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This work addresses a number of fundamental questions regarding the topological

description of materials characterized by a highly porous three-dimensional structure

with bending as the major deformation mechanism. Highly efficient finite-element beam

models were used for generating data on the mechanical behavior of structures with

different topologies, ranging from highly coordinated bcc to Gibson–Ashby structures.

Random cutting enabled a continuous modification of average coordination numbers

ranging from the maximum connectivity to the percolation-cluster transition of the 3D

network. The computed macroscopic mechanical properties–Young’s modulus, yield

strength, and Poisson’s ratio–combined with the cut fraction, average coordination

number, and statistical information on the local coordination numbers formed a database

consisting of more than 100 different structures. Via data mining, the interdependencies

of topological parameters, and relationships between topological parameters with

mechanical properties were discovered. A scaled genus density could be identified,

which assumes a linear dependency on the average coordination number. Feeding

statistical information about the local coordination numbers of detectable junctions

with coordination number of 3 and higher to an artificial neural network enables the

determination the average coordination number without any knowledge of the fully

connected structure. This parameter serves as a common key for determining the cut

fraction, the scaled genus density, and the macroscopic mechanical properties. The

dependencies of macroscopic Young’s modulus, yield strength, and Poisson’s ratio on

the cut fraction (or average coordination number) could be represented as master curves,

covering a large range of structures from a coordination number of 8 (bcc reference) to

1.5, close to the percolation-cluster transition. The suggested fit functions with a single

adjustable parameter agree with the numerical data within a few percent error. Artificial

neural networks allow a further reduction of the error by at least a factor of 2. All data for

macroscopic Young’s modulus and yield strength are covered by a single master curve.

This leads to the important conclusion that the relative loss of macroscopic strength

due to pinching-off of ligaments corresponds to that of macroscopic Young’s modulus.

Experimental data in literature support this unexpected finding.

Keywords: open-pore materials, topology, structure–property relationship, elastic-plastic deformation behavior,

machine learning, data mining
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INTRODUCTION

The mechanical properties of materials with interconnected
open-porous structures can be tuned by the choice of the
material, the pore fraction, and the connectivity of the solid
fraction. Such materials include open-pore foams (Gibson and
Ashby, 1997; Ashby et al., 2000), nanoporous metals (Biener
et al., 2006, 2007; Balk et al., 2009; Weissmüller et al., 2009),
and architectured meta-materials (Jang et al., 2013; Zheng et al.,
2014). Nanoporous Gold (NPG), with its fascinating mechanical
and functional properties, has recently received significant
attention due to the advances in materials development, allowing
the production of specimen of mm size containing billions of
nanoscaled ligaments. This material exhibits a bi-continuous
network of nanoscale pores and solid “ligaments”, which are
connected in nodes. Hence, it serves as an ideal model material
for the investigation of structure-property relationships of open-
porous materials in general.

Continuum micromechanics models including the Self
Consistent Method and the Mori-Tanaka Model allow for
an efficient prediction of the effective elastic properties of
composites for given phase moduli and volume fractions. For a
survey, see (Zaoui, 2002). To a certain extent, such models can
predict the effective properties when the inclusions are pores. For
example, Scheiner et al. (2016) extended this micromechanics
concept to predict the micro–macro relations in the double-
porous medium of hierarchically organized physiological bone
and validated the model for a porosity of 10%. Motivated by
the limitation to small pore fractions and homogeneity of the
microstructure, Gong et al. (2011) extended the Mori–Tanaka
model for porous materials of finite size. However, also such
extended micromechanics models predict non-zero effective
properties for porosities close to 100%. Furthermore, they assume
that the entire solid fraction is bearing load.

The solid fraction ϕ is used as the major parameter in several
theoretical models for predicting the macroscopic mechanical
behavior of the porous materials (Roberts and Garboczi, 2002;
Sun et al., 2013; Huber et al., 2014; Pia and Delogu, 2015;
Mangipudi et al., 2016). The Gibson–Ashby model (Gibson and
Ashby, 1997) is the commonly used basis for all these models.
In what follows, Es and σys denote the Young’s modulus and
yield stress of the solid phase. The scaling of the macroscopically
effective values of Young’s modulus E and yield stress σy is
dependent on the solid fraction ϕ in the form:

E

Es
= CEϕ

nE , (1)

σy

σys
= Cσ ϕnσ . (2)

As summarized by Ashby and Bréchet (2003), for bending-
dominated behavior, we have nE = 2 and nσ = 3

2 , while for
tension-dominated behavior, nE = nσ = 1. An extension of
the Gibson–Ashby scaling law for Young’smodulus was proposed
by Roberts and Garboczi (2002), who computed the density and
microstructure dependent on Young’s modulus and Poisson’s
ratio for four different isotropic randommodels. The data for the

low-coordination number node-bond model (0.03 ≤ ϕ ≤ 0.3)
were found to be well-described by the Gibson–Ashby scaling law
Equation (1), with nE = 2. For high densities, an equation with
three parameters is suggested

E

Es
= C

(

ϕ − ϕP

1− ϕP

)m

, (3)

where ϕ = ρ/ρs is the solid fraction of the material. The fitting
parameters ϕP = −0.0056 and m = 2.12, determined for the
simulation data, can be interpreted as the percolation threshold
and exponent.

Soyarslan et al. (2018) used Equation (3) to fit data
computed from 3D Representative Volume Elements (RVE)
of nanoporous microstructures. The RVEs are obtained using
Cahn’s method of generating a Gaussian random field by taking
a superposition of standing sinusoidal waves that have fixed
wavelength but are random in direction and phase. From the
data for the macroscopic elastic modulus of the RVE for varying
solid fraction, the percolation threshold for the random field
microstructures is computed to be ϕP = 0.159 with an exponent
of m = 2.56. Moreover, it was found that the scaled genus
per volume can be represented by an analytical expression that
depends on the solid phase fraction, with its maximum value at a
solid fraction of ϕ = 0.5 and reaching the percolation threshold
at a solid fraction of ϕ = 0.159.

An equation very similar to Equation (3) has been proposed
for modeling the macroscopic Young’s modulus of porous
microstructures produced by sintering (Phani and Niyogi, 1987):

E

E0
=

(

1− p

pc

)f

. (4)

In this equation, the variables p and pc represent the porosity and
the percolation threshold, respectively. E0 is the Young’s modulus
of the material free of pores E0 = E(p = 0). In context of 3D
percolation theory, the model assumes a value f = 3.75 for a
cluster dominated by bond-bending forces when the dimension
of the system tends to infinity for all dimensions (Sahimi, 1994, p.
185). Smaller samples and sample preparation can have a strong
influence on the value of f , leading to lower values close to f =
1.2. The percolation threshold from different sources varies from
0.06 to 60 Vol% (Kováčik, 1999). The interpretation of the value
of f in terms of pore geometry is discussed by Phani and Niyogi
(1987) with respect to the grain morphology and pore structure
of the material. They conclude that for larger values f ≈ 3, the
pores deviate from the spherical shape and are interconnected to
a certain extent. The lower is the value of f , the more isometric
and isolated is the pore phase and vice versa. Equations (3, 4) and
the exponentsm and f are equivalent due to the relation between
the solid fraction and the porosity

ϕ = 1− p. (5)

Experimental work, including macroscopic testing (Liu et al.,
2016; Liu and Jin, 2017) and 3D FIB tomography (Hu et al., 2016;
Ziehmer et al., 2016), give evidence that nanoporous metals,
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which can be interpreted as a network of nanosized ligaments,
contain a considerable fraction of so-called dangling ligaments.
They originate from pinch-off events during the coarsening
of the nanoporous metal, due to atomic diffusion during heat
treatment. Thus, using the solid fraction ϕ in Equations (1,
2) significantly overestimates the mass contributing to load
transfer within the ligament network (Mameka et al., 2015;
Hu et al., 2016; Liu et al., 2016; Liu and Jin, 2017). It is,
therefore, proposed to make use of the effective solid fraction
ϕeff , which considers only the load-bearing mass of ligaments
in the network. In this case, the effective solid fraction ϕeff

is determined indirectly via measurement of Young’s modulus
under compressive deformation, assuming Equation (1) to hold
for the effective solid fraction (Liu et al., 2016; Liu and Jin, 2017;
Jin et al., 2018).

For a spatial network structure with complex topological
and morphological characteristics, the coordination number
also plays an important role (Jinnai et al., 2001). The authors
investigated 3D images of morphologies arising in an ordered-
block copolymer at equilibrium and a polymer blend during
spinodal decomposition. They conclude that the coordination
number is particularly important with regard to the assignment
of bi-continuous morphologies, since it can be used to
differentiate between closely related morphologies such as
gyroid and diamond. Recent works investigate the skeletons of
NPG obtained from FIB tomography and artificially generated
structures and similarly report that mainly triple junctions and
a few percent of quadruple junctions exist (Hu et al., 2016;
Mangipudi et al., 2016). It can be speculated that the average
coordination number is slightly higher than 3, which would be
very close to the coordination number of the Gibson–Ashby unit
cell (Gibson and Ashby, 1997).

