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Grain boundaries (GBs) have a significant influence on the properties of crystalline

materials. Machine learning approaches present an attractive route to develop atomic

structure-property models for GBs because of the complexity of their structure. However,

the application of such techniques requires an appropriate descriptor of the atomic

structure. Unfortunately, common crystal structure identification techniques cannot be

applied to characterize the structure of the vast majority of GB atoms (50–98% are

classified as “other”). This suggests a critical need for atomic structure descriptors

capable of identifying arbitrary atomic environments. In this work we present a simple

procedure that facilitates the identification of arbitrary atomic structures present in

GBs. We apply this approach to characterize the atomic structure of the 388 GBs

from the Olmsted data set (Olmsted et al., 2009). We show how this approach

facilitates visualization of GB atomic structures in a way that reveals important structural

information. We test the recently proposed hypothesis that 63 GBs contain facets

of the GBs that form the corners of the corresponding GB plane fundamental zone.

Finally, we briefly demonstrate how the structure descriptors resulting from our approach

can be used as inputs to machine learning approaches for the development of atomic

structure-property models for GBs.

Keywords: grain boundary, machine learning, atomic structure identification, common neighbor analysis, faceting

1. INTRODUCTION

Grain boundaries (GBs) play an important role for many material properties, such as hydrogen
embrittlement (Bechtle et al., 2009), creep (Gertsman and Tangri, 1997; Watanabe et al., 2009),
corrosion resistance (Shimada et al., 2002; Tan et al., 2008), and conductivity (Zhang et al.,
2006). While the structure of GBs is most often characterized experimentally by their five
macroscopic crystallographic degrees of freedom (Ashby et al., 1978), it is the atomic structure that
fundamentally governs their properties (Katritzky and Fara, 2005). Atomistic simulation has been
used to investigate the atomic structure of GBs and how it correlates with their observed properties
(Zhang et al., 2009). However, the atomic structure of GBs is much more complicated than their
crystallographic structure and traditional crystal identification descriptors are not designed to
classify the structure of the vast majority of atoms present at GBs. As an example, we analyzed
the 388 GBs constructed by Olmsted et al. (2009) using common crystal structure identification
methods: bond-angle analysis (BAA) (Ackland and Jones, 2006), common neighbor analysis (CNA)
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(Faken and Jónsson, 1994), and polyhedral template matching
(PTM) (Larsen et al., 2016). Table 1 provides the percentage
of the GB atoms that were unclassified (i.e., classified as
“other”/unknown structures) by each technique across all 388
GBs and across the subset of 41 63 GBs. The fact that 50–98%
of the GB atoms remain unclassified, makes it difficult to identify
atomic structure-property relationships for GBs, and suggests a
critical need for new techniques that can describe the complex
atomic structure of GBs.

Due to the complex and high-dimensional nature of GB
atomic structures, machine learning and related statistical
approaches provide an attractive route for the development
of atomic structure-property models. However, the inability to
resolve atomic structure within GBs complicates such an effort
because the effect of distinct atomic environments cannot be
extracted if these environments cannot be distinguished. If it
were possible to fully characterize the atomic structure of GBs,
dimensionality reduction techniques such as feature selection
(e.g., decision trees) and feature transformation (e.g., principle
component analysis) could be applied to identify the atomic
environments that govern properties of interest. Labeled data
from simulations could then be provided to train supervised
machine learning algorithms, and predictive models could be
developed that would significantly expand our understanding of
atomic structure-property relations for GBs.

As demonstrated above, common crystal structure
identification techniques are insufficient for this task.
Consequently, several authors have developed methods
to identify arbitrary non-crystalline atomic structures for
applications such as developing interatomic potentials (Bartók
et al., 2013), analyzing colloidal crystallization (Reinhart et al.,
2017), and characterizing grain boundaries (Banadaki and
Patala, 2017; Rosenbrock et al., 2017; Priedeman et al., 2018). A
brief summary of their work is given in section 2. While these
methods are effective, they are also significantly more complex
than simple crystal structure identification techniques that are in
common use. The major contribution of the present work is to
bridge this gap.

By employing a simple version of common neighbor analysis
(CNA) and leveraging information that is already available—but
which is normally discarded—we develop an approach that (i)
can characterize arbitrary atomic environments, while also being
both (ii) simple to implement, and (iii) built upon a descriptor

TABLE 1 | Comparison of characterization methods applied to the Olmsted GB

data set (Olmsted et al., 2009).

