or gels
(Ceballos et al., 1999; Nakayama et al., 2007). Fillers can also be
functionalized with specific peptides/proteins or growth factors,
as described in recent reviews (Pfister et al., 2007; Gu et al., 2011).
Filling of the lumen of silicon NGCs with longitudinally oriented
polyamide filaments lead to improved nerve regeneration by
bridging a 15-mm sciatic nerve gap in rats (Lundborg et al.,
1997). The ability of tubular channels mininally supplemented
with aligned nanofiber-based thin-films to promote regeneration
across a 14mm tibial nerve gap was studied(Clements et al.,
2009). They evaluated two different channels: a 1-film guidance
channel–containing a single continuous thin-film of aligned
fibers, and a 3-film channel. Interestingly, they found that the
1-film channels supported enhanced regeneration compared
to the 3-film channels, because the two additional thin-film
reduced permeability. Recently, the hollow chitosan nerve guides
(CNGs) enhanced by introduction of a longitudinal chitosan
film to reconstruct critical length 15mm sciatic nerve defects in
rats(Meyer et al., 2016). Compare to simple hollow CNGs, the
CNGs with the introduced chitosan film significantly improved
nerve regeneration, almost reached the regeneration outcome
after autologous nerve grafting.

An alternative strategy to guide neurites growth within the
luminal cavity of the NGC involves the use of electrospun tube
walls. The use of tubes with walls consisting of oriented fibers
has a number of advantages over the filled lumen strategy. (i)
The materials are highly flexible and porous, well adapted for use
within biological systems; (ii) nano- and micro-scale fibers have
a high surface area-to-volume ratio increasing the area available
for protein absorption, neural cells migration and regeneration
of axons; (iii) fibers that can be preferentially aligned resulting in
increased promotion of guided axonal growth (Daly et al., 2012).

Scaffolds for Guided Central Nerve Regeneration
Although regeneration of the mammalian CNS was thought
to be impossible, studies have shown that axonal growth after
spinal cord injury can occur when neurons are provided
with the suitable substrata that support directional growth
(Fawcett, 1998, 2002). Natural, ECM-derived biomaterials and
also synthetic polymers processed in different ways to generate
microtopographies have been used as matrices for supporting
spinal nerve regeneration.

The relationship between microscale topography and
neuronal development has been recently investigated in vitro
in a high-throughput screening assay (Li et al., 2015). Primary
neurons were presented to patterned substrates with a large
library of topographical features including isotropic (e.g., dots,
grids, squares) and anisotropic pattern designs (e.g., gratings)
with lateral width between 5 and 15µm and 1µm depth.
Anisotropic topographies enhanced axonal and in some cases
dendritic extension vs. isotropic ones. However, dendritic
branching occurred preferentially on planar substrates. The
depth of the topographical features also influences the growth
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FIGURE 6 | Different designs of nerve guidance conduits (NGCs). The basic design parameters include: a biodegradable and porous channel wall, a biofunctionalized

wall surface including adhesive and growth factors, intraluminal structures to mimic the structure of nerve fascicles, intraluminal guidance structures (filaments, sponge

or hydrogel-like) or wall microstructures to support cell migration and axonal growth. Support cells can also be incorporated to the NGCs (Daly et al., 2012) Copyright

2012, The Royal Society.

of processes. Murine NPCs sensed the depth of micro-gratings
and neurite elongation, alignment and neuronal differentiation
increased with grating depth (Chua et al., 2014).

In vivo studies using poly(2-hydroxyethyl methacrylate-co-
methylmethacrylate) hydrogel channels demonstrated improved
tissue regeneration of transected rat spinal cords (Tsai et al.,
2004). The hydrogel guidance channels were designed to match
the dimensions and modulus of the rat spinal cord; the outside
diameter of the channels was approximately 4.2mm, the inside
diameter was 3.6mm, giving a wall thickness of 0.3mm and the
length was 6mm. By inserting the transected cord stumps into
the hydrogel nerve guidance channels, alignment of the cord
stumps occurs, and cells were able to migrate along them. Axonal
regeneration was enabled, and no significant scar formation
appears.

