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Dislocations—the carrier of plastic deformation—are responsible for a wide range of

mechanical properties of metals or semiconductors. Those line-like objects tend to

form complex networks that are very difficult to characterize or to link to macroscopic

properties on the specimen scale. In this work a machine learning based approach

for classification of coarse-grained dislocation microstructures in terms of different

dislocation density field variables is used. The performance of the model combined

with domain knowledge from the underlying physics helps to shed light on the interplay

between coarse-graining voxel size and the set of suitable or even required density

variables for a faithful microstructure characterization.
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1. INTRODUCTION

One of the primary mechanisms of plastic deformation in crystalline material is the movement
of dislocations. Dislocations are one-dimensional lattice defects that cause a distortion of the
crystallographic lattice. The distortion results in a stress state through which dislocations interact.
Once subjected to a sufficiently large stress they may start to move within a crystallographic plane,
the slip plane. In addition to the interaction through their stress fields, dislocations may also form
junctions or even may climb, i.e., move perpendicular to their slip plane. Thus, understanding the
complex relation between dislocation microstructures and the emerging mechanical behavior is
important from a fundamental point of view but is also required for designing new materials with
tailored material properties. To this end, both experimental as well as numerical approaches can
give important input to such developments.

In recent years, experimental methods reached the point where a three-dimensional imaging of
dislocations is possible (Chen et al., 2013; Yamasaki et al., 2015). On the other side of the spectrum,
due to improvements in algorithms and increasing computational power, numerical methods are
able to simulate the evolution of dislocation microstructure in large specimens of up to several
tens of µm (Rao et al., 2019). The drastic increase in the amount of available data sets as well as
the degree of complexity of such dislocation microstructure results in a growing need for suitable
algorithms and concepts for their analysis. The recent resurgence of machine learning algorithms
offers a novel way for exploring this data in great detail.

Machine learning algorithms have been successfully applied in a variety of fields within
materials science so far, e.g., prediction of stable compounds (Saal et al., 2013), prediction of the
crystal structure (Ghiringhelli et al., 2015), band gap prediction (Dey et al., 2014), microstructure
characterization (Chowdhury et al., 2016; Bostanabad et al., 2018), or material structure-property
linkages (Cecen et al., 2018). The challenge of machine learning in the context of dislocation
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microstructures is the extraction and selection of features
that are able to accurately capture the properties of both
single dislocations, as well as dislocation networks. Features
characterizing dislocation microstructures should capture as
much of their geometrical character with as few parameters
as possible. In typical dislocation dynamics simulations the
microstructure is represented as a network of lines each of
which requires many geometrical parameters for its definition.
This makes it problematic to directly operate with these
objects. We will therefore take a new approach: Based on
the discrete-to-continuous (D2C) framework (Sandfeld and
Po, 2015; Steinberger et al., 2016), which “borrows” the field
variables of a continuum theory of dislocation dynamics. This
method was already successfully used to study the emergent
microstructural features of molecular dynamics simulations of
plastic deformation via scratching (Gunkelmann et al., 2017) and
during shock loading (Kositski et al., 2018).

In the following, we will start by introducing the main
steps for converting mathematical lines into continuum field
variables along with the most important simulation methods—
the “discrete dislocation dynamics”—which provides the data for
all subsequent analysis. We will then apply the briefly introduced
machine learning algorithms to an example problem, which
will allow us to study the information content of each of these
field quantities. This will help to understand whether different
sets of field variables suffice as features for machine learning
dislocation microstructures.

2. METHODS

In the following, the D2C framework is outlined as a means of
converting discrete dislocation microstructures into continuous
fields while retaining a variable amount of information. Then,
the generation of dislocation microstructures within samples via
discrete dislocation dynamics is summarized. Lastly, the machine
learning algorithms used to classify the sample size based on their
dislocation microstructure is given in detail.

2.1. D2C—Discrete-to-Continuous
The D2C framework (Sandfeld and Po, 2015; Steinberger et al.,
2016) is based on treating dislocations as directed curves with
additional physical properties, i.e., the slip plane normal, and the
Burgers vector. Dislocations represent the boundary of an area
over which slip displacement between two adjacent lattice planes
has occurred. Dislocations can not end at arbitrary sites within
the crystal, but only at free surfaces, grain boundaries, other
dislocations, or other defects. A dislocation is characterized by

1. its curve parametrization, i.e., where it is in space,
2. its Burgers vector, b, which gives the magnitude and direction

of the slip displacement,
3. the unit normal vector of the slip plane, n, over which the slip

occurred, and
4. an orientation, represented locally by the unit line vector l, the

tangent of the dislocation line.