CNA PTM BAA

% Unclassified Atoms: All 388 GBs 98% 89% 50%

% Unclassified Atoms: 63 GBs 95% 54% 40%

For all crystal structure identification methods, a large portion of the grain boundary atoms

remain unclassified. Note that the FCC atoms are excluded from this calculation. Because

the listed methods are restricted to finding a pre-defined set of reference structures, the

GB atoms are only classified if they are either HCP, BCC, ICO, or SC. This is useful in the

case of the coherent twin which is 100% HCP, but additional measures are needed to

characterize any other grain boundary.

that is already familiar to the atomistic modeling community.We
demonstrate that, in spite of its simplicity, it can be employed
for predictive purposes as part of a machine learning strategy to
develop GB structure-property models. We anticipate that the
simplicity and effectiveness of this approach will facilitate the
development of predictive structure-property models for GBs as
well as other applications that involve lower symmetry atomic
structures such as those present in metallic glasses.

2. BACKGROUND

There has been great interest in characterizing atomic structures
recently and over the last decade and several reviews are available
in the literature (Stukowski, 2012; Priedeman, 2018), so only a
brief description is given here.

2.1. Identification of Crystalline Atomic
Environments
Common methods used to identify crystalline structures include
the centrosymmetry parameter (Kelchner et al., 1998), common
neighbor analysis (CNA) (Faken and Jónsson, 1994), polyhedral
template matching (PTM) (Larsen et al., 2016), and Voronoi
cell analysis methods (Bernal, 1959; Rahman, 1966; Bernal and
Finney, 1967; Finney, 1970; Hsu and Rahman, 1979; Sheng et al.,
2006; Lazar et al., 2015).

The centrosymmetry parameter is a measure of the distance
to an atom’s n nearest neighbors to determine whether or not an
atom is within a bulk crystal or a defect. CNA, PTM, and Voronoi
analysis methods all classify the atomic structure of an atom
by comparison of its local environment to a library of known
structures, usually face-centered cubic (FCC), hexagonal close-
packed (HCP), body-centered cubic (BCC), icosahedral (ICO),
and, for some of these methods, simple cubic (SC).

These methods provide valuable tools for identifying the
location, and in some cases the types, of defects present in
an atomistic model. However, as with all tools (including
those that we present in this paper), each method has certain
drawbacks and limitations. The main disadvantages of the
centrosymmetry parameter are that the number of neighbors, n,
is a user-defined parameter, and the centrosymmetry parameter
doesn’t give any insight into what the local structure is if it
is part of a defect. While some of the limitations of CNA
have been reduced by the introduction of an adaptive cutoff
radius (Stukowski, 2012), the method is typically just used to
determine whether an atom belongs to one of a small set of
predetermined environments. PTM uses a more robust Voronoi
method to identify neighbors, but it too relies on comparison
with a small library of known environments. Voronoi analysis
generally characterizes local environments by the number of
faces with a particular number of edges, but this approach
fails to distinguish between some common environments (FCC
and HCP) (Bernal, 1959; Rahman, 1966; Bernal and Finney,
1967; Finney, 1970; Hsu and Rahman, 1979; Sheng et al., 2006).
The recently developed Voronoi Topology (VoroTop) technique
(Lazar et al., 2015) uses planar graph representations to address
this issue by including information about the arrangement of
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the faces, but requires a large database of nearly degenerate
variants of the known Voronoi cells to compare against,
since small atomic displacements can significantly affect the
Voronoi cell topology. As with the other crystal structure
identification methods, the VoroTop technique has primarily
employed a small library of known structures. Additional
environments can be added to these libraries, but this must be
done manually.

2.2. Identification of Non-crystalline
Atomic Environments
To adequately analyze the local atomic structure of defects,
such as GBs, a method is needed that can classify atoms
without a priori knowledge of the structures present (i.e., without
reliance on a small precomputed list of known structures).
Several recent publications have presented methods to identify
arbitrary local environments (Bartók et al., 2013; Banadaki and
Patala, 2017; Reinhart et al., 2017; Rosenbrock et al., 2017;
Priedeman et al., 2018), and a brief description of each is
given here.

Bartók et al. (2013) developed an atomic structure descriptor
based on the superposition of Gaussian kernels centered at
atomic positions, referred to as the SOAP kernel/descriptor.
SOAP is unique in that it is a continuous descriptor (making it
robust against small changes in atomic positions) unlike most
other descriptors that are discrete in nature. SOAP has recently
been applied to characterize GBs by Rosenbrock et al. (2017) and
Priedeman et al. (2018).

Banadaki and Patala (2017) presented the polyhedral unit
model, which compares the neighborhood around voids in
atomic structures (at which vertices in the Voronoi tessellation
are centered) against an exhaustive library of configurations of
close-packed spheres for up to 12 spheres. A benefit of the
polyhedral unit model is that an RMSD value can be calculated
to quantify how close of a match particular structures are to their
reference structures, but the resulting polyhedra are centered
on a void as opposed to an atom which is the more common
representation of an atomic environment.