Several finite element models (FEMs) simplify the 3D open-
pore structure to cubic or diamond unit cells (Nachtrab, 2011; Liu
and Antoniou, 2013; Huber et al., 2014; Husser et al., 2017). Hu
et al. (2016) compare the simulation results from the 3D model
of their FIB tomography of NPG with that of a Gibson–Ashby
structure of same solid fraction. The first FEMmodels built from
3D FIB tomography data were presented independently by Hu
et al. (2016) and Mangipudi et al. (2016). The model of Hu et al.
(2016) has been further refined by Richert and Huber (2018),
who analyzed the detected ligament shapes and investigated the
predictive capability of the FEM beam model in comparison to
the 3D solidmodel of Hu et al. (2016). Soyarslan et al. (2018) used
complex artificially generated structures and FEM solid modeling
for validating an analytical solution that relates the solid fraction
to the scaled genus density. This helps to explain the divergence
of experimental and numerical data from the Gibson–Ashby
scaling law for Young’s modulus with decreasing solid fraction.

To investigate the effect of changing connectivity on the
macroscopic properties at a constant solid fraction in a more
general way, Nachtrab et al. modeled the behavior of metal foams
based on a diamond structure (Nachtrab, 2011; Nachtrab et al.,
2011, 2012). The reduction of the connectivity was included
by splitting of nodes with a coordination of 4 into two nodes,
each with a coordination of 2. This led to fibrous structures
with a percolation threshold pc close to 1. For the prediction of

the mechanical properties of selected additively manufactured
open-pore structures, a voxel-based FE scheme was used. This
scheme is, however, computationally demanding and therefore
significantly limited the number of investigated structures.

To get closer to realistic microstructures, we use RVEs that are
built following the idea proposed by Huber et al. (2014), where
NPG is modeled as a randomized diamond structure using beam
elements. The approach allows us to define a solid fraction ϕ by
the radius r and length l of the individual ligaments (Roschning
and Huber, 2016). It is also possible to vary the ligament
shape (Jiao and Huber, 2017a) and to integrate nodal masses
for predicting both elastic and plastic mechanical behavior
comparable to the RVE, which is built with solid elements,
while maintaining the computational efficiency (Jiao and Huber,
2017b). This technique enables quantitative prediction of the
macroscopic Young’s modulus, Poisson’s ratio, and yield strength
for a large number of structures.

By mechanically deactivating randomly selected ligaments
in a 3D network, pinched-off (or dangling) ligaments are
systematically studied in this work for the first time. The
remaining load-bearing ligaments form the mass that defines
the effective solid fraction ϕeff . In this way, we can shed new
light on the effect of dangling ligaments in open-pore materials
and expect to gain a more general and deeper understanding of
the interdependencies between the coordination number, scaled
genus density, effective solid fraction, percolation threshold, and
the scaling behavior of mechanical properties for 3D network
structures.

METHODS

If we use the notation of Equation (4), a fully connected structure
consisting of a given number of cylindrical ligaments has a
macroscopic Young’s modulus E0. This value, corresponding to
a cut fraction ζ =0, can be computed pointwise using FEM
simulations for a given solid fraction ϕ, defined by the ligament
radius-to-length ratio r/l, i.e., E0 = Ê0 (ϕ) = E0(r/l), following
the approach for the diamond structure (Huber et al., 2014;
Roschning and Huber, 2016; Jiao and Huber, 2017a,b).

As soon as the cut fraction ζ reaches the percolation to cluster
transition, the structure breaks and the mechanical stiffness
becomes zero. Consequently, we can set the porosity p in
Equation (4) to be equal to the cut fraction ζ and the percolation
threshold for cutting is defined by the parameter ζc. In a more
general form, Equation (4) suggests that the macroscopic Young’s
modulus can be written as a multiplicative decomposition

E = Ê0(ϕ)Êc(ζ ). (6)

While Ê0(ϕ) is well-investigated, we focus in this work onmining
the relationship between Young’s modulus and cut fraction Êc(ζ )
from numerical data.

Finite Element Simulations
For all FEM simulations in this work, ABAQUS (Abaqus, 2014)
was used, while the raw models were built based on the unit cells
as defined in Table 1 using Patran 2017 and then modified by
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TABLE 1 | Geometry parameters for structures with different coordination number z.

Structure Abbreviation Gibson–Ashby (GA) Diamond (dia) Cubic (cub) Bcc (bcc)

Unit cell

ϕ = 0.25

z 3 4 6 8

NL 30 16 3 8

NJ 20 8 1 2

l/a 1/3
√
3/4 1

√
3/2

r/a 0.0892 0.107 0.163 0.107

ϕP 0.5 0.388 0.247 0.178

ςC = 1 –ϕP 0.5 0.612 0.753 0.822

f 3.81 2.39 1.72 1.40

gv 10 8 2 6

g
′
V
(z) 9.36 3.53 0.42 0.96

g∗
V

0.5 1 2 3

Values are given for a unit cell of size a. Values for the percolation probability ϕP are taken from Sykes and Essam (1964) for z ≥ 4. The value of ϕP for z = 3 is computed using

Equation (7).

Python scripting. Images of the FEM models and further details
are provided in Data Sheet 1, Supplementary Sections 1, 2. As
a substantial extension of previous work on FEM beam models,
which concentrates exclusively on the diamond lattice with
coordination number of 4, the RVE beam-modeling technique
(Huber et al., 2014; Roschning and Huber, 2016) is generalized
in this work for structures with coordination numbers ranging
from 8 (bcc), 6 (simple cubic), 4 (diamond), to 3 (Gibson–Ashby).
For all structures, the bcc structure serves as reference, because
in terms of the coordination number, a lower coordination
can always be reached by cutting connections in a higher
coordinated structure. By orienting the <111>-direction of
the cubic structure along the loading direction, all investigated
structures deform by bending, which is the major deformation
mechanism of NPG (Huber et al., 2014; Griffiths et al., 2017; Jiao
and Huber, 2017a). In this way, it is ensured that the scaling laws
for the mechanical properties are based on the same deformation
mechanism.

The unit cells, as described in section Unit Cell Geometries,
serve as building blocks for the generation of the RVE,
which is described in section RVE Generation. Motivated by
the high flexibility in the model setup and computational
efficiency even for large 3D networks, all following unit cells
and RVEs are built using the FEM beam model approach
originally developed for the diamond structure (Huber et al.,
2014). This approach has been thoroughly investigated and
validated in subsequent works with respect to the solid fraction
and macroscopic mechanical properties for cylindrical and
parabolic ligaments (Roschning and Huber, 2016; Jiao and
Huber, 2017a,b). The randomization of the structure was
found as an important parameter to adjust the macroscopic
behavior of the structures to experimental results, particularly

for calibrating the elastic Poisson’s ratio (Huber et al., 2014;
Roschning and Huber, 2016; Lührs et al., 2017). So far,
only fully connected 3D networks have been investigated. It
is, thus, of obvious interest to quantitatively investigate the
effect of cutting of a fraction of connections in the ligament
network.

Unit Cell Geometries
The unit cell geometries for different coordination numbers z of
3 (Gibson–Ashby or GA), 4 (diamond or dia), 6 (simple cubic
or cub), and 8 (bcc) are depicted in Table 1. The number of
cuts until complete decohesion of the structure can be treated
as a general problem of topology. A characteristic parameter is
the percolation threshold ζc = 1 − ϕP at which the structure
loses its connectivity and the macroscopic mechanical properties
become zero. For most structures used in this work, the critical
percolation probabilities ϕP for the “bond problem” are known
(Domb and Sykes, 1961; Sykes and Essam, 1964), and the data
can be summed up with a simple rule of thumb, which is valid
with an accuracy of a few percent from z = 4 to z = 12 (Ziman,
1968):

1− ζc = ϕP ∼=
1.5

z
. (7)

The data for the critical percolation probabilities ϕPand
percolation thresholds ζc are included in Table 1. For the
Gibson–Ashby structure, which is located at the lower end of
connectivity, Equation (7) predicts a value of ζc = 0.5.

The unit cell defines the ligament length l dependent on
the unit cell size a, as seen in Table 1. The solid fraction of
the fully connected structure can be calibrated to any value via
the ligament radius r for each structure. For the generation of
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the data in section Macroscopic Mechanical Properties, a solid
fraction of ϕ = 0.25 was used, which is a typical value for
NPG (Weissmüller et al., 2009). For simplicity, the calculation
of the solid volume was estimated by the total of NL cylindrical
ligaments Vs = NLπr

2l, with the numbers given in Table 1. The
solid fraction is adjusted such that ϕ = Vs/a

3 = 0.25, ignoring
overlapping volumes or gaps in the cylindrical ligaments in the
nodal area.

RVE Generation
The generation of periodic RVEs from unit cells is
straightforward when the RVE boundaries are aligned with
the unit cell boundaries. Because the simple cubic structure
would normally deform under compression in its original
orientation, the periodic cubic structure was generated to be
large enough that after rotating the <111> direction into
z-direction, a cube of the size of the RVE is completely filled. All
ligaments penetrating the boundaries of the RVE were clipped at
the boundary plane and the structure was cut to the size of the
RVE.

For the fundamental investigation on the effect of cutting of
3D structures represented by the dependency Êc(ζ ) in Equation
(6), the problem can be simplified to the relevant information of
connectivity. A refined modeling, considering the randomization
of the structure (Huber et al., 2014; Roschning and Huber,
2016), incorporation of variable ligament shapes (Jiao andHuber,
2017a), or nodal mass using the so-called nodal-corrected beam
model (NCBM) (Jiao and Huber, 2017b) are related to the
dependency Ê0(ϕ) in Equation (6). This is set aside for generating
more realistic structures for validation in section Randomized
Diamond Structures With Nodal Correction. For details on the
generation of such RVEs, please refer to Data Sheet 1 in the
Supplementary Section 1.