Guided Neurite Extension on 3D Fibrillar Meshworks
Fibrillar 3Dmatrices can serve as substrates for neuronal growth.
The fibrils provide spatial guidance to the extension of processes,
while retaining an open matrix structure to be repopulated by
the growing cells (Lietz et al., 2006; Schnell et al., 2007). This
is of particular interest in the development of biomaterial-based
scaffolds intended to promote the repair of highly organized
nerve tissues, such as the retina or whitematter tracts of the spinal
cord.

Protein based and synthetic polymer fibers have been
used to form fibrillar matrices and guide axonal growth.
Fibers can be processed by different technologies, like
electrospinning, bioprinting or self-assembly. Among these

methods, electrospinning offers an uncomplicated and low-cost
method for processing and applicable to different kinds of
materials. Electrospun membranes with randomly or aligned
fibers can be produced, and neuronal growth along the fibers
has been demonstrated (Sell et al., 2007). NPCs and DRGs cells
grew preferentially along aligned PLLA electrospun scaffolds
with fiber diameters between 150 to 3,000 nm independently
of the adhesive coating (Yang et al., 2005; Corey et al., 2007).
NSCs elongated and outgrew neurites along aligned fiber
scaffolds without adhesive coating (Figure 7A) (Yang et al.,
2005). Authors could not establish a significant effect of the fiber
diameter (between 300 and 1,500 nm) on the cell orientation.
NSCs differentiation rate was found to be higher on PLLA
nanofibers (diameter 300 nm) than that of micro fibers (diameter
1,500 nm), independently of alignment. Aligned nanofibers
significantly improved neurite outgrowth compared to not
aligned ones. On thicker fibers and fibers coated with adhesive
factors, however, different tendencies were observed. Fibers of
35µm coated with PL and LN promoted directional neurite
outgrowth and promoted greater oriented process growth
than large-caliber fibers (500µm) (Smeal et al., 2005; Smeal
and Tresco, 2008). Many studies have demonstrated that the
aligned nanofibers, pattern nanofibers (half random and half
aligned) and also cross-patterned nanofiber can guide the
neurites to extend along the nanostructure. However, the contact
cues provided by the nanofibers can be far more complicated
than just guiding the neurites to extend along them. Xie et al.
demonstrated that the neurites could not only project along
the nanofibers, but also be directed to grow along a direction
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FIGURE 7 | Guided neurite extension on fibrillar networks (A) Neuron cells cultured on random and aligned fibers (Yang et al., 2005) Copyright 2005, Elsevier;

(B) Neurites oriented along the nanofibers previously coated with laminin and perpendicularly to the nanofibers without adhesive coating (Xie et al., 2014) Copyright

2014, American Chemical Society.

perpendicular to the aligned nanofibers. The DRGs neurites
grew perpendicularly to the alignment direction of electrospun
PCL fibers (Figure 7B) (Xie et al., 2014). The growing direction
of neurite on fibers was dependent on the adhesive interaction
between neurites and nanofibers and on the dimensions and
separation between fibers. A strong interaction leads to parallel
growth of neurites along the fibers (e.g., low density fiber and
fiber with LN coating), while a weak interaction (i.e., fibers
without adhesive proteins) lead to perpendicular growth while
high density mesh works lead also to perpendicular growth.

In vivo, aligned oriented fibers elicit regeneration, while
randomly distributed fibers do not, demonstrating how
topographical cues can influence endogenous nerve repair
mechanisms in the absence of exogenous growth promoting
proteins (Kim et al., 2008). Using electrospinning method,
poly(acrylonitrile-co-methylacrylate) (PAN-MA) fibrillar
constructs (19mm long and 1.5mm inner diameter) were
produced. Axons regenerated across a 17mm nerve gap, re-
innervated muscles, and reformed neuromuscular junctions.
Electrophysiological and behavioral analyses revealed that
aligned but not randomly oriented constructs facilitated both
sensory and motor nerve regeneration, improving significantly
functional outcomes.

