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The study aims at investigating the effect of a generic state of prestress on the passbands

and bandgaps of a phononic crystal plate. To this end, an Updated Lagrangian scheme

is developed, consisting in a two-step procedure: first, a static geometrically nonlinear

analysis of a representative unit cell undergoing the action of an applied external load

is conducted and then the Floquet-Bloch decomposition is applied to the linearized

equations of the acousto-elasticity for the unit cell in the deformed configuration. In

addition, a formula for the calculation of the energy velocity is proposed. In the case

of an epoxy plate with cylindrical steel inclusions, it is shown that, even in the presence

of prestress inducing full reversible deformation state, the bandgap experiences a shift

towards higher frequencies when the cell is subjected to a compressive prestress,

whereas a frequency downshift is registered when the cell is subjected to traction.

In particular, it is demonstrated that the frequency downshift of the bandgap for the

phononic plate undergoing a tensile prestress is approximately 3.5% with respect to

the case of the phononic plate under compression. The results presented herein provide

insights in the behavior of phononic crystal plates with tunable dispersive properties, and

suggest new leverages for wave manipulation valuable in many application fields such as

wave filters, waveguiding and beam splitting, sensing devices, and vibration shielding.

Keywords: phononic crystals, prestress, Floquet-Bloch, energy velocity, acousto-elasticity, Comsol

1. INTRODUCTION

The propagation of elastic waves in periodic structures is governed by the elastomorphic and
material parameters of its unit cell (Kushwaha and Halevi, 1994; Sainidou et al., 2005). Properly
conceiving their design in terms of size, shape, and arrangement, as well as choosing their density
and elastic properties demonstrated great potential for attaining exceptional dynamic behavior,
such as frequency bandgaps (Kushwaha and Halevi, 1994; Mártinez-Sala et al., 1995; Liu et al.,
2000; Miniaci et al., 2018a), negative refraction (Morvan et al., 2010; Zhu et al., 2014; Zhu and
Semperlotti, 2016), topological protection (Mousavi et al., 2015; Süsstrunk and Huber, 2015; Pal
et al., 2016;Miniaci et al., 2018b), etc. This opened up new perspectives inmany fields, ranging from
microelectromechanical systems to nondestructive evaluation (Pennec et al., 2010; Craster and
Guenneau, 2012; Deymier, 2013), including but not limited to wave filters, waveguiding and beam
splitting, sensing devices, wave splitters, vibration shielding, subwavelength imaging (Sukhovich
et al., 2009; Li et al., 2015; Trainiti et al., 2015; Colombi et al., 2016; Miniaci et al., 2016, 2017; Su
et al., 2016; Miniaci et al., 2019).
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However, most of the configurations proposed so far are
limited by the fact that their unconventional dynamic properties
are accessible to specific frequencies only, once the unit cell
design is conceived, being its geometrical and mechanical
properties constant with respect to time. To overcome this
limitation, periodic systems with adaptive elastic properties
have received great attention in the recent years. Indeed,
introducing an additional degree of freedom, enables the
reversible tailoring of the dispersive diagram of the structure,
considerably enhancing their functionality and technological
applications. To achieve this goal, several approaches have been
proposed and explored so far. They include active systems,
such as piezoelectric materials (Casadei et al., 2010; Bergamini
et al., 2014; Kherraz et al., 2016), temperature (Jim et al., 2009;
Airoldi et al., 2011; Cheng et al., 2011; Wu et al., 2018) and
magneto-based techniques (Robillard et al., 2009; Matar et al.,
2012; Guo and Wei, 2016; Zhang et al., 2017), actuated polymers
via electromagnetic waves (Walker et al., 2014, 2017) as well as
the application of an external mechanical load. Among them,
the latter has shown to be particularly promising to achieve
tunable dispersive properties. Bigoni et al. (2008) formulated a
theoretical model for an orthotropic, prestressed (compressible)
elastic layer vibrating on an elastic half space assuming long-
wave asymptotics for the solution. It was found that the influence
of the prestress over bandgaps and passbands, so that it could
be exploited as a tuning parameter to shift the dispersion
curves of the system. A modeling tool for the prediction of
controlled bandgap structures responding to flexural vibrations
was provided by Gei et al. (2009), also relaxing the hypothesis
of perfect periodicity, allowing thus to consider quasi-periodic
structures (Gei, 2010). Wang and Bertoldi (2012) showed how
mechanical deformations enabled the tuning of the phononic
bandgaps in 3D periodic elastomeric structures. The ability of the
elastomers to undergo small as well as large strain deformations
guaranteed the reversibility and repeatability of the process. Both
the linear and nonlinear regimes of elastic deformation were
explored, including different geometrical topology for triggering
mechanical instability. Galich et al. (2016) showed how local
deformations experienced by a composite structure can bring to
local stiffening influencing the instability-induced interfaces on
elastic wave propagation in finitely deformed layered materials.
Finally, Norris and Parnell (2012) tried to exploit the effects of
the prestress to theoretically show the feasibility of a hyperelastic
cloaking via transformation elasticity.

