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Electroactive biomaterials are a new generation of “smart” biomaterials based on

intrinsically conducting polymers (ICP). Among them, poly(3,4-ethylenedioxythiophene)

(PEDOT), polypyrrole (PPy) and polyaniline (PANI) are well known conducting polymers

that present excellent electrical and optical properties emerging as main candidates

for potential biomedical applications. Additionally, the biodegradability of biomaterials is

very useful and desirable. In this context, biodegradable polymers based on polyesters,

such as poly(D,L-lactic acid) (PDLLA), polycaprolactone (PCL), and poly(glycolic acid)

(PGA) appear to be promising candidates because of their good biocompatibility and,

as a consequence, they have been attracting attention as sustainable alternatives

for applications in medicine. Weak molecular interaction with cells, biocompatibility,

biodegradability, mechanics and topography are some of the main challenges for

the use of conducting polymers as biomaterials. In order to improve their own

biocompatibility, the main strategies are whether by doping with specific counter ions

(biodopants) or chemically modifying the monomers with different molecules. Although

conventional ICPs still present low or none biodegradability, there are relatively few

examples of biodegradable electroactive polymers in the literature. Recently, novel

approaches have been applied to solve the problem of lack of biodegradability of

conducting polymers, mainly through (1) synthesis of a modified electroactive oligomers

connected via degradable ester linkages creating block copolymers and (2) synthesis

of modified electroactive and biodegradable macromonomers based on polyesters

used in a second step copolymerization with conductive monomers. This mini-review

focuses on developing trends, challenges and summarizes the recent advances on

synthesis of conducting, biodegradable and biocompatible copolymers in terms of

optimizing the chemical properties to improved response toward different cells, aiming

biomedical applications.

Keywords: biodegradation, conducting copolymers, biomaterials, biocompatible, electroactive macromonomers

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#editorial-board
https://www.frontiersin.org/journals/materials#editorial-board
https://www.frontiersin.org/journals/materials#editorial-board
https://www.frontiersin.org/journals/materials#editorial-board
https://doi.org/10.3389/fmats.2019.00098
http://crossmark.crossref.org/dialog/?doi=10.3389/fmats.2019.00098&domain=pdf&date_stamp=2019-05-08
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles
https://creativecommons.org/licenses/by/4.0/
mailto:storresi@iq.usp.br
https://doi.org/10.3389/fmats.2019.00098
https://www.frontiersin.org/articles/10.3389/fmats.2019.00098/full
http://loop.frontiersin.org/people/726666/overview
http://loop.frontiersin.org/people/660200/overview


da Silva and Córdoba de Torresi Biodegradable Conducting Polymers for Biomaterials

INTRODUCTION

Electrically active and/or responsive tissues includes
skeletal muscle, brain, and heart and had been widely explored
by interfacing metallic or semi-conductor electrodes to provide
electrical stimulation (Tehovnik, 1996; Merrill et al., 2005). This
effect plays important role in the cellular division, development,
migration, signaling, muscle contraction and would healing,
for electroresponsive cell types such as myoblasts, fibroblasts,
osteoblasts, chick embryo dorsal root ganglia, and neural crest
cells, therefore attracts attention on tissue engineering and
regenerative medicine (Tandon et al., 2009; Ghasemi-Mobarakeh
et al., 2011).

Intrinsically conducting polymers (ICPs) are already
demonstrated suitable for substitution of traditional electrodes
based on conductors or semi-conductors (e.g., gold, platinum
or glassy carbon) in biological applications due to their soft
interface and electrical properties (Owens and Malliaras, 2010).
Among them poly-3,4-ethylenedioxythiophene (PEDOT),
polypyrrole (PPy), and polyaniline (PANI) are well known
conducting polymers that present excellent electrical and optical
properties (Skotheim and Reynolds, 2007).