In the diamond structure (Huber et al., 2014; Roschning and
Huber, 2016), the boundary conditions are chosen as symmetry
conditions applied to the nodes in the planes x = 0, y = 0, and
z = 0. The load is applied as a homogeneous displacement of
all nodes on the top side of the RVE, applying a compressive
strain of maximum 15%. To capture the boundary conditions of
a uniaxial compression experiment, all nodes on the remaining
faces are free to move. For the mechanical properties of the solid
fraction, Young’s modulus Es = 80 GPa, Poisson’s ratio ν = 0.42,
yield strength of σy,s =500 MPa, and work-hardening rate of
ET =1000 MPa were chosen. These parameters represent the
mechanical behavior of the ligaments in NPG reasonably well
(Huber et al., 2014; Hu et al., 2016; Roschning and Huber, 2016).

The cut fraction ζ defines the number of cut ligaments relative
to the total number of ligaments in the RVE. Cutting of ligaments
is realized by setting the Young’s modulus for a set of FE
elements, which form a randomly selected ligament, to a low
value of Ecut = 10−3Es. This ensures that otherwise free-floating
parts of the model remain connected, despite being mechanically
negligible. In this way, convergence can be achieved in the FE
simulations even for structures beyond the percolation threshold.
By the random removal of ligaments from a higher coordinated
structure, for example, a bcc structure, it is possible to provide an
initial structure that has an average coordination number equal

to lower coordinated structures. For example, by removing half
of the ligaments, the bcc structure is turned into a structure with
the same average coordination number as the diamond structure.
For more details on the data structure and data processing, please
refer toData Sheet 1 in the Supplementary Section 2.

In previous works, an RVE size of 4 × 4× 4 unit cells was
used for the fully connected diamond structure and effects of
structural randomization were averaged from 5 to 10 realizations
of RVEs of same size (Huber et al., 2014; Roschning and Huber,
2016; Jiao and Huber, 2017a,b). Preliminary studies on diamond
structures with random cutting of ligaments show that an RVE
size of 6× 6× 6 unit cells represents a good compromise between
accuracy and computational cost, as seen in Data Sheet 1 in the
Supplementary Section 3. At this size, the macroscopic Young’s
modulus is predicted with an accuracy of 5%, while elastic-
plastic compression up to 15% strain takes 2 CPUh for a single
realization. Furthermore, bcc and cubic structures serve to create
representative structures with reduced coordination numbers by
removing a given fraction of ligaments. For these two higher
coordinated structures, the RVE size was therefore increased to
12× 12× 12 unit cells.

Artificial Neural Networks
Feed-forward artificial neural networks (ANN) (Haykin, 1998)
are a machine-learning technique that enable the approximation
of arbitrary non-linear relationships between multiple input and
outputs (Yagawa and Okuda, 1996). An ANN canmathematically
be represented as an operator that maps an input vector x to an
output vector y

y = N (x,w). (8)

The synaptic weights w of the flexible function N are calibrated
by training the ANN with patterns, consisting of pairs of input
data x and desired outputs d. The training algorithm minimizes
the error for all outputs and all patterns presented to the ANN
during training through the iterative adjustment of the synaptic
weights w. In this context, the number of training increments
is called epoch. A percentage of the provided patterns (typically
10%) are kept for validation and are not used for training.

The error for a presented set of patterns is computed from the
squared error for all K outputs and P patterns by the following
equation:

E =
∑P

p=0

∑K

k=0
(y

(p)

k
− d

(p)

k
)2. (9)

Normalizing the squared error E by KP yields the mean squared
errorMSE, which allows the comparison of results from different
pattern sizes and neural network architectures. This is helpful
for comparing the prediction quality of training and validation
patterns, as denoted byMSET andMSEV , respectively.

Observing the development of the training and validation
error during training provides important insight into whether the
function N exists and if the information in the input data x is
sufficiently complete for obtaining the desired outputs d. A very
limited decay of the training error indicates that the problem at
hand cannot be (uniquely) solved. A decay of the training error
to low values along with a significant increase in validation error
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indicates overlearning, which leads to lack of generalization. In
this case, the ANN tends to classify and memorize each pattern
individually and is not able to interpolate between the patterns.
When the ANN reaches low training and validation error, it can
be used to predict the output for any input, provided that the data
are within the training range of the ANN. For details about the
ANN simulation software and its application to various problems
in mechanics and materials science please refer to Huber et al.
(2002), Tyulyukovskiy and Huber (2006), Tyulyukovskiy and
Huber (2007), Willumeit et al. (2013), and Chupakhin et al.
(2017).

MACROSCOPIC MECHANICAL
PROPERTIES

This section addresses the general question as to whether
a relationship exists between cut fraction and macroscopic
mechanical properties and if so, how this relationship can be
represented. This type of problem can be addressed by data
mining. In addition, there are a number of specific questions. The
literature suggests that the behavior of the mechanical properties
follows a power-law behavior, as given in Equation (4). It is
unclear whether the values for the percolation threshold from
literature collected in Table 1, which were computed for the
fundamental problems of ferromagnetic crystals and electron
transport, can be transferred to our solid mechanics context.

Sykes and Essam (1964) propose Equation (7) for computing
the percolation probability from the coordination numbers
ranging from 4 to 12 with only a few percent error. The open
question is how accurate this rule of thumb is for values below
4. If it still describes the overall dependency sufficiently well, we
could speculate that once the average coordination number of a
3D network reaches a value of 1.5, there is no further cut possible
without losing connectivity. This value appears to be surprisingly
low.

Study of Percolation Behavior
In this section, the behavior of the macroscopic Young’s modulus
and yield strength are studied for initially fully connected
structures, as listed in Table 1, by varying the cut fraction ζ

in 10% increments. The macroscopic Young’s modulus was
computed from the response of the RVE after the first loading
increment, which is fully elastic. To determine the yield strength,
the corresponding plastic strain was computed at each load
increment and the macroscopic stress-plastic strain curve was
interpolated to 0.2% of plastic strain. The results for the different
structures under investigation are shown in Figure 1, normalized
to the value of the corresponding fully connected structure. The
scatter of five realizations for each cut fraction is visible from the
symbols, representing the individual numerical results.

For the normalized macroscopic Young’s modulus, as shown
in Figure 1A, the behavior was fitted by adjusting the exponent
f in Equation (4), while the values for the percolation threshold
pc from Table 1 were inserted as a predefined parameter for the
respective structure. It can be seen that the exponent f increases
with decreasing coordination number. The fit results presented

FIGURE 1 | Decay of macroscopic properties dependent on the cut fraction ζ

for bcc, cubic <111> (cub), diamond (dia), and Gibson–Ashby (GA)

structures. All data are normalized to the value of the fully connected structure.

(A) Young’s modulus and (B) yield strength.

in Figure 1A confirm that the value of f cannot be understood
as an invariant number, as suggested in literature (Sahimi, 1994).
Instead, it strongly depends on the initial structure under study.
For high coordination numbers, the exponent tends toward
1, while for low coordination numbers it exceeds the value
of 3, confirming the findings summarized by Kováčik (1999).
However, in our work, this value is not related to the extension
of a pore morphology, which could be interpreted as a network
of cut ligaments within the RVE, but instead it is related to the
coordination number of the respective fully connected structure.

It is striking how well the very same behavior applies to the
yield strength shown in Figure 1B. The fit curves determined
from the Young’s modulus also show strong agreement with the
strength data for diamond, cubic, and bcc structures. Concerning
the Gibson–Ashby structure, it is not clear if this applies here
as well, because only few simulations reached sufficient plastic
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strains. Due to the missing statistics and the numerical issues,
the few remaining data points are arguable. Irrespective of this
uncertainty, the result strongly suggests that the Young’smodulus
and yield strength follow the very same behavior for partially cut
structures.

Scaling of Mechanical Properties
The numerical experiment carried out in section Study of
Percolation Behavior is based on the idea of random cutting
of ligaments of an initially fully connected structure. For each
type of structure, the degradation of the macroscopic mechanical
properties follows a non-linear behavior that is defined by
the coordination number of the corresponding fully connected
structure. Following this line of thinking leads to the speculation
that the behavior of a structure with a certain fraction of missing
connections might be defined by the original unit cell structure.

On the other hand, simple math suggests that cutting 25%
of the ligaments in a bcc structure with a coordination number
z = 8, for example, yields the coordination number of the
cubic structure (z = 6). The question at hand is whether the
topology of a structure with higher coordination number can
be effectively transformed into the topology of any structure
of lower coordination number. It follows that the macroscopic
properties for a given solid fraction is defined by the average
coordination number via the second part of Equation (6).
Ensuring a consistent scaling of mechanical properties, however,
requires that the structures under consideration deform through
the same mechanism. In this work, we therefore concentrate
on structures that show bending as the dominant deformation
mechanism (Huber et al., 2014).

Young’s Modulus
The hypothesis presented in the previous paragraph is tested
as follows: Starting from a fully connected bcc structure, a new
starting structure is generated, in which a defined percentage of
ligaments, ζini are removed. The steps were chosen such that the
connectivity is continuously reduced from 8 to 4 in steps of 1,
i.e., ζini ∈ {0, 0.125, 0.25, 0.375, 0.5}. Again, for each of these
structures, the macroscopic Young’s modulus was subsequently
calculated, depending on the cut fraction ζ increased by 10%
increments, with five random realizations for each increment.
The results, analyzed according to section Study of Percolation
Behavior in Data Sheet 1 (Supplementary Section 4), suggest
that it should be possible to combine the data from different
structures in a single curve.