Locally, the character of a dislocation depends on its orientation
with respect to the Burgers vector. If l ‖ b, the character is of

“screw” type, if l ⊥ b, the character is of “edge” type, in all other
cases it is of “mixed” type.

The so-called Kröner–Nye tensor (Nye, 1953; Kröner, 1958) is
defined via

α =
∑
S

̺SbS ⊗ lS =
∑
b

2π∫

0

2π∫

0

̺b(θ ,ϕ)b⊗ l(θ ,ϕ)dϕdθ , (1)

where S denotes a possible set of dislocations within a volume
sharing a Burgers vector and line tangent. The integral over the
spherical angles θ and ϕ denotes an integration over all possible
orientations in three-dimensional space. It was the first attempt
to describe dislocations along with structural information as
continuous fields. As opposed to simplistic measures as, e.g.,
the total dislocation density ρt, which is defined as the line
length per averaging volume, the Kröner–Nye tensor captures
the local dislocation character in terms of the relative orientation
of the line directions of the dislocations with respect to the
Burgers vector. However, contributions of dislocations with
opposite character cancel each other out: e.g., consider two
straight line segments with the same Burgers vector but opposite
line directions l

+ and l
− = −l

+: their average contribution
is b ⊗ l

+ + b ⊗ l
− = 0. Thus, only information about so-

called “geometrically necessary” dislocations, i.e., dislocations
that contribute to plastic distortion within the averaging volume,
is taken into account. A number of continuum theories for
predicting the evolution of dislocations are based on the Kröner-
Nye tensor (Acharya and Roy, 2006; Roy et al., 2006; Xia and
El-Azab, 2015).

Another theory for evolving continuous dislocation fields is
the so-called higher-dimensional continuum dislocation dynamics
theory developed by Hochrainer and co-workers (Hochrainer
et al., 2007; Sandfeld et al., 2010). Within this theory, dislocations
are represented by density and “curvature density” fields, both
of which are not only a function of the spatial position r, but
also of the orientations θ and ϕ of the dislocations. While this
concept contains many important information, the extra degrees
of freedom also add a high degree of complexity. This can be
remedied by expanding the density and curvature fields using a
Fourier series. The resulting infinite hierarchy of field equations,
however, can then be truncated. For the density field of n-th order
it is (Hochrainer et al., 2014; Hochrainer, 2015)

ρ
(n)(r) =

2π∫

0

2π∫

0

ρ(r, θ ,ϕ)l(θ ,ϕ)⊗ndϕdθ , (2)

with l(r)⊗n denoting the n-times outer product of l(r). The
zeroth-order term of the series,

ρ(0)(r) =
2π∫

0

2π∫

0

ρ(r, θ ,ϕ)dϕdθ , (3)
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TABLE 1 | Features extracted from the dislocation microstructures following

Equation (6).

Microstructure feature Symbol fc(u)

Line density ρ(0) 1

Line excess density ρ
(1)

l(u)

Line direction density ρ
(2)

l(u)⊗ l(u)

Kröner–Nye tensor α bc ⊗ l(u)

The symbols refer to the ones used by their respective continuous field theory, l(u) denotes

the line vector of the dislocation, and bc its Burgers vector.

recovers the total dislocation density at position r. The
first-order term,

ρ
(1)(r) =

2π∫

0

2π∫

0

ρ(r, θ ,ϕ)l(r)dϕdθ , (4)

represents the “line excess density”. If computed separately for
each slip system, it is the “geometrically necessary” dislocation
density for this slip system. The second-order term,

ρ
(2)(r) =

2π∫

0

2π∫

0

ρ(r, θ ,ϕ)l(θ ,ϕ)⊗ l(θ ,ϕ)dϕdθ , (5)

denotes the “line direction density”. If computed separately for
each slip system in a coordinate system that is based on the
Burgers vector of that slip system, it can be interpreted as the
density of edge- and screw-type dislocation character. The theory
based on these fields and an additional field—the curvature
density of the dislocations—is able to represent the kinematics of
dislocation motion for simplified single slip situations, which was
shown by Sandfeld and Po (2015) by comparison with discrete
dislocation dynamics simulations.