In this paper, the effects of an applied mechanical load on
the dispersive diagram for phononic crystal plates is investigated
in the case of elastic deformations, so to have a complete
reversibility of the phenomena. The paper is organized as
follows: section 2 provides the description of an Updated
Lagrangian scheme, in which a representative unit cell of the
phononic crystal plate is studied in its static and dynamic
deformed configurations. In section 3, the procedure to extract
the band diagrams and in particular the energy velocity
using the equations described in section 2 is detailed. Finally,
section 4 investigates the effect of a reversible compressive and
tensile state of prestress on an epoxy plate with cylindrical
inclusions.

2. FLOQUET-BLOCH ANALYSIS OF A
PRESTRESSED PHONONIC CRYSTAL

2.1. Static Analysis
In what follows, the equations of static and dynamic equilibrium
are derived with reference to the generic infinite phononic
crystal (PC) shown in Figure 1, where C0 indicates the static
undeformed configuration, C the static configuration resulting
from the application of an external load, and C′ the dynamic
configuration undergoing a harmonic motion. The so called
Updated Lagrangian (UL) scheme is employed to analyze the
PC in the three different equilibrium configurations. The UL
approach consists of two steps: in the first step, C0 is used as the
reference configuration to calculate the displacement and stress
fields relative to the configurationC, while in the second step,C is
used as the new reference configuration to evaluate the dynamic
equilibrium of the unit cell in the configuration C′.

Due to the periodicity of the system under consideration, in
the undeformed configuration C0 any scalar, vector or tensor
function φ satisfies the condition φ(x0 + r0m) = φ(x0), where
m ∈ Z

2 and r0 = [r01, r02] is the matrix of lattice vectors.
This allows to restrict the computational domain to a unit cell
of domain �0 and boundary ∂�0 (Collet et al., 2011; Mazzotti
et al., 2017). Similarly, the unit cell in the configuration C
satisfies the periodic condition φ(x + rm) = φ(x), with r =

[r1, r2]. For this cell, the mapping between the coordinates x0 =

{x01, x02, x03}
T of a material point in C0 and the coordinates

x = {x1, x2, x3}
T of the same point in C is established by the

deformation gradient F(x0) = ∇0x = I + ∇0u0, where ∇0

denotes the gradient operator defined with respect to C0, u0 is
the pseudo-static displacement resulting from the application
of external, �0-periodic, volume (fV ) and surface (tS) loads.
Following Zhang and Parnell (2017), the deformation gradient
can be decomposed as F(x0) = FL(x0)FP(x0), where FL indicates
the affine deformation gradient of the lattice points such that
r = FLr0, while FP denotes a periodic non-affine deformation.