To this end, the total cut fraction ζtot is calculated from ζtot =
1− (1−ζini)(1−ζ ), where ζ is defined as the cut fraction relative
to the remaining solid fraction of the pre-cut structure. All data
related to the macroscopic Young’s modulus E are normalized by
the value computed for the fully connected bcc structure, which
is denoted as E0,bcc. The results for the bcc structure are compiled
in Figure 2A as black crosses.

The curve constructed from the bcc data in Figure 2A clearly
shows that the power law function Equation (4) is not capable of
describing the behavior from the fully connected structure down
to the percolation to cluster transition. Therefore, we suggest a
function consisting of an initially linear descent for ζtot ≥ 0 with

FIGURE 2 | (A) Construction of the master curve derived from bcc data and

validation with data obtained independently from fully connected cubic,

diamond, and Gibson–Ashby (GA) structures. (B) Deviation between numerical

data and the proposed master curve.

a sigmoidal transition toward the percolation threshold ζc in the
following form:

E

E0,bcc
= Ẽ (ζtot) = 1− a0ζtot +

a1
[

1+ exp(−a2(ζtot − ζc))
] ,

0 ≤ ζtot ≤ ζc. (10)

The parameters in Equation (10) can be adjusted to satisfy the
conditions E/E0,bcc

∣

∣

ζc
= 0 and dE/dE0,bcc

∣

∣

ζc
= 0 by setting

a1 = 2(a0ζc − 1) and a2 = 4a0/a1. The percolation threshold
ζc = 0.822 is taken from Sykes and Essam (1964). Please also
see Table 1 for the bcc structure. By using the literature value
for infinite structure size, a treatment of the finite-size scaling
effect (Sahimi, 1994; Nachtrab, 2011) in the numerical data can
be avoided. This leads to a single adjustable parameter a0, which
is determined from the linear slope of the numerical data at low
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total cut fractions to a0 = 1.55. It follows that a1 = 0.55 and
a2 = 11.31.

For validation of the master curve, the data from section Study
of Percolation Behavior, computed for the cubic, diamond, and
Gibson–Ashby structure, are included in Figure 2A according to
the following procedure. As the coordination number of the bcc
structure zbcc = 8 is used as reference, the calculation of the total
cut fraction can be done in the following form

ζtot = 1− zx

zbcc
(1− ζini) (1− ζ ) , (11)

where the term zx/zbcc scales the current structure x with a
coordination number zx relative to that of the bcc reference
structure zbcc and defines the starting point for the total
cut fraction on the master curve. Alternatively, the average
coordination number z = zx (1− ζini) (1− ζ ) of an RVE
can be determined by averaging the coordination number over
all the internal nodes within the RVE. Incorporating nodes
at boundaries would add a bias toward lower coordination
numbers. The numerical data confirm the following linear
relationship:

z = zbcc(1− ζtot). (12)

This is confirmed with an accuracy of 5% for all structures
under investigation. The vertical adjustment of the starting
point of an initially fully connected structure x is defined by
normalizing the Young’s modulus data, such that the value
E0,x/E0,bcc calculated from Equation (10) for ζini = 0 and ζ =
0 is met. The corresponding values are given in Data Sheet 1,
Supplementary Table 1.

Furthermore, Figure 2A includes the data for the other
structures (cub, dia, GA) of Figure 1Amapped to E/E0,bcc vs. ζtot .
The overall agreement with the master curve appears to be very
good. The quantitative comparison, as presented in Figure 2B,
shows the deviation between the numerical data and the master
curve with an error of< 2% for all structures, except for the uncut
Gibson-Ashby structures showing a deviation of 5%. Although
this is a factor of two and is better compared to the power law
fit using Equation (4) of Figure 1A, it should be kept in mind
that this accuracy is relative to the macroscopic Young’s modulus
E0,bcc of a fully connected bcc structure with a relatively high
coordination number.

Remembering the strong agreement of the macroscopic yield
strength data with the fit curves for macroscopic Young’s
modulus presented in Figure 1B, it can be expected that the
same master curve as determined for Young’s modulus can be
applied to the macroscopic yield strength as well. This is shown
in Figure 3A for bcc structures with different degrees of initial
cutting. For low cut fractions (or high coordination numbers),
the yield strength data fall about 3% below the master curve.
However, with increasing cut fraction (or for lower coordination
numbers), the difference reduces. For ζtot ≥ 0.55 (z ≤ 3.6), the
two properties show a perfect match.

The validation carried out by using data from the structures
with originally different unit cell geometry and coordination
number is shown in Figure 3B. It can be seen that the scatter

FIGURE 3 | (A) Scaling behavior of the macroscopic yield strength as

obtained from different degrees of initial cutting of bcc structures plotted

together with the master curve Equation (10), using the parameters as

determined for macroscopic Young’s modulus. (B) Validation of the master

curve with data of fully connected simple cubic (cub), diamond (dia), and

Gibson–Ashby (GA) structures.

is larger, particularly for the cubic structure. The cubic structure
is also located a few percent above the values of the other
structures. It can be argued that the cubic structure is the only
one in which the unit cell does not agree with the coordinate
directions of the RVE boundary. Due to the rotation in <111>
direction, numerous ligaments are cut at the RVE boundary to
form a cube of size 12 × 12 × 12 unit cell size. The shorter
ligaments show a higher strength due to the reduced lever
available for bending (Huber et al., 2014). It can therefore be
concluded that σy/σy0,bcc = E/E0,bcc = Ẽ (ζtot) holds within the
numerical accuracy and Equation (10) can be identically applied
for predicting both the scaling behavior of the macroscopic
Young’s modulus and the yield strength.
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Poisson’s Ratio
The successful construction of a master curve for the
macroscopic Young’s modulus and yield strength from
numerical data motivates the search for a master curve for
Poisson’s ratio. Starting from the bcc structure with increasing
fraction of initial cuts leads to the behavior shown in Figure 4A.
In contrast to the behavior of the Young’s modulus and yield
strength, the initial slope for low total cut fractions ζtot & 0
is close to zero and then takes progressively negative values.
At ζtot & 0.7, the data show a minimum value. The scatter
strongly increases while the curve changes direction toward
larger values. As the structure rapidly loses connectivity with
ζtot → 0.822, the lateral expansion of the RVE is based on very
few connections within the 3D network, causing the large scatter
and the change in the overall trend. It could be speculated that

FIGURE 4 | (A) Construction of the master curve for Poisson’s ratio

depending on the cut fraction based on the bcc structure with different

degrees of initial cuts. (B) Validation of the master curve with data of

subsequent cutting starting from fully connected cubic <111> (cub), diamond

(dia), and Gibson–Ashby (GA) structures.

Poisson’s ratio should theoretically continue downwards toward
zero when approaching the percolation threshold. Based on
this assumption, a simple fit function with a single adjustable
parameter can be formulated that assumes an elliptic shape:

ν

ν0,bcc
= ν̃ (ζtot) =

(

1 −
(

ζtot

ζc

)n)1/n

, 0 ≤ ζtot ≤ ζc. (13)

The master curve for Poisson’s ratio, as plotted in Figure 4A as
a dashed curve, uses ζc = 0.822 as fixed percolation threshold
for the bcc structure, similar to Equation (10), and an exponent
n = 1.75.

In contrast to the macroscopic Young’s modulus and
strength, which are measured in loading direction, Poisson’s
ratio characterizes the lateral expansion normal to the loading
direction. It is, therefore, not obvious that the master curve can
also apply to structures built from very different unit cells, as their
deformation mechanisms could significantly differ. However,
both the simple cubic and the diamond structure agree equally
well with the master curve. Interestingly, the diamond structure,
which starts as fully connected structure at the low coordination
number of z = 4, shows a further continuation of the downwards
trend along the master curve and confirms the hypothesis that
Poisson’s ratio should actually continue toward zero as the
percolation threshold is approached. This hypothesis is further
supported through additional simulations conducted for the
low coordinated Gibson–Ashby structure, loaded in <111>
direction, which are incorporated in Figure 4B.

Relationship Between Scaled Genus
Density and Average Coordination Number
Throughout the previous analysis, the total cut fraction ζtot
was used as an independent variable for the characterization
of the connectivity. By this approach, common issues with
determining the percolation threshold pc and exponent could be
avoided. For measuring the total cut fraction of a real structure,
e.g., from a skeleton of a FIB tomography (Hu et al., 2016;
Ziehmer et al., 2016; Hu, 2017; Richert and Huber, 2018), the
related fully connected reference is required; however, this is
unknown. Alternatively, the average coordination number z of a
3D network could be measured, because it is connected with the
total cut fraction by the linear relationship, as given in Equation
(12). But even if the skeleton of a structure is available, the
determination of the average coordination number z, as defined
in this work, is difficult.

By averaging the coordination numbers of all junctions, Nz ,
the average coordination number z should be obtained. The
problem is that any junction with fewer than three connections
cannot be recognized. A junction that connects two branches is
invisible because the two branches form a single longer branch.
A node that has lost all connections physically reduces to a void
junction, which is undetectable in any case. Thus, one would
naturally obtain z = 3 as the lower limit, irrespective of how
many more cuts are introduced in a structure. This is consistent
with the results of Ioannidis and Chatzis (2000), where only pores
with z ≥ 3 are considered as valid nodes in topological context.
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Consequently, with ongoing removal of connections, the number
of detectable junctions starts to decrease at the same time.

A third parameter that is frequently used is the genus density
gV . The genus g is the maximum number of non-intersecting
closed curves along which the object can be cut without dividing
it into two parts (Richeson, 2008). As no internal pores are
present in our structures, the genus equals the connectivity. For
3D networks consisting of solid struts, as represented by a graph
G, the genus g is calculated from the Euler characteristic χ (G) =
1 − g, where χ (G) : = V − E, with V and E being the number
of graph vertices and the number of graph edges, respectively
(Nachtrab, 2011; Hu et al., 2016). Note that this calculation of
the genus assumes connected structures. As we do not account
for the formation of free floating clusters, this can lead to negative
values of g, because the formation of clusters and the cutting of all
load-bearing rings may happen before reaching the percolation
threshold.