Reinhart et al. (2017) developed an algorithm called
Neighborhood Graph Analysis (NGA), which implemented
CNA with an adaptive cutoff radius to produce CNA signatures
for arbitrary environments present in colloidal crystallization
simulations. The adaptive cutoff however, produces an
asymmetric neighborhood graph (i.e., atom B may be a
neighbor to atom A, but that does not imply atom A will be in
the neighborhood set of atom B) which can artificially increase
the number of unique environments (i.e., there is an over-
partitioning of the configuration space). This is compensated
for by employing a machine learning algorithm to determine
relationships between otherwise discrete signatures and
consolidate similar environments that have different signatures.
Reinhart et. al subsequently developed a modified version of
their original algorithm, which they call the “fast NGA” (fNGA)
algorithm (Reinhart and Panagiotopoulos, 2018), which defines
neighbors using a Delaunay triangulation (similar to PTM), and
which uses graphlets to dramatically reduce the computational

cost of the consolidation step. The present work can be seen as a
simplified version of Reinhart’s original approach.

While all of these methods are effective at classifying non-
crystalline atomic environments, they are complex and in some
cases computationally expensive. In this paper we present a
comparatively simple alternative based on CNA to identify
arbitrary local environments without the use of a predetermined
library of structures. Because of its simplicity and the fact that
it only requires some minor post-processing (code provided
in Supplementary Material) of traditional CNA data that is
already ubiquitously available in existing software packages,
our approach can be easily adopted. While our method, like
others, suffers from over-partitioning of the space of unique
atomic environments, we show that it is, nevertheless, possible to
gain insight into important structure-property relationships. We
demonstrate the usefulness of this technique by characterizing
the unique atomic environments (UAEs) present in the 388 GBs
of the Olmsted data set (Olmsted et al., 2009). We also test the
recent hypothesis (Banadaki and Patala, 2016) that the structures
of 63 GBs may decompose into facets of the GBs occupying
the corners of the corresponding GB plane fundamental zone
(FZ). Finally, we give a brief example of how the UAEs identified
using our approach might serve as inputs to machine learning
strategies for the development of atomic structure-property
models for GBs.

3. METHODS

3.1. Traditional Common Neighbor Analysis
In the traditional CNA method, a set of three indices

(

j, k, l
)

is
defined, which describes the topology of the graph formed by
the nearest neighbor atoms (see Figure 1). The three indices are
computed for each neighboring atom to define their relationship
to the central atom. The first index j enumerates the number
of shared nearest neighbors (e.g., in Figure 1 the four light
purple atoms are nearest neighbors of both the central atom
and the dark purple atom, so for the dark purple atom j = 4).
The index k enumerates the number of bonds between shared
nearest neighbors (e.g., in Figure 1 there are two dashed purple
lines indicating two distinct bonds between shared nearest
neighbors, so for the dark purple atom k = 2). Finally, the index
l enumerates the number of bonds in the longest bond-chain
formed by shared neighbors (e.g., in Figure 1 the dashed purple
lines do not share an atom, so the longest bond-chain between
shared nearest neighbors is 1, giving l = 1 for the dark purple
atom). CNA indices are calculated for each atom pair. The local
environment (i.e., “atomic structure”) of a particular atom is then
defined by the set of CNA indices of all of its nearest neighbors.
As has been done in prior literature (Stukowski, 2012; Reinhart
et al., 2017), we refer to this as an atom’s CNA signature to
distinguish it from the atom’s CNA indices. For example, the
CNA signature of an atom whose local structure corresponds
to an FCC lattice would be denoted {12× (4, 2, 1)}, indicating
that it possesses 12 nearest neighbors, each with CNA indices
of (4, 2, 1). An atom with a less symmetric local environment,
such as one belonging to a GB might have a CNA signature
of {2× (3, 1, 1) , 3× (4, 2, 1) , 2× (4, 2, 2) , 2× (4, 3, 3) , }
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FIGURE 1 | Illustration of the process for determining CNA indices and the CNA signature, concept inspired by Reinhart et al. (2017). In (A) an atom is shown (central

yellow atom, which has been reduced in size for visual clarity) together with its nearest neighbors. The corresponding graph representation is provided in (B). The light

colored symbols represent the nearest neighbors shared with the central atom (four for the purple neighbor and four for the green neighbor). Solid lines represent

bonds between neighbors of the central atom, while dashed lines represent bonds between shared neighbors (two for both the purple and green neighbors). For the

purple neighbor the shared bonds (dashed lines) are not connected, so k = 1, but for the green neighbor the shared bonds are connected so k = 2. Because of the

symmetry of this graph, there are six neighbors with the same indices (4, 2, 1) as the purple atom (represented by circles) and six with the same indices (4, 2, 2) as the

green (represented by squares). Consequently the CNA signature for the central atom is
{

6× (4, 2, 1), 6× (4, 2, 2)
}

, which represents an HCP atomic environment.