The specific material density of the unit cell in C0 is ρ0(x0),
while, assuming a hyperelastic material behavior described by
the Murnaghan’s model (Murnaghan et al., 1937; Pau and
Lanza di Scalea, 2015; Dubuc et al., 2017, 2018), the tensor of
tangential elastic moduli with respect to C0 is expressed by D0 =

4∂29/(∂C∂C), where the elastic energy density 9 has the form

9 =
1

2
(λ + 2µ) I21(E)− 2µI2(E)+

1

3

(

l+ 2m
)

I31(E)

− 2mI1(E)I2(E)+ nI3(E), (1)

in which λ and µ denote the first and second Lamé parameters,
respectively, (l,m, n) the third orderMurnaghan parameters,C =

FTF the right Cauchy-Green deformation tensor, E = 1
2 (F

TF− I)
the Green-Lagrange strain tensor and I1(E), I2(E), and I3(E) its
first, second and third invariants, respectively.

Finding the coordinates of the deformed configuration C and
the associated stress fields requires the solution of a variational
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FIGURE 1 | Schematic representation of the Updated Lagrangian (UL) scheme for the infinite phononic crystal (PC) plate.

functional of the form (Bonet and Wood, 2008)

∫

�

S(x) : δE(x)d� =

∫

�

fV0(x) · δu0d�+

∫

∂�

tS0(x) · δu0d(∂�),

(2)
subjected to the Dirichlet boundary conditions

u0(x+ rn(x)) = u0(x) on ∂�, (3)

in which δu0 is an arbitrary admissible kinematic variation of
u0(x0), S = D0 :E the second Piola-Kirchhoff stress tensor and
n(x0) the outward pointing normal at x0 ∈ ∂�0. The application
of a standard Galerkin approach to Equation (2) results in the
generalized system of equations

[

Ŵ
T
0K(Q0)Ŵ0

]

Q0(X) = P0(X), (4)

where K(Q0) is a static stiffness matrix, P0 represents the global
vector of nodal forces,Q0 denotes a global vector of independent
nodal displacements and Ŵ0 is a mapping operator resulting
from Equation (3) and realizing the condition U0 = Ŵ0Q0,
in which U0 indicates the full vector of nodal displacements.
In this work, the solution of Equation (4) is carried out using
the weak form module implemented in Comsol Multiphysics 5.3
(Comsol, 2017).

2.2. Geometry and Mechanical Properties
Updating
Once the set of independent static displacements Q0 is obtained,
the reference configuration is updated fromC0 toC by calculating
the corresponding nodal coordinates x = x0 + Ŵ0Q0(x0). The
updated material properties in C are given by ρ = ρ0(det F)

−1

and Dijkl = (detF)−1FiIFjJFkKFlL(D0)IJKL, while the Cauchy

stress tensor is obtained from the relation σ = (det F)−1FSFT.
The geometry of the unit cell in the configuration C is then re-
meshed and used as the basis for the linear dynamic analysis
presented in the next section.

2.3. Dynamic Analysis Using the
Floquet-Bloch Decomposition
Assuming C as the new reference configuration, the position
vector for the unit cell in the dynamic deformed configuration
C′ is given by x′ = x+u(x, t), where u(x, t) = u(x)exp(−iωt) is a
time-harmonic perturbation superimposed onC, being t the time
and ω the angular frequency. In the rest of the paper, the time-
dependence exp(−iωt) is dropped for conciseness. According
to the small-on-large displacement hypotheses usually assumed
in acousto-elasticity (Mazzotti et al., 2012; Pau and Lanza di
Scalea, 2015; Shim et al., 2015), only small perturbations u(x, t)
are considered. In this case, the approximations x′ ≈ x and
C′ ≈ C hold and any displacement-dependent vector and tensor
field can be obtained in a linearized incremental form. Following
this procedure, the stress tensor is linearized in the direction of
u(x, t) by applying a first order Taylor series expansion of σ (x)
about x, resulting in (Mazzotti et al., 2012)