Biodegradable materials are present in a lot of different areas,
such as agriculture, medicine, packaging (storage), food, among
others (Lendlein and Sisson, 2011). The biodegradable properties
are usually present in polymeric materials by the loss of bulk
weight through the polymer chain breaking into small pieces by
enzymes, living organisms, environmental conditions or simply
by water molecules (Siracusa et al., 2008; Vroman and Tighzert,
2009; Lendlein and Sisson, 2011). For biomedical applications,
biodegradability is highly desirable for devices which perform
their function and automatically “disappear” from the body,
either reabsorbed or eliminated (Ulery et al., 2011). For this
purpose, the degradation products must be biocompatible with
biological systems; so, they are obtained bymonomers commonly
present in the body. Among them, polyesters appear as good
candidates and have been extensively applied as biomaterials
(Nair and Laurencin, 2007). Nonetheless, polyglycolide (PGA)
(Mooney et al., 1996; Moutos et al., 2007), polylactides (PLA,
PLLA or PDLLA) (Yang et al., 2005a,b; Lasprilla et al., 2012; Shi
et al., 2016) and polycaprolactones (PCL) (Kweon et al., 2003;
Ghasemi-Mobarakeh et al., 2008) have been themost investigated
due to the ease obtaining and good mechanical properties.

Recently, a new class has emerged as potential candidates
on biomedical field, the biodegradable electrically conducting
polymers (BECP), which allies enough conductivity (i.e., allow
electrical stimulation) with biodegradable properties (Rivers
et al., 2002). Nowadays, a huge number of applications
require biomaterials which can interface with cells, tissues or
biomolecules. The molecular events at the biointerface usually
involves a complex matrix with water molecules, proteins, and
ions (Kasemo and Lausmaa, 1994; Ploux et al., 2010; Timko et al.,
2010). In this context, proteins can regulate the cell fate, even
inside cells (regulated by genes expressions) or those secreted
from cells in the extracellular matrix (ECM). This plays an
important role in the interaction with biomaterials once their
orientation and conformation supposed to be fundamental for

biocompatibility (Stevens and George, 2005). To understand how
the ICP/cell biointerface works, several studies have investigated
the role of adsorbed ECM proteins, among them fibronectin
(FN), laminin and fibrinogen, for supporting cell adhesion,
migration, proliferation, differentiation, and other processes
(Rief et al., 2000; Kotwal and Schmidt, 2001; Oberhauser et al.,
2002; Kandel et al., 2014). Some important properties have been
found to play an important role, such as protein conformation,
surface charges, different dopants or oxidized/reduced state of
ICP (Svennersten et al., 2009; Gelmi et al., 2010, 2013a,b; Nelea
and Kaartinen, 2010; Persson et al., 2011).

In this context, the present mini-review focus on developing
trends and challenges discussing the recent advances on: (1)
synthesis of a modified electroactive oligomers connected via
degradable ester linkages creating block copolymers (Figure 1A)
and (2) synthesis of modified electroactive and biodegradable
macromonomers based on polyesters used in a second step
of copolymerization with conductive monomers (Figure 1B)
for conducting and biodegradable biomaterials with suitable
interfacial properties for biomedical applications.

ELECTROACTIVE AND BIODEGRADABLE
OLIGOMERS FOR BLOCK COPOLYMERS

In the mid-1970s, Heeger et al. demonstrated that polyacetylene
(CH)x could turns into highly conductive when doped with
iodine (Shirakawa et al., 1977), which led the authors to win the
Nobel Prize in chemistry in 2000. For the next decades several
studies of polymeric films with metallic and semiconducting
properties had been reported (Street and Clarke, 1981). They
established the important role of linear π-conjugated systems
on electronic properties and conjugated polymers have emerged
as the best prototypes for the linear π-conjugated systems,
such as polypyrrole and polythiophenes (Roncali, 1997). In this
context, some well-defined oligomer synthesis based on pyrrole
were developed in order to control the synthesis and the π-
conjugated system. Groenendaal and colleagues were able to
obtain controlled conditions for oligo(pyrrole-2,5-diyl) from
2 to 18 units (Groenendaal et al., 1995). In 1995 and 1997,
Miller et al. (Hong and Miller, 1995) and Leclerc et al. (Donat-
Bouillud et al., 1997), respectively, proposed the synthesis of
π-conjugated oligomers based on thiophene groups linked to
polyesters. Then, in 2002, Langer et al. (Zelikin et al., 2002)
proposed, for biomedical purposes, the synthesis of carboxylic
acid functionalized pyrrole monomers obtaining a functionalized
polypyrrole named as “erodible conducting polymer,” based on
ionizable and/or hydrolysable groups that could promote its
partial water solubilization. The carboxylic acid functionalized
polypyrroles were not able to break the conjugated chain but
partially solubilize it; therefore, the correct term should be a
partially biodegradable conducting polymer.