{1× (4, 4, 4) , 2× (5, 4, 4)}, indicating a total of twelve nearest
neighbors, but which have different CNA indices.

We note that neighbors can be identified using various
methods, the primary ones being a fixed cutoff radius or an
adaptive cutoff (Stukowski, 2012; Reinhart et al., 2017). In this
work we chose to use a fixed cutoff of 3.5Å (which falls between
the first and second nearest neighbors for the FCC lattice, see
Figure 3A). The fixed cutoff was chosen both because of its
simplicity and because it resulted in fewer unique signatures
than the adaptive methods (2205 vs. 3716) for the structures that
we analyzed.

Once the CNA signature of every atom has been computed,
atomic structures are identified by comparison with the CNA
signatures of a predefined library of known structures, typically
limited to FCC, HCP, BCC, and ICO. In standard usage, any
atom whose CNA signature does not match that of one of
the predefined structural templates remains unclassified and is
labeled as “other.” This is sufficient to identify the location of
defects because “other” atoms typically are found at defects.
However, it is generally insufficient to resolve the structure of
those defects. Because GBs consist of mostly “other” atoms,
their internal atomic structure cannot typically be resolved.
Furthermore, if two GBs both contain all “other” atoms, it is
difficult to distinguish between them.

3.2. Fully-Leveraged CNA
To address this issue, we note that the information necessary to
distinguish “other” atoms from one another is already available
and encoded in their respective CNA signatures, it is just
typically ignored in standard practice. To exploit this information
one must simply identify all of the unique CNA signatures;
these define distinct atomic structure classes; in some sense
this list constitutes an extended structure library. Atoms are
then classified using this extended structure library. However,
it is constructed at the time of analysis and is compatible with
arbitrary atomic structures (one does not need to know what

structures they are looking for a priori). Furthermore, the “other”
category is entirely eliminated as all atoms are classified and
belong to one of the UAEs that were identified.

To extract the complete CNA signatures for each atom in
the structures that we analyzed, there are built-in functions that
can be run as part of a pipeline in the Open Visualization Tool
(OVITO) (Stukowski, 2010), and an example python script is
available in the online OVITO documentation. We modified this
script for our particular application, and we provide ourmodified
version in the accompanying Supplementary Material. Once
extracted, the unique CNA signatures were then identified in
MATLAB and each was assigned a unique numerical class ID (we
also provide this code in the Supplementary Material), which
was subsequently imported into OVITO as a custom particle
property, allowing for color-coding and visualization.

4. RESULTS AND DISCUSSION

4.1. Classifying “Other” Atoms in GBs
We applied the fully-leveraged CNA approach to characterize all
of the atoms in the 388 GBs from the Olmsted data set (Olmsted
et al., 2009), which contains atomic structures for a total of 388
GBs in Al with variation across all five crystallographic degrees
of freedom, including 41 63 GBs. Here we present the results
of that analysis. The vast majority of the atoms belong to the
grain interiors and are FCC, and could be easily characterized
by existing methods. We, therefore, focus on the GB atoms,
which are generally classified as “other”/unidentified structures
by reference structure based techniques. We define an atom as
belonging to the GB if at least one of the nearest neighbors is
not FCC. This results in all of the non-FCC atoms, as well as
many FCC atoms inside or adjacent to the GB being identified
with it (for some tilt GBs, if the dislocation spacing is sufficiently
large there will be FCC atoms in the GB plane, that are entirely
surrounded by other FCC atoms, which would not be counted
as GB atoms by this definition.). Using this definition, there are
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a total of 462,955 GB atoms, out of a total of 11,922,451 atoms
contained in the Olmsted data set (the non-GB atoms belong
to the bulk crystal and are all FCC). While some GBs properly
contain FCC atoms in their interior (e.g., low-angle GBs have
FCC atoms between dislocations), the focus of this work is on
characterizing non-FCC atoms. Consequently, we will present
our results in two ways: (i) relative to all 462,955 GB atoms (FCC
and non-FCC), and (ii) relative to only the non-FCC GB atoms
(of which there are 227,401).

Figure 2A shows the distribution of GB atomic environments
across all 388 GBs for the fully-leveraged CNA approach. This
shows that out of the nearly 500,000 GB atoms (across all 388
GBs), there are 2205 unique CNA signatures. However, noting
the log-scale in the y-axis, only 448 signatures are needed to
account for approximately 90% of the non-FCC GB atoms (see
Figure 2B), and only 167 are needed if the GB atoms with
FCC structure are included1. While this still represents a non-
negligible number of unique environments, it is a considerable
reduction in dimensionality for a general set of grain boundaries,
which would otherwise require a total of at least 682, 203
parameters to describe the atomic configurations (3 parameters
for each atom Rosenbrock et al., 2017).