Because the genus increases with increasing structure size, it
is commonly scaled to a characteristic volume, gV = g/Vc. To
compare the topology of different structures, the dimensionless
product gVS

−3
V is used. In the context of nanoporous metals,

1/SV is typically chosen as characteristic length, representing
the reciprocal of the interfacial area per volume of a given
system (Kwon et al., 2010). This definition can be applied
to 3D solid structures with an interface separating the solid
fraction and the pore space, for which all characteristic lengths
are linearly dependent due to the geometrical similarity of the
structure under investigation (Kwon et al., 2010; Hu et al., 2016;
Mangipudi et al., 2016; Hu, 2017). Therefore, the importance
of the characteristic length scale for the normalization and the
associated challenges in its experimental determination are still
under debate (Lilleodden and Voorhees, 2018).

The large data set for various structures sheds some light onto
this. The way in which the structures have been generated in this
work enables the setting of any arbitrarily chosen value for the
ligament radius, independent of the topology of the structure.
Consequently, the interfacial area is fully decoupled from the
genus, which is in contrast to the approach of generating artificial
nanoporous structures based on the Cahn–Hilliard equation
(Kwon et al., 2010; Sun et al., 2013; Mangipudi et al., 2016;
Soyarslan et al., 2018). Moreover, Soyarslan et al. (2018) could
show for this type of structures that the solid fraction controls
the scaled genus density and a closed form relationship exists that
uniquely relates the two quantities to each other.

By using the large set of data for structures covering a large
range of coordination numbers and cut fractions, we are able to
determine which characteristic length, more generally denoted
as lV , allows the transfer of results for the scaled genus density
among the different structures. For comparing RVEs of different
sizes, all results are normalized by the number of unit cells in
the model, i.e., gV = (1 − χ (RVE))/N3, where N = 12 for all
bcc- and cubic-based structures, and N = 6 for all diamond- and
Gibson–Ashby-based structures. The results for gV are plotted in
Figure 5A. All curves intersect at gV = 0, which indicates that
the genus is correctly calculated, as this particular point should
be common for all structures, independent of the scaling. The
data suggest that the intersection with gV = 0 corresponds to

FIGURE 5 | Calculated scaled genus density plotted vs. average coordination

number for different structures and cut fractions: (A) genus per unit cell volume

vs. average coordination number. (B) fingerprint of various definitions for the

characteristic length lV with the condition g′
V
l3
V
= const fulfilled only for the

characteristic length lV,J (green).

an average coordination number z . 2. Below this point, i.e., for
gV < 0, clusters form and the mechanical properties are zero. For
z > 2, the curves gV (z) separate because the different unit cells
have a different genus, as seen in Table 1.

We can now derive a fingerprint from the data in Figure 5A,
which supports the search for the characteristic length lV .
Following Kwon et al. (2010), the scaled genus density gV (z) is
defined as

g∗V (z) : = gV (z)l
3
V . (14)

As long as the structures under investigation are self-similar,
any characteristic length l3V can be chosen, such as 1/SV or
the ligament diameter 〈D〉 (Hu et al., 2016). However, when
the self-similarity is no longer conserved, we need to select a
characteristic length that works for all structures. Our data set
supports the search for lV to fulfil the condition g∗V (z) = const,
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independent of the structure. As can be seen in Figure 5A, gV
depends linearly on z in the upper right area of the plot. In
this region, the condition g∗V (z) = const can be replaced by

g∗V
′ = g

′
V l

3
V = const. The slopes g′V characterizing gV (z) >1 are

listed in Table 1.
A number of possible characteristic lengths lV can be obtained

from the geometrical parameters defining the structure of the
different unit cells, such as the coordination number z, the
ligament length l, the ligament radius r, the number of ligaments
per unit cell NL, and the number of junctions per unit cell NJ .
We can exclude the coordination number z as the independent
variable, as well as combinations with the ligament radius r for
the aforementioned reasons. As one example of this category of
characteristic lengths, the inverse of the ratio of surface area by
volume is tested. Normalizing the unit cell volume by the surface
area of the cylindrical ligaments in the unit cell, we can estimate
S−1
V by lV ,S := a3/(NL2πrl). The other characteristic lengths are
the ligament length lV ,l := l, the total ligament length in the
unit cell, lV ,ltot := NLl, and characteristic lengths calculated from
the volume per junction and from the volume per ligament, as
lV ,J := (a3/NJ)

1/3 and lV ,L := (a3/NL)
1/3, respectively.

The dependency of g′V l
3
V for the different definitions of lV

plotted in Figure 5B reveals that only the characteristic length lV ,J
satisfies the condition g′V l

3
V = const. If this is inserted in Equation

(14), we get

g∗V (z) : = g (z)

N3NJ
= g (z)

NJ,RVE
. (15)

Therefore, the definition of a scaled genus density, which
combines all structures in a single curve, requires a normalization
of the genus by the number of junctions of the original, fully
connected structure, NJ,RVE, given by the number of unit cells in
the RVE, N3, multiplied by the number of junctions per unit cell,
NJ . This finding is consistent with Ioannidis and Lang (1998) and
Ioannidis and Chatzis (2000), where the genus per node was used.

By knowing the characteristic length for scaling the genus
density, we can derive a closed form relationship for g∗V
depending on the RVE size N, which can be analyzed for any
unit cell, as seen in Data Sheet 1, Supplementary Section 5.
The results shown in Figure 6A reveal that structures with a
scaled genus density that is sufficiently insensitive to the surface
require an RVE size in the order of 100. Thus, the relationship
g∗V (z) that holds for large structures should be determined from
the analytical solution for the infinite RVE size. To confirm
this approach, the numerical and analytical data are plotted
in Figure 6B. The strong agreement for RVE sizes of 6 to 12
with corresponding curves for finite structure size validates the
analytical solution provided in Supplementary Equations (9–14)
inData Sheet 1.

For a periodic structure of infinite size, the scaled genus
density can be calculated analytically depending on the RVE size,
as seen in Data Sheet 1, Supplementary Figure 8, with values
given in Data Sheet 1, Supplementary Table 2. The numerical
data extend the relationship between the genus and the average
coordination number for infinite structure size and z ≥ 3 as given
by Ioannidis and Lang (1998) and Ioannidis and Chatzis (2000)

FIGURE 6 | (A) Scaled genus density vs. RVE size for different structures

calculated from the analytical solution in Data Sheet 1,

Supplementary Section 5. (B) Scaled genus density vs. average

coordination number calculated for the RVEs, compared to the analytical

solution dependent on the RVE size.

to lower values:

g∗V (z) = g (z)

NJ, RVE
= z/2− 1, z ≥ 2. (16)

Equation (16) does not predict the nonlinear runout, which
is clearly visible in Figure 5A for bcc and diamond and in
Figure 6B, where the data show a curvature deviating to the left
for z < 2, relative to the linear extrapolation of the analytical
solution for N = ∞. This behavior is a result of the formation of
clusters at the lowest average coordination numbers close to and
beyond the percolation to cluster transition.

It thereby follows that the scaled genus density is independent
of the structure if the genus g is normalized to the number
of nodes NJ,RVE in the fully connected structure. Other
characteristic lengths, such as the reciprocal of the interfacial
area per volume of a given system (Kwon et al., 2010) or the
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mean ligament diameter 〈D〉 (Hu et al., 2016) work for structures
that are self-similar, but they do not allow a comparison between
results from non-similar structures.

Another important result is the unique relationship between
the scaled genus density and the average coordination number,
which is linear as long as z ≥ 2. Whether the genus might
nevertheless provide additional linear-independent information
on the topology is an important question that is investigated in
the following section.

MACHINE LEARNING

From section Scaling of Mechanical Properties, we know the
percolation threshold ζc, at which all mechanical properties reach
the value of zero. Inserting this value in Equation (12) for
ζtot leads to the corresponding minimum average coordination
number zmin ≈ 1.5. It is shown in section Relationship Between
Scaled Genus Density and Average Coordination Number that
the genus reaches zero at z = 2. It remains an open question
how meaningful data are for values below z = 2. In any case,
the valid range from z = 2 to 3, which corresponds to a
positive genus, has not been touched upon so far in topology
for the reasons explained by Ioannidis and Chatzis (2000). As a
consequence, all structures approaching z = 3 are systematically
overestimated with respect to their coordination number. In the
following section, the difficult task of interpreting topological
data for lowest average coordination numbers is solved via
machine learning.