Fibers have been also integrated within hydrogel materials
to provide hybrid three-dimensional construct for neuronal
guidance within a growth promoting environment (Newman
et al., 2006; Novikova et al., 2008). Studies showed that
magnetic collagen fibers in collagen gels, aligned using magnetic
fields, provide an improved template for neurite extension
compared to randomly oriented collagen fibers (Ceballos et al.,
1999; Dubey et al., 1999). Recently, magnetoresponsive PEG
based microgel are reported by incorporation of iron oxide
nanoparticles for directional growth of DRGs (Rose et al., 2017).
Natural protein based hydrogels also provide adhesive factors
to support attachment and neurite grown. Yao et al. developed
a hierarchically aligned fibrillar fibrin hydrogel (AFG) with low
rigidity and aligned topography to mimics both the soft and
oriented features of nerve tissue. They found that the AFG exhibit

co-effects on promoting the neurogenic differentiation of human
umbilical cordmesenchymal stem cells (hUMSCs) in comparison
to random fibrin hydrogel (RFG) and tissue culture plate (TCP).
Also, AFG induces DRGs neurons to rapidly project numerous
long neurite outgrowths longitudinally along the AFG fibers (Yao
et al., 2016).

Recently, Johnson et al. have developed a novel 3D
printing approach for manufacturing of a custom nerve repair
technology which is personalized to anatomical geometries, and
augmented with physical (microgrooves) and biochemical cues
(multicomponent diffusive biomolecular gradients) to promote
the regeneration of multiple nerve pathways (Johnson et al.,
2015). The custom scaffolds are prepared via a 3D printing
using 3D models, which are reverse engineered from patient
anatomies by 3D scanning. The bifurcating pathways (sensory
and motor path) are augmented with microgrooves and path-
specific biochemical cues for the regeneration of complex mixed
nerve injuries (Figure 8). This 3D printed scaffold provides
axonal guidance in vitro and achieved successful regeneration
of bifurcated injuries across a 10mm complex nerve gap in rats
in vivo.

Synthetic hydrogels formed by self-assembling PAs show also
a nanofibrilar structure that has been used in nerve regeneration.
Encapsulated NPCs were observed to differentiate into neurons
with extensive neurite outgrowth within nanofibrillar hydrogels
(Silva et al., 2004).

Guided Neurite Growth by Rigidity Patterns
The rigidity of the biomaterial contributes to the oriented
growth of neurites in spiral ganglion neurons (SGN) on
micropatterns. Alignment was significantly enhanced when the
material stiffness increased from 650 to 2,000 MPa (Tuft et al.,
2014). Increasing substrate stiffness of a LN-coated P(AAm)
hydrogel also promoted directional neurite outgrowth from
embryonic DRGs (Rosso et al., 2017). The neurite in low stiffness
substrate (1 kPa) show relax and less aligned morphology,
whereas the neurite display stretch, more aligned morphology
in high stiffness (20 kPa). Interestingly, the opposite observation

Frontiers in Materials | www.frontiersin.org 13 November 2018 | Volume 5 | Article 62

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Farrukh et al. Biomaterials for Neuronal Regeneration

FIGURE 8 | Guided neurite extension in 3D printed scaffold; (A) Nerve regeneration pathways enabled by 3D scanning and printing, (B) The 3D printing process

provided the ability to introduce advantageous physical and biochemical cues in the form of microgrooves and multicomponent diffusive biomolecular gradients,

(C) In vitro and in vivo characterization of regeneration with 3D printed nerve pathways (Johnson et al., 2015), Copyright 2015, John Wiley and Sons.

was made in 3D cultures. A hyaluronic acid (HA) hydrogel with
tunable Young’s Modulus between 400 and 800 Pa was used to
culture hippocampal neural progenitor cells (HNPCs) (Tarus
et al., 2016). Neurites of HNPCs grew into the soft HA hydrogel
at increased outgrowth and density. The growth of neurites
(in quantity and length) from DRGs was also promoted in softer
(0.5 kPa) elastin-like hydrogels (Lampe et al., 2013). Authors
hypothesize that on 2D environments the stiffer substrates
provide more stable anchoring to facilitate the outgrowth of
neurite. In contrast, stiffer 3D matrices (i.e., higher crosslinking
degree) hinder the outgrowth of neurites due to the small pore
sizes.

Neural Growth on Patterns of Cell
Adhesive Ligands
Patterns of adhesive ligands (full proteins or peptidomimetics)
on non-adhesive backgrounds (typically PEG) can be used to
selectively promote neuronal attachment and guided outgrowth
on the adhesive regions of the pattern (Zhang et al., 2005; Straley
et al., 2010; Joo et al., 2015a). Recent studies demonstrate that
responsive biomaterials can be used to in situ guide axonal
growth. In vivo, poly(vinyl chloride) (PVC) channels filled with
different adhesive matrices (a YIGSR peptide containing agarose
gel, a plain gel, and PBS solution) have been applied to fill a
4mm segment of dissected dorsal root. A significant increase of
myelinated axons was shown in the peptide modified agarose gel
(Borkenhagen et al., 1998).