We note that, using an alternative spatially continuous
descriptor, smooth overlap of atomic positions (SOAP) (Bartók
et al., 2013), Rosenbrock et al. initially found 800,000 UAEs for
the same 388 GBs in Ni, using a neighborhood cutoff distance
of 5Å (Rosenbrock et al., 2017). In the SOAP method, as well as
other methods such as PTM, a similarity measure is employed,
enabling two structures that differ by only a small perturbation
to still be classified as the same environment, which is one way
to correct for the overpartitioning phenomenon. After using
a similarity metric within a machine learning framework the
original 800,000 UAEs were consolidated to only 145 distinct
UAEs. We note that, as with any similarity based consolidation
approach, the resulting number of unique environments depends
on the user specified similarity threshold.

The simple approach to UAE identification embodied in the
fully-leveraged CNA does not employ a similarity threshold,
so it is expected that the UAE space will be over-partitioned.
This manifests itself in the relatively long-tailed distribution of
UAEs in Figure 2, which are produced by small deviations in
atomic position that cause a single environment to produce
multiple CNA signatures (i.e., UAEs that are not frequently
observed are most likely slightly distorted versions of other
UAEs). The underlying cause of this phenomenon is the difficulty
in unambiguously defining atomic neighbors in non-crystalline
regions. To illustrate this, compare the radial distribution
function (RDF) for bulk FCC with that of a grain boundary, as
shown in Figure 3. The clear separation of the first and second
peaks—corresponding to the first and second nearest neighbors,
respectively—in the RDF of the FCC lattice (Figure 3A)
facilitates the selection of an appropriate neighbor cutoff radius.
However, as expected, the RDF for the grain boundary atoms

1Including the GB atoms that have FCC structure only adds one UAE, but because
GB atoms that possess FCC structure make up a significant percentage of the total
GB atoms, fewer UAEs are required to represent 90% of the total GB atoms.

(Figure 3B) does not show a clear separation between first and
second neighbors, making CNA sensitive to small perturbations
of atomic position and changes in the cutoff radius. This also
means that the number of UAEs identified by the fully-leveraged
CNA approach of the present work depends on the user chosen
cutoff radius. This challenge exists for any method that attempts
to characterize GB atoms, because there is no clear choice as to
which atoms should be included in the neighborhood, and the
resulting structures are likely to over-partition the UAE space.

As mentioned earlier, work has been done by Reinhart et al.
(2017) to establish a machine learning approach to identify
environments that have similar structure but different CNA
signatures and combine them into a single environment (i.e.,
clustering in the UAE space). This effectively implements a
similarity metric for CNA, and was successful in its application
to surfaces of colloidal crystals. However, this process is
computationally expensive and does not result in a single
universal partitioning of the UAE space, so the repartitioning
would need to be recalculated (or at least updated) for every new
data set to be characterized. In spite of the overpartitioning that
results from the simple fully-leveraged CNA approach, and in
the absence of environment consolidation, we find that useful
analysis can still be performed to evaluate GB structure-property
models as will be described in section 4.3.

For the subset of 63 GBs, the number of UAEs is
reduced considerably. Figure 4 shows the distribution of atomic
environments found in the subset of 41 63 GBs, for which
there were only 117 unique CNA signatures. Moreover, the
vast majority of the GB atoms (roughly 90%) correspond to
one of just 44 UAEs (or only 29 UAEs if GB atoms with FCC
structure are included). This kind of dimensionality reduction for
descriptions of GB atomic structure may make inference of GB
atomic structure-property models significantly more tractable.
Furthermore, this information can be used to compare the
structural similarity of different GBs as will be discussed in
section 4.3.

4.2. Visualization
Without resorting to the more advanced machinery of SOAP or
Reinhart’s machine learning approach, most analysis of atomic
structures relies on the simpler reference structure based crystal
structure identification techniques. Because they were designed
to identify crystalline regions, and not GBs, 50%−98% of the GB
atoms in the Olmsted data set are, unsurprisingly, classified as
“other” by the reference structure based techniques, making the
atomic structure of these GBs largely opaque to classical analysis.
As revealed by our fully-leveraged CNA technique, the fact that
only 44 UAEs dominate the 63 GBs studied here suggests the
possibility of discovering new GB structural information for
very little computational effort, and within the familiar CNA
framework. We illustrate this through visualization, by coloring
GB atoms according to their UAE identifier. As an example,
Figures 5A,B provides a rendering of a 63 [5̄12̄] GB with atoms
colored according to standard practice (using the traditional
CNA approach). The FCC atoms (in green) are identified, but
all of the atoms at the GB are classified as “other”/unidentified
environments. In contrast, Figure 5C shows the same GB atoms
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FIGURE 2 | (A) Histogram of UAEs found in the 388 Omlsted GBs. Note that this is on a log scale and there are approximately 5× 105 GB atoms. (B) Cumulative

sum of the proportion of atoms that can be described using a given number of UAEs. Approximately 90% of the non-FCC GB atoms can be described by one of the

448 most prevalent UAEs (only 167 UAEs are required if the GB atoms with FCC structure are included).