With this purpose in mind, Schmidt et al. (Rivers et al.,
2002) based on the idea of electrical properties of thiophenes
and knowing that three pyrrole rings were enough to achieve
π-conjugation, they were the first to demonstrate, by using
modification of previous synthesis of π-conjugated oligomers
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FIGURE 1 | (A) Schematic synthesis of electroactive oligomers and block copolymers. (B) Schematic synthesis of electroactive macromonomers and graft

copolymers. (C) Chemical structure of electroactive and biodegradable oligomers. (D) Chemical structure of electroactive and biodegradable macromonomers. The σ

is conductivity, BD is biodegradability and BC is biocompatibility. Blue color represents the conductive/electroactive molecules and green color represents the

biodegradable molecules. The conductivity, biodegradability, and biocompatibility parameters are only reported for studies which aimed use the synthesized materials

for biomedical applications. 1 (Rivers et al., 2002), 2 (Guimard et al., 2009), 3 (Ding et al., 2007; Huang et al., 2007, 2008; Guo et al., 2011d, 2012; Zhao et al.,

2017), 4 (Zhao et al., 2017), 5 (Wang et al., 2015), 6 (Ding et al., 2007), 7 (Xie et al., 2015a), 8 (Huang et al., 2008), 9 (Huang et al., 2007), 10 (Huang et al., 2008), 11

(Xie et al., 2015a; Zhao et al., 2017), 12 (Mecerreyes et al., 2000, 2002), 13 (Türkan et al., 2011), 14 (da Silva et al., 2018a,b, 2019), 15 (Chao et al., 2007).

(Hong and Miller, 1995; Donat-Bouillud et al., 1997), the
feasibility of creating the first BECP (Figure 1Ci) by using
ester linkages (PLA) to achieve biodegradability and electrical
conductivity based on threeπ-conjugated rings, a thiophene with
two other pyrroles (Rivers et al., 2002). It was necessary to add
a thiophene group in order to improve stability to the oligomer
during synthesis (Rivers et al., 2002). Additionally, previous
studies on macrophages activity using polyethylene revealed
an important role of size and dose dependency, evidencing
that small particles (0.24µm) stimulated macrophages activity
(Green et al., 2000; Ingram et al., 2004). Thus, Schmidt
et al. (Rivers et al., 2002) assumed that the conducting
oligomers could be easily removed via macrophages. However,

the material was only possible to be doped with iodine
vapor which could increase cytotoxicity. Trying to solve
this problem, several years later the same group proposed
the synthesis of 5,5′′′-bis(hydroxymethyl)-3,3′′′-dimethyl-
2,2′:5′,2′:5′′,2′′′- quaterthiophene-co-adipic acid polyester
(QAPE) (Figure 1Cii) as an electroactive oligothiophene unit
(block of four thiophenes) with in vitro cytocompatibility studies
for Schwann cells attested a non-cytotoxicity property (Guimard
et al., 2009). Recently, Schmidt et al. (Hardy et al., 2014, 2015)
reported electrochemically triggered biodegradable electroactive
polymer oligoaniline-based materials for drug delivery.

Another remarkable synthesis of BECP was proposed by Wei
et al. (Huang et al., 2007) in 2007, changing the electroactive
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oligomer for an aniline pentamer (AP) (Figure 1Ciii) through
ester linkages (based on PLA again) in a triblock copolymer
called “PLA-b-AP-b-PLA.” However, due to a molecular weight
of ∼10 kDa, it did not present enough mechanical and plasticity
properties for their practical applications. Thus, in the next
year the same group proposed an improvement to the final
properties of the biomaterial by adding multiblocks of PLA (Mw