Numerically, the computation of the fields based on discrete
dislocation data is carried out in the following way. The
subvolume of interest within a specimen is discretized into voxels
�i. Microstructure features may then be extracted for each voxel
by treating each dislocation as a parameterized curve c(u) via

1

V�i

∑
c∈�i

∫

Lc
�i

fc(u)du, (6)

where u is the arc length, and V�i is the volume of the voxel �i.
fc(u) denotes a field specific term that relies on the geometrical
and physical properties of the dislocation curve c. An overview
of the continuous fields used as features and their corresponding
term for fc(u) is compiled in Table 1.

2.2. The Discrete Dislocation Dynamics
Method
The discrete dislocation dynamics methods represent dislocation
as polygonal chains, i.e., an ordered sequence of segments.
Forces acting on those segments, or their vertices, due to

other dislocations, external load, and/or image forces due to
surfaces are computed, and subsequently used to move the
dislocations according to a velocity law. Additionally, local rules
are implemented to take dislocation reactions like cross-slip
or junction formation into account. A velocity law combined
with the local rules can then be time-integrated to update the
dislocation positions.

2.3. Data Generation and Simulation Set Up
The generation and evolution of dislocation microstructures
were performed using theMODEL discrete dislocation dynamics
code (Po et al., 2012; Po and Ghoniem, 2014). Cube-shaped
copper samples with edge lengths of 30, 60, and 90 nm were
filled with dipolar edge loops that were randomly placed on all
slip systems up to a total dislocation density of ≈ 5× 1016m−2.
Throughout the simulations, the effect of open boundaries
on the dislocations was taken into account and dislocations
were allowed to exit the samples. Subsequently, these random
structures were relaxed without application of an external stress.

Due to the open boundaries image forces act on the
dislocations that attract them to the free surfaces where parts of
them leave the specimen. The attraction is stronger the closer the
dislocation is to the surface. Therefore, we expect the dislocation
density ρ(0) to be smaller at the boundaries of the specimen.
Furthermore, if unhindered, the remaining part of the dislocation
should be oriented perpendicular to the surface. This preference
of dislocation line direction should show in the line direction
density ρ

(2). Thus, the region close to the surfaces should exhibit
dislocation microstructure features that are different from that of
the center of the sample. For simplicity, formation of junctions
was not considered in the present study, which resulted in a large
simulation speedup allowing to generate more samples.

Overall, 306 realizations of the 30 nm specimen, 238 of
the 60 nm specimen, and 207 of the 90 nm specimen were
generated. Due to the relatively small number of samples that
can be investigated in this study, slip system specific dislocation
densities would be prone to overfitting. Instead, only the line
directions of each dislocation within the subvolume are taken
into account regardless of the slip system. The local deformation
character of the dislocation ensemble is therefore only considered
by the Kröner–Nye tensor due to it taking the Burgers vector
into account.

Due to the different size of the samples, the dislocation
arrangement close to the surface can be expected to differ
between the sample sizes. Therefore, we ask the following
question: Can a machine learning model be trained to classify
the sample size based on the dislocation microstructure within
a subvolume at the surface of the specimen?

A 30 × 30 × 30 nm subvolume at the center of the
side oriented toward the negative x-direction was chosen, see
Figure 1. For the 30 nm sample, the whole volume is thus taken
into account, including all the surfaces. In the larger specimen,
the subvolume only contained one free surface. Assuming that
the microstructure features are able to capture the characteristics
of the microstructure, the classification of the 30 nm sample
should be easier than the classification of the 60 nm, and 90
nm samples.
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FIGURE 1 | Sample geometries considered in this work. The subvolumes used for the classification of the specimen size are shown in red. Their size is 30 nm for all

specimen sizes. (A) 30 nm specimen/subvolume. (B) 60 nm specimen with the 30 nm subvolume. (C) 90 nm specimen with the 30 nm subvolume.