In addition to promoting cell growth, the presentation of
neurotrophic factors in a gradient distribution within scaffold
has also been studied for guidance of regenerating neurons.
Several in vitro studies have demonstrated that neuronal cells

are guided by immobilized gradients of nerve growth factors or
neurotrophic factors on scaffolds (Moore et al., 2006; Dodla and
Bellamkonda, 2008). The presence of LN and NGF gradients in
agarose scaffolds has also shown better functional recovery of
long peripheral nerve gaps than uniform concentration scaffolds
(Dodla and Bellamkonda, 2008).

Directed Growth on “Living Scaffolds”
During neural morphogenesis and development, directed axon
growth and cell migration typically occurs along pathways
formed by other cells. This concept has long been appreciated in
developmental neurobiology as crucial to the proper formation
of the nervous system, including necessary axonal connectivity
and localization of cellular constituents. This idea has also
been embraced by the tissue regeneration community and lead
to the concept of “living scaffolds” for regeneration. These
are tissue engineered constructs containing supporting guiding
material and cells from the neural environment, typically glial
cells and astrocytes (Figure 9). These follow the haptotactic
cues of the scaffold and arrange in oriented dispositions. These
cells secrete neural growth factor and combine haptotactic
and chemotactig signals to neuronal cells to grow along them
(Struzyna et al., 2014).

In vitro, higher order structures can be formed by first
culturing and aligning support cells on microgrooves, followed
by seeding of neurons (Nikkhah et al., 2012). Micropatterned
PLLA substrates containing grooves selectively coated with LN
were used to culture rat Schwann cells to support neurites
outgrowth (Miller et al., 2001). Neurons cultured on those
substrates displayed accelerated outgrowth of nerve fibers and
98% alignment of neurites along the microgrooves. In a
different study, micropatterned Schwann cells controlled by
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FIGURE 9 | Structural and soluble cues directing axonal outgrowth along “living scaffolds” (Struzyna et al., 2014) Copyright 2014, Elsevier.

micropatterned LN stipes on glass substrates were used to
direct neuronal regeneration (Thompson and Buettner, 2004;
Schmalenberg and Uhrich, 2005).

Winter et al. have developed a living scaffold that structurally
mimicked the glial tube. It consisted of aligned astrocytes that
guided the migration of NPCs and facilitated directed axonal
regeneration for CNS repair. The networks of longitudinally
aligned astrocytes on patterned hydrogels, supported seeded
neurons to extend neurites along the aligned astrocytes
bundles (Winter et al., 2016). In a different approach, collagen
sheets supported alignment of astrocytes in the presence of
transforming growth factor (East et al., 2010). The collagen
sheets were then rolled to create cylindrical constructs.
Dissociated DRGs neurons and astrocytes were seeded together
on the scaffolds. Neurites preferentially grew along the aligned
astrocytes.

In vivo, living scaffolds consisting of neurons and stretch-
grown axonal tracts were grown to 10mm in length, encapsulated
in collagenous matrices, and transplanted to repair equally
sized lateral hemisection spinal cord lesions in rats for spinal
cord repair (Iwata et al., 2006). At 1 month post-surgery, the
constructs had integrated with the host by extending axons into
the spinal cord. Similar constructs containing “stretch-grown”
axonal tracts were also used for peripheral nerve repair (East
et al., 2010).

BIOMATERIALS SUPPORTING NEURAL
GROWTH IN-VIVO

Central nervous system (CNS) injuries emerge from accidents or
trauma affecting brain and spinal cord or by neurodegenerative
disorders such as Parkinson’s or Alzheimer’s disease (Daly et al.,
2012). Peripheral nervous system (PNS) disorders occurred
through cut or injury to nerve cord, effecting autonomic
motor and sensory functions resulting in impairment of body
performance (Kabu et al., 2015). The common strategies to
repair CNS injuries involves grafting of stem cells at injured
site, while PNS system repair is frequently based on autograft or
hollow nerve guidance conduits. However, after implantation the
grafted cells fails to survive, remain undifferentiated or chiefly
differentiate into to glial cell forming glial scar and fail to develop
oriented nerves. In addition, the rejection of implant due to
inflammation and infection at surgery site also affect success of
transplant. Biomaterials for neural regeneration are designed to
resemble the properties of the natural cellular niche (stiffness,
topography), accompanied with tunable release of growth factors
and availability of ECM bioactive motifs. This section presents a
brief overview of new advances in biomaterial based implants for
nervous system regeneration.