= 2.16 kDa) to get a higher molecular weight (Mw = 89.8
kDa) to the copolymer. Furthermore, it attended good solubility,
mechanical properties and ease the processability, also keeping
its own electroactivity, biodegradability and biocompatibility
with in vitro experiments tested for PC-12 cells (Huang et al.,
2008). Nonetheless, the cytotoxicity for the degradation products
demonstrated in this study, where the aniline oligomers (AP)
exhibited low cell viability for rat C6 cell line when compared
to PLA and PLAAP, being ideal to use a low content of
aniline oligomers(Huang et al., 2008). In parallel, Zhang et al.
(Ding et al., 2007) proposed the polycondensation between
carboxyl-capped aniline pentamer (CCAP) and hydroxyl-capped
polyglycolide (PGA) by using N,N′-dicyclohexylcarbodiimide
(DCC) as coupling reagent and tested its degradability (∼50%
after 120 days) and electroactivity, but no cell experiments
were performed.

In 2010, Albertsson et al. (Guo et al., 2010a) proposed
the incorporation of amino-capped aniline trimer (ACAT),
previously proposed by different research groups (Wei et al.,
1996; Wang et al., 1998; Lu et al., 1999) and also the use of
CCAP, both bonding to PLLA biodegradable chains but focused
in different architectures of the biomaterials by using branched
PLLAs. Then, the same group proposed the copolymerization
of CCAP with linear and branched PCLs, obtained as a final
product a linear and two different hyperbranched copolymers,
also called “star-shape architecture” by themselves (Guo et al.,
2010b). Later, poly(ethylene glycol) (PEG) was incorporated to
the synthetic route in order to create hydrogels with conductive
and biodegradable properties, based on acrylated PDLLA-PEG-
PDLLA and aniline tetramer (AT), (Guo et al., 2011a) PCL-
PEG-PCL with CCAP, (Guo et al., 2011b) and to improve the
nondegradability of CS-graft-PANI hydrogels (Marcasuzaa et al.,
2010) a CS-graft-AT was proposed by the same group (Guo
et al., 2011c). After all the experience on synthesis with aniline
oligomers and polyesters, the same group proposed a “universal
two-step approach” for the synthesis of block copolymers
oligoaniline-based, by using aniline dimer (AD) to obtain AT
(Guo et al., 2011d). Then, by using the same approach, the
size-tunable nanoparticles from the self-assembly coil-rod-coil
triblock copolymers (Guo et al., 2011e) and the functionalization
of PLA surface with AT to improve hydrophilicity were proposed
(Guo et al., 2012).

In 2015, Ma et al. (Xie et al., 2015a) designed an electroactive
degradable shape memory polymer network based on star-
shaped, produced with PLA and ACAT as previously mentioned
(Guo et al., 2010b), but now demonstrated their potential
application for bone tissue engineering. Once conductive
elastomers have been rarely reported in literature, the same
group designed an AT-based electroconductive elastomer, which
is a class of materials that mimic the mechanical properties

of some specific tissues (Chen et al., 2015a) Their proposal
led to high stretchability and low modulus material trying to
simulate soft human tissues by using AT as rigid block, PEG
and PLLA as soft ones. They investigated the molecular weight
of PEG (1 to 6 kDa), amount of AT in the synthesis (3, 6,
or 12% wt) and added end groups either cross-linked with
trimethylolpropane (branched) or terminated with n-propanol
(linear) (Chen et al., 2015a). Later, they designed a series of novel
biocompatible biodegradable and electroactive polyurethane-
urea (PUU) copolymers by combining the elastomeric property
of polyurethane, conductive property of oligoaniline and the
general good biodegradability and biocompatibility of PLLA
(Chen et al., 2015b). Furthermore, it was investigated the effect
of different molecular weight of PLLA (1500, 3500, or 8000 Da)
on the final properties of the biomaterial (Chen et al., 2015b).
Similar aniline oligomer-based biomaterials had been applied
by the same research group for a wide range of applications,
such as enhancement of myogenic differentiation of C2C12
myoblast cells, (Chen et al., 2015b; Wang et al., 2015; Xie et al.,
2015a,b; Deng et al., 2016; Zhao et al., 2017) improve osteogenic
differentiation from bone marrow derived mesenchymal stem
cells (Li et al., 2016) and enhance myelin gene expression and
neurotrophin secretion of Schwann cells (Wu et al., 2016).