FIGURE 3 | (A) The radial distribution function (RDF) for an FCC lattice calculated in OVITO and (B) the RDF for the grain boundary atoms (a 663 [51̄3̄] GB was used

as a representative example).The distinct peaks in the bulk FCC make it easy to choose an appropriate cutoff distance for neighbor identification, however the more

continuous nature of the GB RDF causes CNA to be more sensitive to small perturbations in atomic position and changes in the cutoff.

colored using the atomic environment classes identified by our
fully-leveraged CNA technique. It is evident that this GB contains
a structured arrangement of atomic environments and is quasi-
two dimensional. This new approach reveals structure that was
previously unresolvable using the common crystal structure
identification techniques, and for far less computational effort
than the more advanced techniques.

In addition to the ability to easily obtain important structural
information for a single GB, coloring each atom according
to its local environment facilitates identification of structural
similarity among different GBs. In the case of 63 GBs, it has
been hypothesized that GBs may form facets whose structure
corresponds to that of the GBs that occupy the corners of the
relevant boundary plane fundamental zone (FZ) (Banadaki and
Patala, 2016). However, a test of this hypothesis would require

comparison of the atomic structures of various GBs, which would
be difficult using reference structure based descriptors that leave
nearly all of those atoms unclassified. For example, the top row
of Figure 6 shows three different 63 GBs that are near each
other in the FZ. While terrace-like features are apparent, it is
unclear whether these represent facets of the same structure.
Using the fully-leveraged CNA procedure, the bottom row of
Figure 6 makes it clear that each of these GBs do in fact contain
very similar environments, giving some evidence in support of
the faceting hypothesis. A more complete analysis of faceting
in 63 GBs, enabled by the fully-leveraged CNA technique, is
provided in section 4.3.

Visualizing a grain boundary in this manner also highlights
higher-order defects, or defects inside of other defects (note the
dark purple environments that decorate the ledges in Figure 6).
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FIGURE 4 | (A) Histogram of UAEs found in 63 GBs. The large spike at environment 1 corresponds to the FCC structural type and is due to the inclusion of the first

layer of FCC atoms as part of the GB. (B) Cumulative sum of the proportion of 63 GB atoms that can be described using a given number of UAEs. Approximately

90% of the 63 atoms correspond to one of the 44 most prevalent UAEs.

FIGURE 5 | (A) OVITO rendering of a 63 [521̄] GB, with atoms colored by

traditional CNA. Green atoms are FCC, white are “other”. Notice that all of the

GB atoms remain unidentified. (B) All FCC atoms removed. (C) Atoms colored

by the UAE IDs obtained from our fully-leveraged CNA procedure.

4.3. Application
Here we apply the fully-leveraged CNA technique to investigate
the relationship between atomic structure and GB properties. As
mentioned previously, it was recently hypothesized by Banadaki
and Patala (2016) that 63 GBs may be composed of facets whose
structure corresponds to that of the 3 GBs that define the corners
of the 63 GB plane FZ. Based on this hypothesis, Banadaki
and Patala developed a structure-property model to predict the
GB energy of an arbitrary 63 GB as a weighted average of
the GB energies of the FZ corners. This model showed good
agreement with GB energies calculated by MD for many cases.
However, the GB structures were never analyzed to test whether
the hypothesized structural faceting actually occurred. The fully-
leveraged CNA approach presented here provides an opportunity
to test this hypothesis.

The total number of UAEs found in each of the GBs that define
the corners of the 63 GB plane FZ are provided in Table 2. It is

FIGURE 6 | Visualization of three 63 GBs (boundary plane is indicated in

brackets), (above) with atoms colored using traditional CNA available in

OVITO, and (below) colored by the UAEs found during the fully-leverage CNA

procedure.

notable that the UAEs appearing in each of the corner GBs form
disjoint sets. This implies that they are in some sense orthogonal
structures, which might at first appear to support the possibility
of faceting. However, the total number of environments (117)
found across all of the 4163 GBs is greater than the total number
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TABLE 2 | Summary of UAEs found in the 63 fundamental zone.

GB Plane # of UAEs

[111] 1

[21̄1̄] 6

[101̄] 5

TOTAL 12

These environments are present in many of the non-corner GBs, but other environments

are also present, increasing the overall GB energy.

of environments found in the FZ corners (12), and, as shown in
Figure 7, these additional environments are not concentrated at
ledges between facets, but constitute significant portions of the
non-corner GBs.