2.4. Machine Learning of Dislocation
Microstructures
Machine learning algorithms rely on the description of
samples by common features, that are then typically used
for classification, regression, and/or clustering. A feature is a
measurable property of a sample that provides information
about a sample and puts it into relation with other samples.
Classification describes the procedure of trying to infer a
label for one or several samples based on the features of
other samples with a known label. In this work, a Gaussian
naive Bayes classifier is used, which is briefly explained in the
following. For more details, see Domingos and Pazzani (1997),
and Hand and Yu (2001).

Bayes’ theorem states that the probability P of a sample with
features X̂ belonging to class yi is given by

P(y = yi | X = X̂) = P(X = X̂ | y = yi)P(y = yi)

P(X = X̂)
. (7)

Here, P(A | B) denotes the conditional probability of A under the
condition B. The predicted class then is the class for which this
probability is the highest considering the given feature vector.
Thus, the denominator of Equation (7) becomes irrelevant, as it
does not depend on the class. Both, P(y = yi)—the probability
that the class is yi—and P(X = X̂ | y = yi)—the probability
that the features are X̂ given that the class is yi—are results of
the supervised learning procedure. The former is computed via
the number of times class yi was observed within all training
data with respect to all training data. The latter is assumed
to be modeled by a gaussian distribution for each occurring
class individually, with the mean and standard deviation being
computed from the features of specimen belonging to that class
within the training dataset.

A simple example of the Gaussian naive Bayes classification
can be seen in Figure 2. The samples shown as dots were used to
train a Gaussian naive Bayes classifier. Subsequently, the feature
space was sampled for its classification areas and they are shown
accordingly. Interfaces between these areas are called decision
boundaries and represent ambiguous feature combinations.

FIGURE 2 | Graphical representation of a classification algorithm using two

features to classify samples into three distinct classes, represented by their

color. A Gaussian naive Bayes classifier was trained using the samples seen as

dots and subsequently the areas, whose feature combination would lead to a

specific classification, was colored accordingly. It can be seen that not all

samples would be classified correctly even though they have been part of the

training data.

In this work features used for machine learning are the
microstructure features in the subvolumes of each sample. This is
done to make them comparable w.r.t the voxel size and position
of the features. If, instead, we used the whole specimen size, the
data would not be comparable.

The performance of classification models is then measured
by cross-validation and the accuracy score, i.e., the number of
correctly labeled samples divided by the total number of samples
that were labeled. Additionally, so-called confusion matrices may
be computed. They reveal details of the mislabeling by keeping
track of the true label and the one predicted by the machine
learning model.

To measure the influence of the spatial resolution and its
interplay with the different features on the classification score,
different combinations of spatial discretizations and density
features are applied. Each subvolume was subdivided into up to
8 segments along each direction, resulting in up to 512 voxels �i.
Subsequently, the features were computed within each of those
voxels using the D2C framework.

For each combination of spatial discretization and features,
30 shuffled stratified 5-fold cross-validations were performed to
determine the average accuracy scores and confusion matrices of
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FIGURE 3 | Examples of discrete microstructures found within the inspected subvolumes of the different specimen sizes can be seen in the top row. Note that the

size of the subvolumes is the same, but the specimen they were taken from are different (see Figure 1). The open surface common to all subvolumes irrespective of

the specimen size is in negative x-direction, in this case, to the right. Average total dislocation density ρ(0) for each studied specimen size and two or four voxels per

direction as discretization are shown in the bottom rows.

the models. Throughout this work, the Python packages NumPy
(Oliphant, 2015) version 1.16.0, and scikit-learn (Pedregosa et al.,
2011) version 0.20.2 were used.

3. RESULTS

Dislocation structures in specimens of three different sizes are
created using the open source discrete dislocation dynamics
code MODEL according to the relaxation procedure outlined in
the previous section. Examples for such dislocation structures
within a subvolume are shown in the top row of Figure 3.
All subvolumes exhibit a depletion of dislocations close
to the surface. This behavior is most pronounced for the
30 nm specimens. Applying the D2C coarse-graining to the

discrete dislocation structure we obtain continuous dislocation
dynamics (CDD) field data. To be able to directly compare the
microstructures of different specimen sizes, we cut samples of
equal sizes from each specimen size (compare Figure 1). Typical
density distributions for different specimen sizes and with two
different discretizations are illustrated in Figure 3.