Inert biocompatible scaffolds functionalized with bioactive
sequences in combination with addition or immobilization
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FIGURE 10 | Biomaterials applied for regeneration therapies (A) Alginate hydrogel scaffolds encapsulating BMSC (expressing GFP or BDNF) to promote directed

linear axonal regeneration in the injured rat spinal cord model. Cell-filled alginate scaffold implanted at injured area with Sr2+ and Zn2+ ions staining demonstrates

numerous cells within the channels. BMSC expressing BDNF cell preferentially promote axonal growth (Günther et al., 2015) Copyright 2015, Elsevier; (B) PLGA

based peripheral nerve construct filled with aligned PAs (PAs-RGD and PAs-IKVAV) for recovery of peripheral nerve injury. PAs solution, filled inside PLGA tubes was

crosslinked by CaCl2. PAs-RGD filled PLGA construct provide faster recovery than bare PAs and comparable with autograft (Li A. et al., 2014) Copyright 2014, Elsevier.

of nerve growth factors have been tested for regeneration
therapies. Injectable 3D IKVAV containing SAPs (RADA16-
IKVAV) hydrogel (G’ 300 Pa) was reported for recovery of
cerebral neocortex injury in rat brain surgery model. In-situ
self-assembly of RADA16-IKVAV hydrogel fill the injury
gap, enhanced cell survival and reduced the glial astrocytes
differentiation in comparison to bare RADA16 during 6 weeks
after post-implantation (Cheng et al., 2013). MAC scaffold
functionalized with growth factors and LN modulated the
differentiation of subcutaneously implanted NPCs into different
lineages. MAC was functionalized with interferon-γ (IFN-γ)
for neurons, platelet derived growth factor-AA (PDGF-AA) for
oligodendrocytes, or Bone morphogenetic protein-2 (BMP-2)
for astrocytes differentiation. Cells differentiation was more
effective when the growth factors were conjugated with the
scaffold and not added freely to the medium. Differentiation
into neuron was significant and rosette like neurons were
reported after 28 days of implantation (Li H. et al., 2014). A 3D
scaffold of poly(desaminotyrosyl tyrosine ethyl ester carbonate)
electrospun fibers with 1.25–3.23µm diameters was implanted
at mouse brain striatum to enhance the cell viability and
neuronal differentiation at implantation site. Human induced
neuronal cells (h-iN), dispersed in fiber suspension were injected
at the site of injury forming a gel in-situ. h-iN inside the
hydrogel showed ∼38-fold enhanced in vivo cell viability and
3.5-folds improvement in neurite outgrowth in comparison to
isolated h-iN (Carlson et al., 2016). Cell viability and outgrowth
of spiral ganglion neurites has reported to be enhanced by
coupling of IKVAV peptide (∼100%) on PuraMatrix R© hydrogel
in comparison to unmodified hydrogel (∼40%) (Frick et al.,
2017). IKVAV containing PAs nanofibers employed in in vivo
mouse spinal cord injury model enhanced cell viability (∼2 folds)
at the site of injury and promoted development of motor neurons
(Tysseling-Mattiace et al., 2008; Cui et al., 2010; Sun et al., 2017).

Alginate-based capillary hydrogels seeded with brain-derived
neurotrophic factor (BDNF) expressing bone marrow stromal
cells (BMSCs) guided axon extension on lesion site. A 3–4 folds
increase in the axon length along the rostro-caudal direction,
extending through the whole implant in rat spinal cord was
achieved (Figure 10A) (Günther et al., 2015).