Several key observations can be derived from Figure 7. First,
there are in fact some regions of the FZ where the GBs are
made of facets of the corner GBs. In particular, GBs near the
[111] coherent twin (θ = φ = 0) show obvious facets whose
structure is that of the coherent twin. Also, GBs along the right
boundary of the FZ (θ = 90◦) show some evidence of faceting
(this behavior near the [21̄1̄] corner was also noted by Banadaki
and Patala, 2017), though for many of these GBs the structure
of these facets does not correspond to any of the FZ corners. As
for the rest of the FZ, there is no clear evidence of faceting for
the Olmsted Al GBs. It is important to note, however, that the
ability of a GB to facet in an atomistic model may depend on
the size of the simulation cell that was employed to construct
it (see Race et al., 2014; Humberson and Holm, 2017, for a
discussion of the impact of simulation cell size), so that it is
possible that if larger simulation cells were used, faceting might
be observed more generally. Moreover, it has been shown that
there can be many metastable atomic structures for the same
GB (Han et al., 2017), some of which have nearly degenerate
energies. Thus, it is also possible that there are distinct iso-
energetic configurations, or that the atomic structures in this data
set may not be the lowest energy configurations, which might
otherwise exhibit the hypothesized faceting structure. Indeed,
Banadaki and Patala found atomic structures for the 63 GBs
with considerably lower energies in many cases (Banadaki and
Patala, 2016), which may have exhibited faceting more generally,
and this may be one explanation for the better fit of the faceting
model’s energy predictions to their data than to the Olmsted data
(see Figure 9). Regardless of whether or not the atomic structures
in the Olmsted data set are ground state structures or (at least
in some cases) metastable structures, the fully-leveraged CNA
approach can be applied to characterize the atomic structure that
is present, whatever it happens to be. Furthermore, if ground
state structures were available, our fully-leveraged CNA approach
would easily identify more general faceting if it were to occur in
those structures.

Although structural faceting does not occur generally for
the Olmsted atomic structures, relatively smooth trends in the
composition of UAEs are observed across the FZ. Figure 8 shows
the fraction of atoms in each GB whose atomic environments
match those of each of the FZ corners. For all three corners,
smooth trends in atomic environment composition are observed

along θ = 90◦ from [21̄1̄] to [101̄] (for the [21̄1̄] corner it
is smooth, but not monotonic, see Figure 8B). Smooth trends
also occur along φ = 0 from [111] to [21̄1̄] and near the
coherent twin. Furthermore, as the crystallographic distance
to one of the corner GBs increases, the proportion of atomic
environments belonging to that corner decreases. This suggests
that in the absence of faceting (which represents a sort of
structural segregation behavior) there may be a sort of mixing
behavior of atomic environments from each of the FZ corners for
these GB structures.

Because we do not observe structural faceting generally,
it is not surprising that the faceting model does not predict
the energies of the Olmsted data set well. However, for some
regions of the FZ there are also deviations between the faceting
model’s predictions and the calculated GB energies for the
lower energy atomic structures obtained by Banadaki and Patala.
It is notable that where these deviations do occur, they are
almost exclusively underpredictions. Our observations here may
partially explain this behavior. The faceting model predicts GB
energy as a weighted average of the energies of the GBs at
the FZ corners, which ignores the energetic contribution of
the line defects that will likely exist at the junction of distinct
facets, and underpredictions are therefore consistent with this
omission. These line defects are likely to be composed of atomic
environments that are not present in the FZ corners, and which
may have higher cohesive energies. In fact, we find that the non-
corner atomic environments have an average cohesive energy2

that is 3.5 × 10−21 J (0.022 eV) higher than the average for the
atomic environments that belong to the FZ corners. This may
seem like a small difference, but because many GBs contain a
large portion of non-corner environments (a median of 49%
of the GB atoms) the cumulative effect can be significant. A
rough estimate is illustrative: if 50% of a GB’s atoms (e.g., 500
of 1000) are non-corner environments and possess the average
non-corner environment cohesive energy (−5.30 × 10−19 J

or −3.31 eV) then with a GB area of 1800 Å
2
(the average

cross-section for an Olmsted simulation cell) the non-corner
environments would contribute approximately 0.097 J/m2 to
the GB energy, which is similar to the magnitude of the
underpredictions shown in Figure 9.