Recently in the field of biomedical applications, Ma and
colleagues had been substituting the conductive part of
biomaterials for carbon nanotubes, avoiding aniline-based ones
(Wu et al., 2017). It was already demonstrated that the
conductivity of PANI and PANI-based material is strongly
dependent on protonation (Cao et al., 1995; Stejskal et al., 2004).
For biomedical applications, it supposed to have a deleterious
effect when exposed to cells for a long period, either for
biocompatibility or electrical stability (Meng et al., 2008; Green
et al., 2012; Mawad et al., 2016). At this point, in 2017 Stevens
et al. (Spicer et al., 2017) proposed a series of conjugated
oligomers of EDOT as an interesting alternative to oligoanilines
for tissue engineering.

ELECTROACTIVE AND BIODEGRADABLE
MACROMONOMERS FOR
GRAFT COPOLYMERS

Electroactive macromonomers can be defined as a reactive
macromolecule which can be further electrochemically or
chemically polymerized, due to electroactive functionalities on
the chain, in order to obtain a copolymer. It is possible to
copolymerize it with the samemacromonomers, achieving “block
copolymers structure,” or by adding other individual monomers,
grafting the macromonomer to other homopolymer chain, called
“graft copolymers” (Figure 1B) (Yagci and Toppare, 2003).

Electroactive macromonomers are a very useful way to add
new properties or functionalities to prepare block or graft
copolymers. Usually the homopolymer presents completely
different characteristics when compared to the copolymer.
In this way, part of the interesting properties desired when
adding electroactive macromonomers could be improved
solubility, processability, biocompatibility, biodegradability,
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FIGURE 2 | Reactions of obtaining electroactive macromonomer of EDOT-PDLLA (A) via organometallic catalyst, (B) via enzymatic pathway and (C) “grafting through”

copolymerization of PEDOT-co-PDLLA. (D) Summary of characterized properties for 1:05, 1:25, and 1:50 ratios (PEDOT:PDLLA) (da Silva et al., 2018a,b, 2019).

etc. However, it supposed to be aware that some functionalities
on macromonomers can affect the π-electron density on
conjugated backbone. It could either create a very stable
conjugation which cannot be electropolymerized anymore or
destabilize the macromonomer to degrade or promote side
reactions instead the desired copolymer. An example of this
is the addition of a oxadiazole group to oligothiophene chain,
which are electron-withdrawing group, leading the thiophene
trimers to do not electropolymerize and to promote an oxidative
side reaction at high potentials that destroys the copolymer,
whereas the thiophene pentamers can be electropolymerized
(Fisyuk et al., 2005).

Toppare and Yagci have extensively worked with the “grafting
through” method applied for electroactive macromonomers,
mainly based on pyrrole and thiophene (Yagci and Toppare,
2003). Their approach was used to obtain ICPs with improved
processability and mechanical properties, but focused on
biosensing applications (Alkan et al., 1999; Kizilyar et al., 1999;
Cirpan et al., 2001; Yagci and Toppare, 2003; Arica et al.,
2005; Sahin et al., 2005; Uygun et al., 2010). There are a vast
literature and excellent reviews on the grafting polymer chains for
biointerfaces (Hackett et al., 2017), macromonomer techniques
(Ito, 1998; Adachi and Tsukahara, 2015), functional materials
(Strover et al., 2016), electroactive materials (Pron et al., 2010),
biodegradable and electrically conducting polymers (Guo et al.,
2013) and biomimetic conducting polymers (Hardy et al., 2013).

In 2000, Grande et al. (Mecerreyes et al., 2000) proposed
the synthesis of novel pyrrole end-functional macromonomers
prepared by ring-opening polymerization with ε-caprolactone
(Py-g-PCL) (Figure 1Di). The aim of the work was not

targeting the use for biomedical applications, but showed
its versatility on copolymerizing with different polymers
to change its final properties (Mecerreyes et al., 2002). In
2004, Catellani et al. (Dall’Acqua et al., 2004) proposed
a intrinsically conductive cellulose-polypyrrole textile
which they speculated could be useful from clothing to
biomedical applications.