Determination of Average Coordination
Number
For an overview, a number of ANNs are trained and analyzed
for different choices of inputs x. Starting with a complete set,
more andmore inputs are removed, which are hard or impossible
to measure. The investigated cases are summarized in Table 2,
together with the architecture of the ANNs and the achievedMSE
values. The input is formed by the statistics of local connectivity.
For each structure, we count the number of branches for each
coordination number z starting from lowest value of z = 0 to
highest value z = 8, denoted byN0 toN8. They are normalized by
the total of detectable junctions, N(zmin) =

∑8
z=zmin

Nz . All data
for creation of the patterns are generated from the whole set of
structural models presented in section Macroscopic Mechanical
Properties, including all variants of initial cuts and subsequent
cutting. In total, 585 patterns are used, of which 10% are kept for
validation. Each ANN is trained for 20,000 epochs with no sign

of overlearning. As common output definition for all variants
ANN0 to ANN3, a single output neuron is used to predict the
average coordination number z, which is computed for each
pattern by

y := z =
∑

zNz/N
(0). (17)

The errors collected in Table 2 show that the mean squared error
increases, as expected, with reduction in inputs for junctions
with lower coordination numbers. For ANN3, the uncertainty
increases particularly for very low average coordination numbers,
as shown in Figure 7A. For obvious reasons, all data from
the Gibson–Ashby structure lead to a constant output value
(highlighted in purple). The distribution of the predicted values
for ANN1 (red symbols in Figure 7A) confirms that the missing
information about the number of void junctions can be largely
reconstructed from the remaining data derived from all other
structures and has almost no effect, even for lowest coordination
numbers.

For visualizing the performance of the ANN, an estimate of
the average coordination number z is calculated by averaging all
coordination numbers provided to the input for ANN3:

z̃ =
∑8

z=3
zNz/N

(3). (18)

It can be seen from Figure 7A that the machine-learning
approach has the capability of interpreting the presented data in
the context of the information of all structures provided during
training. Knowing the big picture obviously helps to reconstruct
missing information in the input data with reasonable accuracy.
This can be understood by visualizing the statistical distribution
of the local coordination numbers, which follow typical patterns
according to the probability of cutting, as seen in Data Sheet 1,
Supplementary Section 6.

Section Relationship Between Scaled Genus Density and
Average Coordination Number leaves us with the question of
whether the genus could provide additional linear independent
information on the average coordination number. To investigate
this, the input definition of the ANN can be enriched by
adding an estimated scaled genus density using the accessible
number of junctions in the structure, g/N(3). Using such data,
however, limits the generality of the approach to perfectly
ordered structures. As soon as structures are randomized or cut
in planes that do not meet planes of the unit cells, the genus
is biased to lower values due to the cutting of originally closed

TABLE 2 | ANN definitions and squared errors after training for varying degree of information about junctions with low coordination number.

Name Input vector x Neurons MSET MSEV

ANN0 xi : = Ni/N
(0), i = 0, . . . , 8 9-6-1 5.7 · 10−8 1.7 · 10−7

ANN1 xi : = Ni+1/N(1), i = 0, . . . , 7 8-6-1 4.2 · 10−6 9.8 · 10−6

ANN2 xi : = Ni+2/N(2), i = 0, . . . , 6 7-6-1 5.7 · 10−5 6.8 · 10−5

ANN3 xi : = Ni+3/N(3), i = 0, . . . , 5 6-6-1 7.2 · 10−5 1.6 · 10−4

ANN3gi xi : = Ni+3/N(3), i = 0, . . . , 5 7-6-1 1.7 · 10−5 1.9 · 10−5

x6 : = g(i)/N(3)
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FIGURE 7 | (A) Predicted ANN output vs. desired output for average

coordination number z for continuous reduction of inputs with low coordination

numbers from ANN0 (full information) to ANN3 (only junctions with

coordination of 3 and higher). (B) ANN3gi incorporating an estimated scaled

genus density of the inner structure as additional input. The performance of

ANN3gi is better by a factor of 3 compared to ANN2.

curves. Thus, the incorporation of the genus requires an input
definition that is insensitive to the boundary, similarly to the
computation of z from junctions located inside the RVE. To
this end, ligaments that touch the boundary are removed from
the structure before calculating the genus of the inner graph,
denoted as g(i). The normalization by the number of detectable
junctions inside the RVE boundaries, corrected to a structure
of infinite size via the factor gV ,∞/gV ,RVE (see Data Sheet 1,
Supplementary Table 3), leads to an additional input g(i)/N(3)

:=
g
(i)
RVE/N

(3) ·gV ,∞/gV ,RVE. This input definition works without any
knowledge about the fully connected structure.

After training, this neural network, denoted as ANN3gi,
performs better than ANN2 by a factor of 3, as can be seen from
the mean squared errors in Table 2 and the predicted output data
plotted in Figure 7B. This shows that the additional information
on the scaled genus density, despite being a rough estimate of the
mathematically correct value, particularly helps in reducing the
uncertainty for z ≤ 3.

Young’s Modulus and Yield Strength
The master curve Equation (10) developed in section Young’s
Modulus brings the data generated for different structures very
close to a single curve. For our data set, the accuracy compared
to the master curve can be improved without limiting the
generality of the approach. A second artificial neural network
is trained, which corrects the macroscopic Young’s modulus for
each pattern relative to the prediction of the master curve Ẽ(ζtot),
given by Equation (10). For reasons of consistency, we use the
same input definition as used for ANN3 (see Table 2) but apply
the following output definition:

y : = E/E0,bcc − Ẽ(ζtot). (19)

After this artificial neural network, denoted as ANN3E, is trained,
the mean squared training and validation error come toMSET =
1.21 · 10−3 and MSEV = 1.03 · 10−3 respectively. An accuracy
of ±0.01 for the output is reached, which is an improvement
by a factor of 2 compared to the master curve. Only a few data
points are located outside this limit. Trials including the estimate
of the scaled genus density in the input definition, as used for
ANN3gi, do not improve the result. This is possibly because
this additional information is only relevant close to and beyond
the percolation threshold, where the mechanical properties are
anyway approaching zero.

In the same way as for the macroscopic Young’s modulus, an
artificial neural network ANN3sy is trained for correcting the
macroscopic yield strength relative to the master curve, with the
inputs as defined for ANN3 and the output definition being

y := σy/σy0,bcc − σ̃y(ζtot), (20)

where σ̃y(ζtot) ≡ Ẽ(ζtot) is given by Equation (10). The yield
strength shows a larger scatter in the numerical data and also
larger deviations from the master curve, as seen in Figure 3. As
a neural network interprets only the general relationship hidden
in the data as whole, the scatter of the data is also reflected in
the overall training error, which is double that of the Young’s
modulus. The resulting mean squared training and validation
error are MSET = 5.22 · 10−4 and MSEV = 4.99 · 10−4,
respectively. The accuracy is improved by a factor of about 4
from the span of the training range from −0.03 to 0.06, with a
remaining uncertainty of ±0.01. This uncertainty results from
the sensitivity of the RVEs to local plastic yielding, which seems to
be influenced more strongly by the realization of random cutting
than the macroscopic Young’s modulus.

An overview of the workflow developed in sections
Macroscopic Mechanical Properties and 4 is given in
Data Sheet 1, Supplementary Section 7. The Supplementary
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data files (Data Sheet 2) for training and validation of the ANNs
are specified in Data Sheet 1, Supplementary Section 8; the
ANNs are provided in Data Sheet 3 as Supplementary Python
code including selected example problems as described in
Data Sheet 1, Supplementary Section 9.

VALIDATION AND APPLICATION

Randomized Diamond Structures With
Nodal Correction
Literature on NPG, studying the topological properties from
artificially generated 3D structures and 3D FIB tomography,
reports a large number of three-fold junctions and a smaller
number of quadruple junctions (Mangipudi et al., 2016). A
diamond structure, as suggested by Huber et al. (2014), can
be tuned using the cut fraction to meet any ratio of three-
fold and quadruple junctions. The randomization of the finite
element beam model by an additional parameter A as a
multiple of the unit cell size allows the prediction of realistic
macroscopic properties, including Poisson’s ratio (Huber et al.,
2014; Roschning and Huber, 2016). A nodal corrected beam
model can be applied, mimicking the effect of the nodal mass
on the deformation behavior similar to a solid model (Jiao and
Huber, 2017b).

To validate the approach developed in this work, we use
such an extended model, which describes the elastic-plastic
deformation behavior of NPG more realistically compared to the
perfect 3D periodic structures without nodal masses employed
in the previous section. To this end, additional structures with
randomization values ranging from A = 0.1 to A = 0.3 and cut
fractions ζ up to 0.4 are generated. Examples of RVEs of sizeN =
6 unit cells are given inData Sheet 1, Supplementary Figure 3.

For all randomized structures, the chosen ligament radius
is r/a = 0.118. The geometry and property parameters for
the nodal corrected beam model are given in Data Sheet 1,
Supplementary Section 1. In addition to the randomization, the
major difference with perfectly ordered crystals is that distorted
ligaments are now cut at the RVE boundaries. With increasing
degree of randomization, the RVE also loses junctions that are
shifted outside the RVE boundaries. This allows the approach to
be tested for more general structures.

Topology
Figure 8A presents the results for the determined average
coordination number z vs. the correct values. The solid curve
indicates the exact solution. The ANN3 outputs (circles) agree
for all three randomizations and are very close to the exact
solution, with a slight trend for underestimation by −0.1. The
results for the highest cut fraction ζ = 0.4 show the highest
scatter toward low values by an average of −0.2 (on average
10% deviation) due to missing information on the statistics
for coordination numbers z < 3. The comparison with the
estimate z̃, on the other hand, shows that the ANN3 significantly
improves the determination of the average coordination number
for z < 3.5. The accuracy is further improved by including
additional input g(i)/N(3) (ANN3gi, cross symbols). The scatter
is reduced compared to ANN3 and the outputs are very close to

FIGURE 8 | (A) Determination of average coordination number z for

randomized diamond structures; outputs of ANN3 and ANN3gi and estimate z̃

for junctions with three or more branches; (B) scaled genus density and its

dependence on the randomization of the RVE. The insert on the lower right

exemplarily shows a structure for N = 4 and ζ = 0.3. For details, see

Data Sheet 1, Supplementary Sections 1–3.

the correct values. Only for the lowest values of z does a slight
underestimation along with some scatter occur.