Duσ (x) = σ 0(x)⊗∇u(x)+D(x) : e(x), (5)

where e(x) = 1
2 [∇u(x) + (∇u(x))T] denotes the linearized

Green-Lagrange strain tensor.
From the application of the Floquet-Bloch theorem, any small

harmonic perturbation u(x) can be expressed in the form (Collet
et al., 2011)

u(x) = ũ(x)exp(ik · x), (6)

in which ũ(x) is a �-periodic displacement amplitude and k ∈ 3

is the Bloch wavenumber vector, being 3 the reciprocal unit cell
defined in C by the reciprocal lattice vector basis gj, j = 1, 2,
satisfying the condition ri · gj = 2πδij, where δij is the Kronecker
delta. These are related to the reciprocal lattice vector basis g0j

in C0 by gj = F−T
L g0j, j = 1, 2 (Zhang and Parnell, 2017). In

the reciprocal lattice domain, the Bloch wavenumber vector is
described in terms of its orientation angle ϑ as k(ϑ) = k8(ϑ),
where ϑ is defined with respect to g1, k = ‖k(ϑ)‖2 and 8(ϑ) =
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{cosϑ , sinϑ , 0}T. The relation between the orientation vector in
C0 and C writes 8 = F−T

L 80.
From Equation (6), and by defining the k-shifted gradient of a

generic �-periodic vector field φ̃(x) ∈ C
3 as

∇kφ̃(x,ϑ) = ∇xφ̃(x)+ ikφ̃(x)⊗ 8(ϑ), (7)

the solution of the elastodynamic problem for free vibrations of
the unit cell in C subjected to an initial stress σ 0 can be obtained
from the variational statement

−ω2

∫

�

ρ(x)δũ∗(x) · ũ(x)d�

+

∫

�

δẽ∗k(x,ϑ) :D(x) : ẽk(x,ϑ)d�,

+

∫

�

σ 0(x) :
[

(

∇kδũ
∗(x)

)T
∇kũ(x)

]

d� = 0,

(8)

subjected to the Dirichlet boundary condition

ũ(x+ rn(x)) = ũ(x) on ∂�, (9)

in which (·)∗ stands for the conjugate of a complex vector or

tensor field, ẽk(x,ϑ) = 1
2 [∇kũ(x) + (∇kũ(x))

T] follows from
Equation (7) and n(x) represents the outpointing surface normal
at x ∈ ∂�. After the application of a Galerkin discretization
scheme, Equations (8) and (9) lead to the following generalized
linear eigenvalue problem

{

Ŵ
T

[

k2K3(ϑ)+ ik
(

K2(ϑ)− KT
2 (ϑ)

)

+ K1 − ω2M
]

Ŵ

}

Q̃(ω,ϑ) = 0, (10)

which forms the basis of the band structure analysis for the
prestressed PC. In Equation (10), Ŵ is a mapping operator
implementing the Dirichlet boundary condition in Equation (9)

such that Ũ(ϑ) = ŴQ̃(ϑ) is verified, where Ũ(ϑ) is the global

vector of nodal displacement amplitudes and ˜Q(ϑ) a subvector

of Ũ(ϑ) collecting only its independent components. The mass
operator M and the stiffness operators K1, K2, and K3 are given
by

M =
⋃

e

∫

�(e)
NT(x)ρ(x)N(x)d�, (11)

K1 =
⋃

e

∫

�(e)
NT(x)

[

BTD(x)B+ BT060(x)B0

]

N(x)d� (12)

K2(ϑ) =
⋃

e

∫

�(e)
NT(x)

[

BTD(x)H(ϑ)+ BT060(x)H0(ϑ)
]

N(x)d�, (13)

K3(ϑ) =
⋃

e

∫

�(e)
NT(x)

[

HT(ϑ)D(x)H(ϑ)+HT
0 (ϑ)60(x)H0(ϑ)

]

N(x)d�,

(14)

where �(e) denotes the domain of the e-th finite element of the
mesh,

⋃

e(·) stands for the standard direct stiffness assembling
procedure, N(x) is a matrix of shape functions for the e-th
element, 60(x) is a block-diagonal matrix of the form

60(x) =





σ 0(x) 0 0

0 σ 0(x) 0

0 0 σ 0(x)



 , (15)

while the different compatibility operators are expressed as

B =

3
∑

i=1

∂

∂xi
Li, H(ϑ) =

3
∑

i=1

(

zTi 8(ϑ)
)