The overall total dislocation density of the 30 nm specimens
is smaller than that of the 60 nm and 90 nm specimens.
Furthermore, the smallest sample also shows a highly symmetric
densitymorphology, while the average total dislocation density in
the larger samples exhibit a gradient, i.e., an increase in direction
of the negative x-direction, with smaller density at the free surface
at the right. Along the other two directions no gradient can be
observed. This is a result of the way how we cut samples out
of the specimens of different sizes: only the smallest sample has
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FIGURE 4 | Average accuracy score of the microstructure features in combinations that are used within their respective theories over the number of voxels along each

axis used for the spatial discretization.

FIGURE 5 | Average accuracy score on the test data set for different features and their combinations. In the right plot the lines for {ρ(0), ρ(2)} and {ρ(1), ρ(2)} coincide
for a larger number of voxels for each direction.

free surfaces everywhere, while the samples from the 60 nm and
90 nm specimens have only one free surface, i.e., the one with
outwards normal pointing into positive x-direction.

Having presented general observations of the microstructure,
the results of the machine learning model are presented in
the following.

Figure 4 shows the average accuracy scores computed from
the machine learning model. They were obtained for different
combinations of microstructure features and for different
coarse-graining voxel sizes. These particular combinations are
commonly used in continuous dislocation simulations models.
It can be seen that in particular for large voxel sizes (≤ 3 ×
3 × 3 voxel) the accuracy score of the Kröner–Nye tensor is
low compared to those obtained for the CDD field variables. For
higher resolutions, the Kröner–Nye tensor α scores higher than

the total dislocation density ρ(0) but is still performing not as
good as usingmore than one CDD feature at the same time. Using
(combinations of) the CDD field variables from Hochrainer’s
CDD theory, the general trend is that a larger number of involved
fields leads to a better or at least comparable score. Using the
direction line density ρ

(2) in addition to the excess line density
ρ
(1) and the total density ρ(0) leads to a significant improvement

in the accuracy score (green curve in Figure 4).
To study inmore detail what the influence of different features

is we investigate the accuracy score for only using a single feature
and for combinations of two features in Figure 5, on the left
and on the right, respectively. If only one voxel is considered
for the spatial discretization, the total line density {ρ(0)} is the
best predictor of the sample size, followed by the direction line
density {ρ(2)}. The latter starts to perform better for resolutions
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FIGURE 6 | Average confusion matrices for different resolutions taking only the total dislocation density {ρ(0)} as feature into account.

of more than one voxel for each direction. The excess line density
{ρ(1)} performs better with higher resolution, performing better
than the total dislocation density {ρ(0)} for more than four voxels
per axis, and better than the direction line density {ρ(2)} for
more than seven voxels per axis. Field combinations involving
ρ
(2) perform better than those without it, the exception being the

highest resolution of eight voxels per axis. For low resolutions the
combination {ρ(0), ρ(2)} is more accurate than the combination
{ρ(1), ρ(2)}. For more than two voxels per direction the accuracy
of the two becomes comparable.

Confusionmatrices for only using the total dislocation density
as feature are shown for different resolutions in Figure 6. There,
the vertical axis shows the real specimen size and the horizontal
axis is the size inferred by the classification algorithm. One
observes that the 30 nm samples are always labeled correctly:
each matrix has a “1” in the top left. Larger samples are
mislabeled more often, with a stronger tendency of mislabeling
the specimen as a too small specimen, i.e., the 90 nm sample
is more often classified as 60 nm than the other way around.
This effect is less pronounced for higher resolutions. At the
same time the accuracy of correctly labeling the 60 nm samples
slightly decreases.

The confusion matrix of the best performing combination of
features and resolutions, {ρ(0), ρ(1), ρ(2)}, for one voxel, is shown
in Figure 7 on the right. The predicted size of 30 nm samples
perfectly matches the actual size. Sixty and ninety nanometer
samples are predicted correctly with an accuracy of above 0.8.
Specimens that could not be predicted correctly were never
labeled as 30 nm, and the degree of false labelings of the two larger
samples (i.e., identifying a 60 nm specimen as a 90 nm and vica
versa) is balanced.

The combination of the Kröner–Nye tensor and a resolution
of two voxel per direction performed worst out of the investigated
combinations. Its confusion matrix is shown in Figure 7 on the
left. While specimens of size 30 nm are not predicted perfectly,
they still remain those that are most accurately predicted. False
predictions are not limited to just the next smaller or larger sizes,
as roughly 5% of 30 nm samples are classified as 90 nm, and
roughly 11% the other way around. Slightly more than half of
the 60 and 90 nm samples are classified as 60 nm.