Based on the value of z, the scaled genus density g∗V (z) =
g/NJ,RVE is calculated from Equation (16), as seen in Figure 8B.
After scaling the data for the perfectly ordered crystal
(A = 0.0, blue diamonds) to infinite structure size
by a factor of gV ,∞/gV ,RVE = 1.314 (see Data Sheet 1,
Supplementary Table 3), they fall nicely onto the master curve.
As expected, the genus falls immediately below the master curve
for the randomized structures, because about 50% of the distorted
ligaments are now cut by the RVE boundary. A similar effect
occurs in the analysis of tomographic data, where the boundary of
the inspected volume is introduced artificially and does not exist
as a real boundary in the larger sample. In this sense, the elevated
values from the master curve Equation (16), calculated with the
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identified average coordination number fromANN3gi, reflect the
scaled genus density of the infinite-size structure.

Macroscopic Young’s Modulus and Yield Strength
According to the workflow depicted in Data Sheet 1,
Supplementary Figure 10, the total cut fraction ζtot , calculated
from z serves as key input for the prediction of the mechanical
properties based on the master curves Equations (10, 13).
Equation (11) determines the relevant part of the master curves.
For zdia/zbcc = 0.5 and ζ = 0 to 0.5, we obtain the range for
ζtot = 0.5 to 0.75 and the initial value E0,dia/E0,bcc = 0.239,
as also seen in Data Sheet 1, Supplementary Table 1 for
ζini = 50%. The master curves are entered into Figure 9 as
solid curves. The related cut fraction ζ , which is 0 for the fully
connected diamond structure, is shown on the top axis of these
plots. All numerical results are entered as solid symbols with the
same color-coding as explained for Figure 9A for the different
degrees of randomization.

The plots for the Young’s modulus and yield strength, as
shown in Figures 9A,B, show no dependence on the degree of
randomization. This supports the hypothesis that the scaling
of mechanical properties, as formulated in Equation (6) for
Young’s modulus, holds. The values E/E0,bcc and σy/σy0,bcc,
as determined by the artificial neural networks ANN3E and
ANN3sy, respectively, are added as cross symbols. Both ANNs
are able to predict the displacement by about−0.02 relative to the
master curve, thus resembling the position of the numerical data
extremely well. Uncertainties in the determined total cut fraction
appear as a scatter of the determined values along the displaced
master curve. Only in the upper left corner of the plot are the
values of E/E0,bcc and σy/σy0,bcc displaced. It can be assumed
that these specific data points are treated rather as outliers by
the ANN during training, because fully connected diamond and
Gibson–Ashby structures appear outside the overall trend in
Figure 2B.

From Figure 9B, it can be seen that it is possible to predict the
yield strength for RVEs that cannot be numerically solved due to
convergence problems. This happens more often for increasing
randomization and cut fraction, made visible by the frequency of
green and red solid symbols with zero values. This nicely shows
that the presented approach allows the prediction of macroscopic
mechanical properties for structures that cannot be solved with
computer simulations.

Poisson’s Ratio
Figure 10A presents the results for the Poisson’s ratio, which
show different behavior for the three randomizations. While the
data for A = 0.1 (black solid symbols) follow the master curve
for all cut fractions, the data for A = 0.2 (green solid symbols)
show a minimum value at ζtot = 65%, while values increase for
higher cut fractions. This phenomenon, already observed for the
perfect crystals (see Figure 4), is expected. However, for the RVE
with maximum randomization of A = 0.3 (red solid symbols),
the minimum value moves up to the starting point at zero cut
fraction and all data show a very large scatter.

This deviation from the master curve motivates additional
simulations for the same randomizations but without nodal

correction. The results entered in Figure 10A as open symbols
(beam model, BM) do not show such strong deviations. Up to
A = 0.2, all data follow nicely on the master curve. However,
for A = 0.3, a similar behavior can be observed as for the
nodal-corrected RVE, with larger deviations for increasing cut
fraction.

This seemingly odd behavior can be understood if it is
considered that randomization has a strong effect on the elastic
Poisson’s ratio (Huber et al., 2014; Roschning and Huber, 2016;
Jiao and Huber, 2017a) which rapidly decreases with increasing
randomization. In addition, plotting the absolute values in
Figure 10B shows that the nodal correction, combined with
randomization, decreases the Poisson’s ratio even further. This
effect is not mentioned by (Jiao and Huber, 2017b), because in
their study, nodal correction is only discussed in relation to the
macroscopic stress-plastic strain response of the RVE.

FIGURE 9 | Simulation results and predicted macroscopic properties. Data

points predicted by ANNs are denoted according to P(x, y). (A) Young’s

modulus; (B) yield strength. Zero values indicate simulations that were

terminated before reaching a plastic strain of 0.2% due to bad convergence.
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FIGURE 10 | (A) Comparison of numerical results for elastic Poisson’s ratio to

the master curve for different degrees of randomization; (B) Absolute values of

Poisson’s ratio from FEM simulations plotted vs. total cut fraction. The range of

experimental data is taken from Roschning and Huber (2016).

Poisson’s ratio is a critical parameter for the calibration of
the randomization. Data from different sources display a range
for NPG from ν =0.165 to 0.2 (Roschning and Huber, 2016).
This range, highlighted in yellow in Figure 10B, can now be
analyzed with respect to the cut fraction as an additional degree
of freedom. This limits the choice of realistic combinations
of cut fraction and randomization, for which the deviation of
the numerical data from the master curve is negligible. The
sensitivity of Poisson’s ratio is much stronger with respect to
the randomization in comparison to the cut fraction. If the
randomization is around A = 0.2, the data with nodal correction
are even insensitive to the cut fraction. To calibrate the model by
the experimental data, we can determine possible combinations

(A, ζ ) by moving from zero to maximum cut fraction along
the yellow-shaded area. This again underlines the necessity
of determining the average coordination number through

a structural analysis. With the known average coordination
number, the position on the x-axis (total cut fraction) is defined
and Poisson’s ratio can be used for calibrating the randomization
parameter A.

Data From Macroscopic Compression
Experiments
The determination of the effective solid fraction, which
mechanically contributes to the ligament network of NPG, is
the scope of the studies by Liu et al. (2016) and Liu and Jin
(2017). The authors report a large range of samples with ligament
sizes from 5 to 500 nm. The degree of connectivity was changed
via the alloy composition prior to coarsening. Coarsening of
sets of samples after dealloying for four different initial solid
fractions gave a large set of samples, forming a valuable database.
The measured macroscopic Young’s modulus was used for
determining the effective solid fraction. The major assumption
is that only connected ligaments contribute to the mechanical
stiffness, which is given by the Gibson–Ashby scaling relation
Equation (1), rewritten as ϕeff = (E/Es)

1/2. The difference
between ϕ and ϕeff is attributed to dangling ligaments.

Determination of Cut Fraction
In this work, the mass of dangling ligaments corresponds to the
fraction of cut ligaments according to

α = ϕeff/ϕ = (1− ζ ). (21)

In Equation (21), α is the fraction of load-bearing ligaments,
as introduced by Liu et al. (2016) and Liu and Jin (2017).
Consequently, ζ represents the fraction of cut ligaments as
introduced in this work. For samples with lower solid fraction
ϕ ∼ 0.26, the macroscopic Young’s modulus takes very low
values. As no percolation threshold is considered by Liu et al.
(2016) and Liu and Jin (2017), the calculated effective solid
fraction reaches values close to 0 and the cut fraction tends to
1. From the results of Soyarslan et al. (2018), we know that the
network loses its connectivity at a solid fraction ϕP, which is why
Equation (3) with ϕP = 0.159 and m = 2.56 should be used
instead of Equation (1).

Combining the data from the studies by Liu et al. (2016) and
Liu and Jin (2017) with Equation (3), plotted as suggested by
Soyarslan et al. (2018), leads to Figure 11A. In this plot, symbols
and colors correspond to those in Figure 4 of the study by Liu and
Jin (2017). Soyarslan et al. (2018) selected the experimental data
to include only as-prepared samples, ignoring samples where the
ligament size was varied by annealing and using only the data
from specimen with maximum connectivity (Jin et al., 2018).
After including the data of the annealed specimen, a large scatter
appears for each data set of constant solid fraction. This cannot
be captured by Equation (3) as it uses the solid fraction ϕ as a
sole parameter for the characterization of the structure. However,
with the cut fraction as additional parameter, we have the degree
of freedom that is needed for analyzing the data of Liu et al.
(2016) and Liu and Jin (2017), depending on the fraction of
dangling ligaments.
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FIGURE 11 | (A) Literature data for macroscopic Young’s modulus E/Es

plotted vs. (ϕ − ϕP )/(1− ϕP ) taken from experiments (Liu et al., 2016; Liu and

Jin, 2017) and simulations (Soyarslan et al., 2018). (B) Cut fractions and

average coordination numbers determined from the master curve in Equation

(10), assuming diamond as reference structure.

From the statistical analysis of the skeletonized NPG
structures presented by (Mangipudi et al., 2016), most junctions
show a three-fold coordination, while a few percent with higher
coordination numbers can also be detected. Assuming a Gibson–
Ashby structure would limit the maximum coordination to
3, whereas a diamond structure can be adjusted to a similar
statistical distribution, including some four-fold coordinated
junctions, by cutting off ligaments.