Li, (16)

B0 =

3
∑

i=1

∂

∂xi
L0i, H0(ϑ) =

3
∑

i=1

(

zTi 8(ϑ)
)

L0i, (17)

being zi a unit vector identifying the i-th coordinate in the
Cartesian frame of reference. The operators Li and L0i are
given in the Appendix. It should be noted that, since the mass
and stiffness matrices in Equations (11)–(14) are evaluated with
respect to the deformed configuration C, a new mesh for the
deformed geometry of the unit cell needs to be generated after
the static analysis described in section 2.1 has been completed
and before the eigenvalue analysis is carried out.

3. BAND STRUCTURE ANALYSIS AND
ENERGY VELOCITY EXTRACTION

The homogeneous problem in Equation (10) can be solved in
the wavenumber k(ϑ ,ω) and corresponding Floquet eigenvectors
Q̃(ϑ ,ω) for any fixed direction ϑ and circular frequency ω ∈ R,
ω > 0, from which the band structures of the propagation
and attenuation constants of a specific mode m are obtained by
taking the real and imaginary components of the corresponding
wavenumber km(ϑ ,ω), respectively. For the particular case of a
lossless structure (Im(D) = 0) immersed in vacuum, the modes
supported by the crystal can be either propagative (Im(k) = 0) or
evanescent (Re(k) = 0), the latter belonging to the so called deaf
frequency range (bandgap).

In addition to the Bloch wavenumber k(ϑ ,ω), from the
computed set of solutions (km(ϑ ,ω),Qm(ϑ ,ω)) it is possible
to extract the band structure of the energy velocity, which
corresponds to the velocity of propagation of packets of waves
having close central frequency (Brillouin, 1953; Mazzotti et al.,
2012). The energy velocity of a specific Bloch mode can be
found as the ratio between the time-averaged energy flux in the
direction ϑ over one period T = 2π/ω and the time-averaged
total mechanical energy over the same period, i.e.

ce(ϑ ,ω) =
〈I (ϑ ,ω)〉

〈K (ϑ ,ω)〉 + 〈W (ϑ ,ω)〉 + 〈Wσ0 (ϑ ,ω)〉
, (18)

where 〈φ〉 = ω
2π

∫ t+2π/ω

t φdt denotes the time-averaging
operation, I (ϑ ,ω) denotes the total energy flux along the
orientation ϑ of the Bloch wavenumber k, K (ϑ ,ω) indicates the
total kinetic energy while W (ϑ ,ω) and Wσ0 (ϑ ,ω) represent the
total stored elastic energy related to the harmonic motion and
prestress, respectively. The time-averaged expressions for these
quantities are given by

〈I (ϑ ,ω)〉=
ω

2
Im

{∫

�

[(

Duσ̃ (x,ϑ ,ω)ũ
∗(x,ϑ ,ω)

)

· 8(ϑ)
]

d�

}

, (19)

〈K (ϑ ,ω)〉=
ω2

4
Re

{∫

�

ũ∗(x,ϑ ,ω) · ρ(x)ũ(x,ϑ ,ω)d�

}

, (20)
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〈W (ϑ ,ω)〉=
1

4
Re

{∫

�

[

ẽ∗k(x,ϑ ,ω) :D(x) : ẽk(x,ϑ ,ω)
]

d�

}

, (21)

〈Wσ0 (ϑ ,ω)〉=
1

4
Re

{∫

�

[(

(

∇kũ(x,ϑ ,ω)
)T
∇kũ(x,ϑ ,ω)

)∗
: σ 0(x)

]

d�

}

.

(22)

Equation (18) can be evaluated at any given solution km(ϑ ,ω) by
means of a Gauss quadrature scheme over the finite elementmesh
of the unit cell in the configuration C, in which the displacement,
strain and stress fields can be post-processed from Qm(ϑ ,ω)
using nodal interpolations.