These two extreme cases also summarize all other
combinations of continuous fields and resolution: The 30 nm
specimens are much more reliably classified than the larger
specimens. If larger specimens are mislabeled, the tendency is
that the 90 nm specimen is classified as being 60 nm more often
than vice-versa.

4. DISCUSSION

4.1. Accuracy of Classifying 30nm vs.
60nm, and 90nm
The confusion matrices show that there is a striking difference
in the accuracy with which subvolumes of 30 nm specimen are
classified compared to the larger specimen. The reason for this is
that the subvolumes of 30 nm specimens have six free boundaries,
whereas the subvolumes of larger specimen only have one. As
seen in Figure 3, this leads to distinct density features for the
30 nm specimens/subvolumes. On the one hand, the overall
dislocation density is lower compared to the larger specimens. As
dislocations are attracted to free surfaces through which they can
leave the specimen, more free surfaces closer to the subvolume
result in a lower density. On the other hand, there is no gradient
of the dislocation density like in the larger specimen. While the
dislocations close to the free surfaces in the larger specimen are
able to leave the samples, dislocations closer to the center of
the specimen can not. On average, this leads to a large density
gradient in the subvolumes of larger samples. These are the
features likely learned by the model and lead to a high accuracy in
distinguishing the 30 nm subvolumes from larger ones, regardless
of the resolution.

Classification of subvolumes of the larger specimen is less
accurate as their basic features are the same: both have one
free surface, while their other surfaces are inside the specimen.
However, the distance of the “inner” subvolume surfaces to
the specimen surfaces is different for the 60 nm and the 90 nm
samples. This likely leads to more subtle differences in the
dislocation microstructure that have to be represented as features
for the machine learning algorithm to recognize them. For this,
two options seem to be available:
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FIGURE 7 | Average confusion matrix on the test data set of the features {α}, {ρ(0), ρ(1)}, {ρ(0), ρ(1), ρ(2)} for low resolutions per axis. The first combination performed

worst, the last best out of all investigated combinations.

FIGURE 8 | Accuracy scores for all feature combinations and resolutions. The features are ordered by their maximum accuracy score, with the best performing

features on top. The dashed line indicates the point after which an increase in resolution results in worse performance.

• Increasing the resolution while keeping the microstructure
features the same. This way, lower order features are not
“averaged out” over large volumes. Figure 4 together with the
confusion matrices seen in Figure 6 show that this is one way
to increase the accuracy of the model.

• Using higher order microstructure features while keeping
the resolution the same. This way, more details of the
microstructure are captured in the same averaging volumes.
Figure 4 and the confusion matrices seen in Figure 7 confirm
that this is also viable for increasing the accuracy.

Both ways also alleviate the asymmetry in mislabeling
subvolumes of the larger specimen. If one looks at the “feature
efficiency,” i.e., how many features are used to get the best
accuracy, including more information via higher order terms of
Hochrainer’s CDD theory is the better solution.

4.2. Resolution and Features
Is it possible to identify a simple or generic recipe that helps to

choose the “right” resolution or “correct” number of features?
To answer this question the accuracy scores for all feature

combinations and numbers of voxels for each direction are
summarized in Figure 8.

When only using one microstructure feature set, the total
dislocation density ρ(0) performs best for low resolutions. While
the performance of ρ(0) remains rather unchanged for higher

resolutions, other single microstructure features perform better

at different resolutions. This can be explained by the length scales
of the features compared to the spatial resolution. If there is only a
single voxel, then the details that are captured by ρ

(2) are averaged
out. The performance increases as the resolution gets higher up
to a point of about two average dislocation spacings. At this point
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the length scale of the details represented by ρ
(2) likely coincides

with the resolution and leads to good performance.
The poor performance for the line excess density ρ

(1) and
the Kröner–Nye tensor α at resolutions below one average
dislocation spacing can furthermore be explained by the
chosen dislocation configuration. Both measures are only able
to describe dislocation configurations that show an excess
of a particular dislocation type that ultimately leads to a
plastic distortion of the lattice. In our example, the average
dislocation character is balanced, i.e., on average there is no
plastic distortion in the specimen. Thus, the local formation of
substructures of different “character excess” is averaged out if
the resolution is chosen too low. As the resolution is increased
and approaches a comparable scale, the performance of these
measures increases and, in some cases, even surpasses that of the
total dislocation density.