Recently, some of these graft copolymers based on
electroactive macromonomer approach have been effectively
proposed for biomedical field, mainly based on pyrrole
(Domagala et al., 2014; Guo et al., 2017) aniline (Figure 1Div)
(Chao et al., 2007; Peng et al., 2011) or thiophene groups,(Türkan
et al., 2011) but most works are using the electroactive
aniline-based oligomers previously discussed in this mini-
review. Although some research groups propose new
synthetic routes for novel copolymers and characterize
the physical chemistry properties which could be useful
in biomedical applications, studies of biocompatibility are
not commonplace.

Regarding some of this issues, in 2018 our group proposed
the synthesis for a novel electroactive macromonomer
based on PDLLA with 3,4-ethylenedioxythiophene (EDOT)
functionalized end group (Figure 1Diii) (da Silva et al., 2018a).
Aiming biomedical applications, the proposed synthesis
was performed either by using an organometallic catalyst
(traditional method, with stannous octanoate) (Figure 2A)
or by enzymatic pathway (two different lipases, CAL-B or
PS-IM) (Figure 2B) to promote ring-opening polymerization
of PLA. The organometallic catalyst builds up an electroactive
macromonomer three times longer than the enzymatic ones.
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Ozdemir et al. (Türkan et al., 2011) proposed a similar
electroactive macromonomer with PCL and thiophene-
capped (ThPCLTh) (Figure 1Dii) and reported the thiophene
end groups could not react and polymerize. Thus, they
copolymerized it with other conducting polymers (pyrrole and
thiophene monomers) and no further cell experiments were
performed to investigate the biocompatibility. Our study showed
that the electroactive macromonomer of EDOT-PDLLA was
able to electropolymerize at the same electrical potential of
EDOT monomers, but no film formation was observed due to
the soluble nature of EDOT-PDLLA in organic solvents, being
able to produce only some non-conductive soluble oligomers
(da Silva et al., 2018a).

Based on previous observations, we proposed by
“grafting through” the electroactive macromonomer
approach to synthesize copolymers of PEDOT-co-
PDLLA in three different proportions (1:05, 1:25, and
1:50) (Figures 2C,D), leading to completely different
final properties. The conductivity and biodegradability
were characterized and noncytotoxic properties toward
embryonic stem cells (Figure 2D) were found. Additionally,
the copolymers presented an unexpected differentiation
of the embryonic stem cells to mature neurons with
migration halos and neurofilament lengths increased up
to 65 and 370%, respectively, when compared to control
(da Silva et al., 2018b).

In order to understand the different copolymer compositions,
the nanoscale electrical properties of the films and the
interaction with FN were characterized. It was observed
that 1:50 copolymer films produced more uniform current
dispersion (by Conductive-AFM) and the interface with
different surface potential (negative interface, by Kelvin Probe
Force Measurement) when compared to other copolymers.
We speculate that it was related to a more homogeneously
dispersed anionic doping on 1:50 during synthesis and film
production. That nature of biointerface characteristics supposed
to contribute for a higher FN affinity and stronger adsorption,
5 and 3 times stronger than for 1:05 and 1:25, respectively
(da Silva et al., 2019).

CONCLUDING REMARKS AND OUTLOOK

Electroactive aniline-based oligomers have been extensively
studied, and their toxicity is a limiting factor for biomedical
applications. Proposals of new electroactive oligomers based
on more stable and biocompatible electroactive monomers
and/or oligomers may be interesting in this field. Additionally,
another alternative may be the use of very low aniline-based
oligomers content or to create new strategies to increase
the biocompatibility.

The electroactive macromonomers emerge as a useful tool to
obtain graft copolymers with conductivity and biodegradability
properties. However, more studies are still necessary to apply
that kind of biomaterials on cellular experiments, such as tissue
engineering, biomedical devices, scaffold/templates, etc. It would
provide great insights for the development of this area.

Another important remark is related to the fact that not only
the synthesis of new materials is worth but also to go deeper
in their characterization. Recently, important studies have been
specifically looking to the biointerface of the materials with cells,
whether by studying nanoscale properties or interactions with
biomolecules, trying to understand what should be better for
cell interfacing. Finally, the knowledge would lead us for smarter
biomaterial designing in the future.
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