4. NUMERICAL APPLICATIONS: EPOXY
PLATE WITH CYLINDRICAL STEEL
INCLUSIONS

The numerical method presented in the previous section is here
applied to study a PC plate made of steel cylinders embedded in
an epoxy matrix. In the undeformed configuration, the plate is
2.5 mm thick, while the cylindrical inclusions have a radius of 3.0
mm and are arranged in a square lattice of 10.0 mm side length,
as shown in Figure 2A. The material properties for the steel and
the epoxy are reported in Table 1.

To study how an initial state of stress affects the passbands and
bandgaps of the PC plate, two different deformed configuration
are considered. In the first configuration, the plate is subjected
to a state of compressive stress representative of a normal
displacement u0(x0) · n0(x0) = −0.025 mm applied at each
point x0 belonging to a lateral face of the unit cell. In the second
case, a generic tensile state is applied by assuming a normal
displacement u0(x0) · n0(x0) = 0.025 mm for each point x0
belonging to a lateral face of the unit cell. Figures 2B,C report
the von Mises stress consequent to the compression and tension
prestress condition, respectively. It is worth noticing that the
maximum magnitude of the applied prestretch has been limited
to the typical strength at yield of both epoxy and steel in order to
ensure the elastic behavior of the materials. This choice enables
a full reversibility of the undeformed configuration, and thus of
the dispersive behavior of the PC plate, once the load is removed,
which is of more practical interest with respect to the case of a
permanently induced deformation.

The band diagrams in terms of wavenumber k and energy
velocity ce versus frequency are shown in Figure 3. In these
diagrams, the blue and red dots denote the dispersion curves
relative to the unit cell subjected to the compressive stress and
tensile stress shown in Figures 2B,C, respectively. It should
be noted that, since the deformation due to prestress applied
to each face of the cell is isotropic in the xy-plane in both
cases, the deformation gradient F and its affine component
FL are diagonal and, as a consequence, the orientation of the
reciprocal lattice vectors gj in the deformed configurations
does not change with respect to that in the deformed
configuration. This implies that the orientation angle θ of
the Bloch wavevector also remains unchanged between the
undeformed and deformed configurations. The results presented
in Figure 3 have been obtained for an angle θ = 0 measured
with respect to g01 and g1. In classical Bloch analysis, this

angle corresponds to the Ŵ − X direction of the irreducible
Brillouin zone.

From the dispersion analysis of the undeformed unit cell,
it can be found that, at frequencies below 110 kHz, only one
bandgap is present along the direction ϑ = 0, which is located in
the [68.3–88.6] kHz frequency range (see Figure A1 in Appendix
B). This result, which has not been reported in the Figure 3 for
the sake of clarity, can be readily obtained by carrying out the
analysis of sections 2.3 and 3 on the undeformed geometry and
by setting σ 0 = 0 in Equation (15). However, when the cell
is subjected to a compressive stress as shown in Figure 2B, the
bandgap experiences a shift towards higher frequencies, being it
located, in this case, in the [70.7 − 87.3] kHz frequency range.
On the other hand, when the cell is subjected to traction, the
lower bound of the bandgap is observed at 68.3 kHz while its
upper bound at 84.3 kHz, which corresponds to a frequency
downshift of approximately 3.5% of the bandgap with respect
to the case of the PC plate under compression. These results
suggest that, even in the elastic regime, a deformation due to
prestress can lead to significant changes in the passband and
bandgap behavior.

Furthermore, looking at the behavior of the energy velocity
for the two deformed configurations, it is possible to infer that,
similarly to the case of homogeneous plates (Pau and Lanza di
Scalea, 2015), a generic state of compression leads to an increase
of the energy velocity, whereas a state of traction leads, in general,
to its decrease. This situation can be readily deduced from the
inspection of the energy velocity band diagrams in Figure 3,
from which it can be noted that the largest variations take
place in proximity of the cutoff frequencies. Moreover, in the
case of prestressed homogeneous plates (Dubuc et al., 2017),
characteristic spikes in the energy velocity dispersion curves
appear due to mode coupling. This behavior can also be observed
for the third fundamental mode at around 36 kHz when the PC
plate is subjected to a compression.