Why is it not possible to simply increase the resolution
together with using four or more CDD field variables? As the
resolution increases, so does the number of features and the
likelihood of overfitting. This can be seen within the performance
of the combination of the fields {ρ(0), ρ(1), ρ(2)} in Figure 5.
The performance advantage of {ρ(0), ρ(1), ρ(2)} over {ρ(0)} at
lower resolutions can be attributed to the addition of ρ

(2) alone,
as evident by comparing the performance of {ρ(0), ρ(1), ρ(2)},
and {ρ(0), ρ(2)}. As the resolution is increased, the performance
slightly decreases and reaches another maximum for the
resolution of four voxels per axis. This coincides with an increase
of all field combinations that are containing ρ

(1). Up until this
point the likelihood of having overfitted is small. The subsequent
continuing drop in accuracymay then be attributed to overfitting.

Overfitting, however, may not be the only culprit of a decrease
in performance for higher resolutions. As dislocations are one-
dimensional objects embedded into three-dimensional space, the
size of the voxels, i.e., the size of the domain for statistical
averaging, can be too small. In extreme cases, no correlation may
be found for characteristic dislocation arrangements that due to
a too fine resolution are, e.g., contained in different voxel. The
link to the underlying physics is given by the mean dislocation
spacing, x̄ = 1/

√
ρ0. If the voxel size is smaller than x̄ the

likelihood of finding two dislocations inside the same averaging
volume becomes small. Thus, a single voxel is rather a probe of
properties of a single line segment but will not be able to represent
any non-local structural details of more complex dislocation
networks. In Figure 4 the voxel size as a multiple of the initial
mean dislocation spacing x̄ is indicated on top of the diagrams.
In both plots one can observe that for voxel smaller than ≈ x̄
the accuracy is strongly reduced. Therefore, one can conclude
that the mean dislocation spacing might be a useful quantity
to estimate a reasonable lower limit for the voxel size. This
highlights the fact that including domain knowledge is beneficial.

4.3. Implications of Simplifications of the
Simulations
Clearly, the DDD setup that was used in this work is not entirely
realistic since junction formation was not allowed. However, the
main point still remains valid: continuous fields are sufficient
as features for machine learning of dislocation microstructures.
Junction formation would not hinder us in extracting the line

directions, but actually give us access to more features by, e.g.,
differentiating between lines of “pristine” type and “junction”
type. The number of available features further increases if
junction features such as the resulting Burgers vector or the angle
between junction line and the original dislocation lines were
taken into account. This, of course, also means that more samples
would be required to avoid overfitting.

5. CONCLUSION

A variety of continuous fields “borrowed” from a continuous
dislocation dynamics theory was introduced as potential
machine learning features that are able to describe dislocation
microstructures. Using discrete dislocation dynamics, relaxed
dislocation configurations of samples of different size were
created. Through the D2C framework, the microstructure
features of the discrete data provided by the discrete dislocation
dynamics code were extracted. The performance of these
features was investigated by predicting the size of a specimen
based on samples of dislocation microstructure. It was shown
that the accuracy of machine learning models trained with
these features varies with different sets of microstructure
features and spatial discretizations. Finding the key characteristic
microstructural features in these systems and linking them
to the underlying physics seems to be a very promising
way, not just for “learning dislocation dynamics” but also
for guiding the development of coarse-grained continuum
theories of dislocations, such as, e.g., based on atomistics
(Xiong et al., 2011) or using the phase field method (Rodney
et al., 2003). If a machine learning model were trained
to distinguish between the detailed and the coarse-grained
simulations based on the proposed microstructure features, but
it turned out that the performance is poor it could imply that
the coarse-grained model is able to capture the underlying
mechanisms accurately.

Last but not least, the present work might also be a
first step toward guiding the development of new, possibly
specialized continuum theories of dislocation dynamics since
the classification performance of certain field variables can be
an indicator for its importance. Understanding the interplay
between voxel size and accuracy might be able to guide, e.g., finite
element based simulation frameworks toward an “information-
based” mesh refinement.
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