Based on the assumption that a fully connected NPG material
is described with a diamond structure, we can now analyze the
data for macroscopic Young’s modulus taken from Liu et al.
(2016) and Liu and Jin (2017) and interpret the decay of the
modulus for a given solid fraction in terms of cut fraction ζ . The
values of ζ are determined by calibrating the modulus data to fit
onto the maser curve for Equation (10) (see also Figure 2A). For
the reference value, the average macroscopic Young’s modulus of
the data set with maximum solid fraction ϕ ∼ 0.46 is calibrated
to match E0,dia/E0,bcc = 0.239. On the x-axis, ςtot = 0.5
corresponds to z = 4 for diamond. It should be noted that the

starting point can be set to any non-integer value in general when
more precise information on the topology of the fully connected
structure is available.

Relative to the value of E0,dia/E0,bcc = 0.239, the experimental
data yield cut fractions, which are shown in Figure 11B for each
data set at constant solid fraction depending on the ligament
size, approaching the limits ζc = 0.822 and zmin ≈ 1.5 for the
lowestmodulus data. The determined cut fractions ζ qualitatively
agree very well with the results for 1 − α presented by Liu and
Jin (2017). However, we determine different fractions of load-
bearing ligaments. While Liu et al. report that < 10% of the
ligaments remain for bearing load for ϕ ∼ 0.25, we have &

40% load-bearing ligaments (< 60% cut fraction with respect to
diamond). This is due to the percolation threshold that represents
an upper limit for the cut fraction. On average, we determine
the following values for the average coordination number z ∼
2.5− 3.0 (ϕ ∼ 0.33− 0.35) and z . 2 (ϕ ∼ 0.26).

Determination of Yield Strength
Liu et al. inserted the effective solid fractions in the Gibson–
Ashby scaling law for the yield strength given in Equation (2)
to determine the yield strength of the solid fraction in each
sample from the macroscopic yield strength (Liu et al., 2016).
The findings of our work have two implications in this context:
(i) the effective solid fraction is higher due to the percolation
threshold, and (ii) the scaling of macroscopic Young’s modulus
and yield strength due to cutting of ligaments follow both the
same relationship given by Equation (10), instead of Eqs. (1) and
(2) with two different exponents 2 and 1.5, respectively. Whether
this has a significant impact on the determined yield strength of
the solid fraction can be investigated using the scaling laws, as
applied by Liu et al. (2016) and Liu and Jin (2017): σy/σyS =
0.3ϕ

3/2
eff

and E/ES = ϕ2
eff
. By solving E/ES with respect to ϕeff

and inserting the result in σy/σyS, the dependencies of the yield
strength on the macroscopic Young’s modulus are generated in
the form σy/σyS ∼ (E/ES )3/4.

According to section Young’s Modulus, we have in fact
σy/σyS ∼ (E/ES ) for a set of samples with constant solid
fraction. This clearly shows that the yield strength would decrease
faster with the exponent 1 instead of 0.75. A quantitative
comparison is given in Figure 12A, where ϕ = 0.48 is assumed
for the fully connected structure and ϕeff = αϕ with α = 0.74
(Liu and Jin, 2017). As expected, the data confirm that the results
do not depend on the chosen structure (diamond or Gibson–
Ashby). Also, the linear fits in the log-log diagram confirm the
exponents, as derived in the previous paragraph.

We can furthermore conclude from Figure 12A that both
curves converge for large values of macroscopic Young’s modulus
and yield strength (i.e., low cut fractions) while for lower values
(or for higher cut fractions), the yield strength is overpredicted
by Liu et al. (2016). By translating the quantitative behavior of
the two curves into the diagram presented in Figure 12B, we
obtain a very interesting result. The blue and the black curve
both correspond to the fits of the data as entered in Figure 8

of the study by Liu et al. (2016), representing the yield strength
as determined from NPG along with data collected by the
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FIGURE 12 | (A) Translation of macroscopic Young’s modulus data to

macroscopic yield strength according to Liu et al. (2016) and Equation (10).

(B) Re-analysis of the data from Figure 8 of the study by Liu et al. (2016) with

the data from (A).

authors from literature on FIB-machined Au pillars, respectively.
It can be seen that an extrapolation of both curves for small
characteristic sizes tend toward the theoretical shear strength.
However, for larger characteristic size, the curves diverge.

The green curve results from translating the strength data
of Liu et al. with the help of the data presented in Figure 12A

to the correct scaling for increasing cut fraction, according
to Equation (10). This lowers the strength values for larger
characteristic sizes more than for small characteristic sizes and,
within the experimental scatter, this closes the gap between the
data from Au nanoligaments and FIB-machined Au pillars. The
better agreement of the experimental results for larger ligament
sizes is a strong support for the theoretical findings that (i)
the macroscopic properties can be modeled as multiplicative
decomposition of two terms, where one term depends only
on the solid fraction and the second term depends on the

cut fraction and (ii) the master curves for Young’s modulus
and yield strength show the same dependence on the cut
fraction. Despite this promising outcome, the experimental
validation presented here is only an indirect access whereas a
direct validation would be much more desirable. To this end,
artificial structures as generated in this work (for example see
Data Sheet 1, Supplementary Figure 3) could be translated into
specimen using additive manufacturing or 3D laser lithography
technology. Elastic-plastic compression testing of specimen with
varying initial structure and cut fraction would deliver the
unchallengeable proof for the findings presented in this work.

CONCLUSIONS

This work addresses a number of fundamental questions
regarding topological description and its incorporation in the
structure-properties relationships of materials characterized by
a highly porous three-dimensional structure. The findings
are relevant for nanoporous metals and open-pore foams,
morphologies of ordered block copolymers and polymer blends
during spinodal decomposition, and architectured mechanical
meta-materials consisting of struts or beams that undergo
bending deformation.

Generalizing the highly efficient finite element beam models
allows the generation of data for structures of different
topologies, ranging from a highly coordinated bcc structure
down to a Gibson–Ashby structure with a coordination number
of three. What is common for all these structures is that they
deform under bending of the ligaments. By random cutting of
a fraction of ligaments in the RVE, selected structures were
continuously modified with respect to their average coordination
number from the value of the fully connected structure to
the percolation-cluster transition. The macroscopic responses,
such as Young’s modulus, yield strength, and Poisson’s ratio,
were computed for each RVE. Together with the cut fraction,
average coordination number, and statistical information about
the local coordination within the structure, a database was
created consisting of more than 100 different structures.

It is shown that the macroscopic Young’s modulus, yield
strength, and Poisson’s ratio can be expressed in the form of
a multiplicative decomposition, where the first term depends
on the solid fraction and the second on the cut fraction.
The dependence on the cut fraction can be represented by a
master curve, covering a large range of structures beginning
from highest coordination number of 8 of the bcc reference
structure to 1.5, which is the average coordination number close
to the percolation-cluster transition. Any average coordination
number in between can be reached by the random cutting of a
corresponding fraction of ligaments, as the average coordination
number decreases linearly with increasing cut fraction.

As a striking result, all data for macroscopic Young’s modulus
and yield strength are covered by a single master curve,
irrespective of whether perfectly ordered structures or more
realistic randomized structures with nodal masses are considered.
This leads to the important conclusion that the loss of strength
due to pinching-off of ligaments is proportional to the decline

Frontiers in Materials | www.frontiersin.org 18 November 2018 | Volume 5 | Article 69

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Huber Topology and Mechanics of 3D Open-Pore Materials

in Young’s modulus. Experimental support for this unexpected
finding came from re-analyzing the data of Liu et al. (2016) and
Liu and Jin (2017). The analysis shows that the gap between
the strength data of Au nanoligaments and from FIB-machined
micropillars can be neatly closed by incorporating this scaling
behavior.

For the elastic Poisson’s ratio, a second master curve was
constructed that follows an elliptic-type shape with a maximum
value for the fully connected structure and very low values with
increasing cut fraction. In this case, the data show a divergence
from the master curve for high cut fractions, which is probably
caused by the beginning formation of clusters that do not follow
the deformation pattern of the more connected parts of the
structure. Beyond what is known for fully connected structures
(Huber et al., 2014; Roschning and Huber, 2016), it turns out that
the randomization needs to be calibrated for the correct value of
the cut fraction (or average coordination number), because both
structural parameters commonly define the elastic Poisson’s ratio.

Based on the fingerprints of the different topologies, a scaling
of the genus density could be identified that again combines
all data in a single master curve with the average coordination
number being the independent variable. The characteristic length
that fulfils this condition normalizes the genus to the number
of junctions of the fully connected structure. It is shown that
linear relationships exist between all topological parameters
under investigation, which are the total cut fraction, the average
coordination number, and the scaled genus density. For proper
measurement of each of these parameters, knowledge about
the fully connected structure is required. This important detail
significantly complicates the experimental measurement in each
case.

An access to the solution to this central problem was found in
machine learning. Feeding statistical information about the local
coordination numbers of detectable junctions and, optionally, the
estimated genus density, allows the determination of the average
coordination number without knowledge of the fully connected
structure. It could be shown that incorporating an estimate for
the scaled genus density improves the accuracy by a factor of
3.5. Having determined the average coordination number, this
parameter serves as a common key for the calculation of the cut
fraction, the scaled genus density, and the mechanical properties
with reference to a chosen fully connected structure.

Analyzing the data from the study by Liu and Jin (2017),
the cut fraction for NPG samples with different solid fraction
and degree of coarsening were determined, assuming a diamond
structure as a fully connected reference. It turns out that the
number of load-bearing ligaments with & 40% is much larger
compared to < 10% reported by Liu and Jin (2017), which is
due to the incorporation of the percolation threshold. At the

same time, the corresponding average coordination numbers falls
slightly below 2, which corresponds to a scaled genus density
of 0.
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