4.4. Simple UAE Model
This suggests that a model based on atomic environments, might
provide improved predictions for GB energy. We note that
important work in this area has already been performed by
Rosenbrock et. al within the SOAP framework (Rosenbrock et al.,
2017). The rigorous development of such a model is beyond the
scope of the present work, whose primary objective has been to
present a simple atomic structure characterization technique (the
fully-leveraged CNA approach) that enables characterization of
GB atomic structure that was unresolvable using crystal structure
identification approaches. Nevertheless, we provide a simple and

2We computed the cohesive energies in LAMMPS (Plimpton, 1995) using the same
potential that Olmsted et. al used to produce these Al structures (the Ercolessi &
Adams potential for aluminum Liu et al., 2004).
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FIGURE 7 | Rendering of the 41 63 GBs from the Olmsted data set, with atoms colored by their UAE ID. Position in the FZ is relative and approximate (exact

placement would cause some images to overlap). Colors were selected manually for the most frequently occurring UAEs in an effort to maximize visual differences

between atoms of different UAE ID that are near each other; however, some less frequently observed UAEs do share the same color.

FIGURE 8 | (A–C) Fraction of GB atoms whose local environment belongs to the set of UAEs present in each of the respective corners of the fundamental zone and

(D) fraction of environments not present in any of the FZ corners.

brief example of how the resulting UAEs might be incorporated
into machine learning or other model development approaches.

We treat the fraction of eachUAE as a predictor (independent)
variable and the energy of the GB as the response (dependent)
variable. This implies a 2205 dimensional space (corresponding
to the 2205 UAEs observed across all 388 GBs). We employ

PCA to perform feature transformation and selection and find
that only 84 principle components (linear combinations of the
original variables) are required to explain 95% of the variance
in the data. Thus, we have reduced the dimensionality of the
problem from 2205 to 84 dimensions. Using these 84 transformed
variables, we employ 5-fold cross-validation to train a simple
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FIGURE 9 | Comparison of calculated GB energies for GBs that lie along the edges of the 63 fundamental zone with the predictions of Banadaki and Patala’s

faceting model (Banadaki and Patala, 2016). Two data sets of calculated GB energies are included: (open squares) those from Olmsted et al. (2009) and

(semi-transparent filled circles) those from Banadaki and Patala (2016). The predictions of the UAE model are also included (filled squares), for comparison with the

Olmsted simulations (open squares).

linear regression model. Comparison of the resulting model
to the calculated GB energies for all 388 GBs is provided in
Figure 10, with the subset of 63 GBs highlighted. Comparison
of the model predictions to the Olmsted simulations for the
subset of 63 GBs as a function of boundary plane orientation
is also provided in Figure 9 (compare filled vs. open squares).
The resulting model predictions agree well with the calculated
values, and the model predicts the correct GB energy with less
than 10% error for 89.69% of the 388 GBs (and 92.68% of the
63 GBs). We note, in particular, the improved predictions of the
UAE model across the θ = 90◦ arc of the FZ from [21̄1̄] to [101̄]
(the green filled squares agree well with the green open squares
in the right panel of Figure 9) as compared to the faceting model
(solid green line).

5. CONCLUSION

In this work, we have presented an atomic structure
characterization technique (the fully-leveraged CNA approach)
that (i) can characterize arbitrary atomic environments, while
also being both (ii) simple to implement, and (iii) built upon
a descriptor that is already familiar to the atomistic modeling
community. This enables characterization of GB atomic
structure that was previously unresolvable using crystal structure
identification techniques, and for lower computational effort
than more advanced techniques. We show that it is possible to
describe GB atomic structure in terms of the proportion of the
unique atomic environments (UAEs) resulting from the use of
our method.

We find that a relatively small number of UAEs account for
a large proportion of the GB atoms, suggesting the possibility of
a significant dimensionality reduction in the description of GB

FIGURE 10 | Comparison of the predictions of the model—trained using the

UAE fractions as variables—with the true calculated GB energies from the

Olmsted data set (Olmsted et al., 2009).

atomic structure. Specifically, we found that to describe 90% of
the non-FCC GB atoms present in the 388 GBs of the Olmsted
data set, only 448 UAEs (CNA signatures) are required, and
for the subset of 41 63 GBs only 44 UAEs are necessary. This
dimensionality reduction suggests that these UAEs can act as
atomic structure descriptors that might be incorporated into
machine learning approaches to develop improved GB structure-
property models.
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We demonstrated how visualization of the UAEs reveals
important GB structural information. As an example, we
investigated the possible description of 63 GBs as being
composed of facets of the GBs occupying the corners of the
corresponding boundary plane fundamental zone (FZ). We
found that for the Olmsted data set such faceting does occur in
certain regions of the FZ, but not generally. Instead, an apparent
mixing of atomic environments from the GBs defining the FZ
corners was observed, together with the appearance of numerous
environments not present in the FZ corners. These observations
are consistent with the good agreement of the facetingmodel with
calculated GB energies for some regions of the FZ, as well as the
observed underprediction in other regions.

Finally, we provided a brief example to illustrate how the
UAE fractions can be used as GB atomic structure descriptors
that can serve as input to machine learning approaches for the
development of GB atomic structure-property models.
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