PLGA conduits filled with aligned PAs (palmitoyl-
VVAAEENH2) with and without bioactive RGD or IKVAV
epitope were reported to repair rat sciatic nerve injury. Agarose
hydrogel loaded with concentration gradient of LN and NGF,
promote sciatic nerve repair covering the gap of 20mm (Dodla
and Bellamkonda, 2008). PLGA implant containing bioactive
(IKVAV or RGD) PAs grafted at injury site of peripheral nerve
critical sized defect model enhanced Schwann cells (∼20–40%
increase) and axonal growth (∼20% increase) during 21 days
of implant in comparison to bare PLGA-PAs (Figure 10B).
Bioactive PLGA-PAs support recovery of motor and sensory
activity after 12 weeks of implantation comparable to autograft
(positive control) (Li A. et al., 2014). Commercially available
inert PuraMatrix R© hydrogel functionalized with IKVAV is
applied for cochlear implants (CI). Table 2 entailed biomaterials
relevant for neural tissue engineering.

CRITICAL OVERVIEW

Strategies for brain repair heavily depend on our ability to
temporally reconstruct the natural cellular microenvironment
of neural cells. Biomaterials play a fundamental role in this
context, as they provide the mechanical support for cells to
attach and migrate to the injury site, as well as fundamental
signals for differentiation. The increasing evidence that (neural)
cells sense and specifically respond to biochemical and
physical material parameters like stiffness or morphology opens
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TABLE 2 | Biomaterial scaffold applied for neural tissue engineering.

Biomaterial Modification Application Outcome References

PAs IKVAV mouse spinal cord

injury (SCI)

Reduced astrogliosis and apoptosis,

increase oligodendroglia

Tysseling-Mattiace et al.,

2008

Collagen hydrogel LN polypeptide Rat striatum Viability of NSCs Nakaji-Hirabayashi et al.,

2013

PLGA microspheres in chitosan

channels

Dibutyryl cyclic-AMP (dbcAMP)

in PLGA microspheres

Rat SCI Viability and differentiation of NSPCs Kim et al., 2011

Hyaluronan hydrogel Rat platelet derived

growth factor-A (rPDGF-A)

Rat SCI Viability and oligodendrocytic of

NSPCs

Mothe et al., 2013

enormous possibilities for material-supported cell therapies
for brain repair. However, reported work up to now, as
described in this article, is mostly phenomenological and limits
attempts to extract generic material properties-cellular response
relationships out of our analysis. The still phenomenological
character of most publications does not allow scientifically
grounded statements that could lead biomaterials design for
nervous tissue regeneration.

Break-through approaches in the field will depend on several
factors. From the materials side, the analysis and quantification
of the material properties to which cells are exposed is a
fundamental requirement. The density of protein or peptide of
an adhesive coating depends on the chemistry of the surface
and the coating strategy. Same incubation conditions lead
to different surface densities on different materials, and this
will influence the biological response. No comparison between
biological readouts from different articles is possible if there is
no quantitative information about the surface composition with
which the neuronal cell interacts. The stiffness of a material
is typically analyzed as a macroscopic parameter, whereas the
cell senses stiffness at a molecular lengthscale. Fibrous or
continuous matrices can appear very different to a neuron from
a mechanical perspective. Moreover, the Young’s Modulus of a
material describes only part of the mechanical response, and
not necessarily the one a cell might feel long-term. Viscous
components might play a role, as demonstrated for other cell
types. All these factors have to be properly described in order to
make meaningful interpretation of cell responses to biomaterials,
and to extract useful information for advanced materials design.

Novel strategies for brain repair will also depend on the ability
of biomaterials developers to assimilate and translate increasing

knowledge from cell and matrix biology of neural tissue into
artificial models. The regenerative biomaterials community
is traditionally dominated by material scientists cooperating
with surgeons in best case, and it has little interaction with
neurobiology or neuronal development community. All these
fields have a lot to share with each other, though the languages
and experimental methods are very different. Approximation
between the different communities is starting andwill profoundly
impact development in biomaterials for brain tissue repair, as
it is impacting in other tissue types. We face a challenging and
exciting era.

Experimental work with neuronal cells is challenging.
Neurons are difficult to culture and the access to primary cells is
more complicated than in other tissue types. The analysis of the
existing literature evidences that biomaterials development for
brain repair lies behind other tissue types. However, knowledge
transfer will occur and will accelerate development in the coming
years. There is a longway to go until break-through approaches in
brain repair will translate into revolutionary therapies, but there
is hope to get there in the next decade.
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