Finally, in the case of the PC plate under compression, it is
possible to observe the presence of a cutoff wavenumber for the
first fundamental mode at about 108 rad/m and null frequency.
This value can be derived by solving the eigenvalue problem
reported in Equation (10) in k(ϑ) by imposing ω = 0. In
this case, the eigenvalue problem corresponds to that of the
buckling load and, consequently, the lowest eigenvalue (the cutoff
wavenumber) corresponds to a bifurcation point that indicates
the onset of buckling for the infinite PC plate. It should be
noted that the specific value of the cutoff wavenumber depends
on the magnitude and distribution of the compressive stress
in the PC.

5. CONCLUSIONS

An Updated Lagrangian computational scheme has been
presented for the calculation of the band diagrams of phononic
crystal plates subjected to a generic state of prestress. The scheme
involves the solution of a geometrically nonlinear static problem
for a representative unit cell and the application of the Floquet-
Bloch theorem to the linearized equations of acousto-elasticity
on the deformed configuration of the unit cell undergoing the
static load. For the case of an epoxy plate with cylindrical steel
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FIGURE 2 | Unit cell of steel cylinders embedded in an epoxy matrix: undeformed geometry (A) and deformed geometry corresponding to isotropic traction (B) and

compression (C). The deformation scale is amplified of 20 times.

TABLE 1 | Material constants for the steel and the epoxy.

ρ0 [kg/m3 ] λ [Gpa] µ [Gpa] l [Gpa] m [Gpa] n [Gpa]

Steel, Zhu et al., 2014 7,700 153.66 79.16 −248 −623 −714

Epoxy, Cattani and Rushchitsky, 2007 1,540 2.59 1.34 −18.94 −13.36 −9.81

FIGURE 3 | Band diagrams of the wavenumber k (Left) and energy velocity ce (Right) versus frequency for the PC plate under isotropic compression and isotropic

traction reported in Figures 2B,C, respectively.

inclusions, it has been demonstrated that the existence of a
prestress state of compression or tension can lead to significant
changes in the passbands and bandgaps of a phononic crystal
plate, even in the case of prestress inducing full reversible
deformation state, which is of more practical interest with
respect to the case of a permanently induced deformation. It has
been observed that when the cell is subjected to a compressive

stress, the bandgap experiences a shift toward higher frequencies,
whereas when the cell is subjected to traction, we observe a
frequency downshift of approximately the 3.5% of the bandgap
with respect to the case of the phononic plate under compression.
Similarly to the case of homogeneous plates, a generic state of
compression leads to an increase of the energy velocity, whereas
a state of traction tends to lower its value. The largest variations
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have been observed in proximity of the cutoff frequencies.
Characteristic spikes in the energy velocity dispersion curves
appear due to mode coupling for the third fundamental mode
at around 36 kHz when the phononic plate is subjected to a
compression.

The results presented herein provide insights in the
behavior of phononic crystal plates with tunable dispersive
properties, and suggest new leverages for wave manipulation
valuable in many application fields such as wave filters,
waveguiding and beam splitting, sensing devices, and vibration
shielding.
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APPENDIX A

The operators Li and L0i are expressed as

L1 =

















1 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 1 0

















, L2 =

















0 0 0
0 1 0
0 0 0
0 0 1
0 0 0
1 0 0

















, L3 =

















0 0 0
0 0 0
0 0 1
0 1 0
1 0 0
0 0 0

















, (23)

L01 =





























1 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 1
0 0 0
0 0 0





























, L02 =





























0 0 0
1 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 1
0 0 0





























, L03 =





























0 0 0
0 0 0
1 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 1





























. (24)

APPENDIX B

The band diagram in terms of wavenumber k and energy velocity ce for the undeformed unit cell of Figure 2 at ϑ = 0 is reported in
Figure A1.

Figure A 1 | Band diagrams of the wavenumber k (Left) and energy velocity ce (Right) vs. frequency for the PC plate in the undeformed configuration reported in

Figure 2A.
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