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Topological constraint theory (TCT) classifies disordered networks as flexible,

stressed-rigid, or isostatic based on the balance between the number of topological

constraints and degrees of freedom. In contrast with the predictions from a mean-field

enumeration of the constraints, the isostatic state—wherein the network is rigid but

free of stress—has been suggested to be achieved within a range of compositions,

the intermediate phase, rather than at a fixed threshold. However, our understanding of

the nature and potential structural signatures of the intermediate phase remains elusive.

Here, based on molecular dynamics simulations of calcium–silicate–hydrate systems

with varying compositions, we seek for some mechanical and structural signatures of

the intermediate phase. We show that this system exhibits a composition-driven rigidity

transition. We find that the fracture toughness, fracture energy, mechanical reversibility,

and creep compliance exhibit an anomalous behavior within a compositional window at

the vicinity of the isostatic threshold. These features are argued to constitute amechanical

signature of an intermediate phase. Notably, we identify a clear structural signature of

the intermediate phase in the medium-range order of this system, which is indicative

of an optimal space-filling tendency. Based on these simulations, we demonstrate that

the intermediate phase observed in this system arises from a bifurcation between

the rigidity and stress transitions. These features might be revealed to be generic to

isostatic disordered networks.

Keywords: intermediate phase, topological constraint theory, rigidity theory, rigidity transition, molecular

dynamics, calcium–silicate–hydrate

INTRODUCTION

Topological constraint theory (TCT), or rigidity theory, offers a convenient framework to describe
the network topology of disordered networks (Phillips, 1979, 1981). In this framework, atomic
networks are considered as mechanical trusses, wherein some nodes (the atoms) are connected to
each other via some constraints (the chemical bonds) (Mauro, 2011; Bauchy, 2019). By simplifying
complex disordered networks into simpler mechanical trusses, TCT captures the important
network topology while filtering the second-order structural details of the atomic network—which
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facilitates the development of predictive composition–property
models (Micoulaut and Yue, 2017; Bauchy, 2019).

In atomic networks, relevant topological constraints comprise
the 2-body radial bond-stretching (BS) and 3-body angular bond-
bending (BB) constraints, which keep the bond distances and
bond angles fixed around their average values, respectively. In
analogy with the stability of mechanical trusses (Maxwell, 1864),
TCT then classifies atomic networks as (i) flexible, when the
number of constraints is lower than the number of atomic
degrees of freedom, (ii) stressed–rigid, when the number of
constraints is larger than the number of atomic degrees of
freedom, and (iii) isostatic, when the numbers of constraints and
atomic degrees of freedom match each other. Due to the lack of
constraints, undercoordinated flexible networks tend to exhibit
some internal floppy modes of deformation (Thorpe, 1983;
Boolchand et al., 1995). In contrast, overcoordinated stressed–
rigid networks are fully locked but exhibit some internal stress
since some constraints become mutually redundant and cannot
all be satisfied at the same time (Wang et al., 2005; Li et al., 2019).
In turn, isostatic networks are rigid but free of any internal stress.

A mean-field enumeration of the topological constraints
predicts that the isostatic state should be achieved at a single
threshold composition that is characterized by nc = 3, wherein
nc is the number of BS and BB constraints per atom and 3 is the
number of degrees of freedom per atom (Phillips, 1979). In a fully
connected network wherein all BS and BB are active, this state
is achieved when the network exhibits an average coordination
number of 2.4 (Mauro, 2011). However, temperature-modulated
differential scanning calorimetry tests have suggested that the
isostatic character can be achievedwithin a range of compositions
rather than at a fixed threshold—wherein glasses exhibit a nearly
zero non-reversible enthalpy at the glass transition (Boolchand
et al., 2001; Bhosle et al., 2012a,b). This suggests that the flexible-
to-rigid and stressed-to-unstressed transitions may not occur
at the same composition threshold, which has been suggested
to arise from a self-organization of the network—which adapts
its structure to become rigid while avoiding the formation of
stress (Thorpe et al., 2000; Chubynsky et al., 2006; Micoulaut
and Phillips, 2007). These two transitions define the intermediate
phase (IP), which separates the flexible and stressed–rigid phases
(i.e., the three topological phases of a disordered network).

Interestingly, isostatic chalcogenide glasses belonging to the
intermediate phase exhibit some unique properties, namely a
reversible glass transition (Boolchand et al., 2001; Chakravarty
et al., 2005), weak relaxation and aging (Chakravarty et al.,
2005; Chen et al., 2010), low propensity for creep (Bauchy
et al., 2017), anomalous mechanical properties (Varshneya
and Mauro, 2007; Bauchy et al., 2016a), superstrong behavior
(Boolchand et al., 2018), optimal space-filling tendency (Phillips,
2006; Rompicharla et al., 2008), and stress-free character
(Wang et al., 2005).

Although the intermediate phase has been observed in several
families of chalcogenides (Mantisi et al., 2015; Boolchand and
Goodman, 2017) and modified oxides (Vaills et al., 2005;
Micoulaut, 2008; Vignarooban et al., 2014; Mohanty et al.,
2019), several questions remain unanswered. What role, if any,
does the material’s synthesis play in the observation of the

intermediate phase (Lucas et al., 2009; Boolchand et al., 2011;
Zeidler et al., 2017)? Are intermediate phases a generic feature
of disordered networks? Does the intermediate phase manifest
itself in other properties than the non-reversible enthalpy at
the glass transition? In which aspect(s), if any, of the local or
intermediate atomic structure is the intermediate phase encoded?
In particular, no clear short-range order structural signature
of the intermediate phase is presently available. These gaps in
knowledge partially arise from the fact thatmost of the theoretical
works investigating the nature of the intermediate phase have
thus far focused on model glasses (e.g., triangular lattices), which
may not capture the complex structure of real glasses (Thorpe
et al., 2000; Chubynsky et al., 2006; Yan and Wyart, 2014;
Yan, 2018).

Here, based on molecular dynamics simulations of calcium–
silicate–hydrate systems [i.e., CaO–SiO2-H2O or C–S–H, the
binding phase of concrete (Taylor, 1997)] with varying
compositions, we seek somemechanical and structural signatures
of the intermediate phase. We show that C–S–H exhibits a
composition-driven rigidity transition governed by its Ca/Si
molar ratio. We find that a large body of mechanical properties
exhibit an anomalous behavior within a range of composition
at the vicinity of the isostatic threshold—which are argued to
constitute some signatures of an intermediate phase. Based on
this system, we identify a structural signature of the intermediate
phase in the medium-range order of C–S–H. We demonstrate
that the intermediate phase observed in C–S–H arises from a
bifurcation between the rigidity and stress transitions.

METHODS

Preparation of the
Calcium–Silicate–Hydrate Samples
In the following of this manuscript, we consider a series of
C–S–H samples to identify some mechanical, structural, and
dynamical signature of the intermediate phase. To this end,
we adopt the model introduced by Pellenq et al. to describe
the structure and topology of C–S–H with varying Ca/Si molar
ratios (Pellenq et al., 2009; Abdolhosseini Qomi et al., 2014b).
Although fine structural details of this model have been discussed
(Richardson, 2013, 2014; Scrivener et al., 2015), this model
remains the only model that is capable of describing the structure
of C–S–H systems across a wide range of Ca/Si molar ratios.
In addition, we do not expect the overall atomic topology of
C–S–H to strongly depend on the fine structural details of the
chosen model.

In detail, the C–S–H atomicmodels developed by Pellenq et al.
are obtained by introducing some defects in an 11 Å tobermorite
configuration (Hamid, 1981) following a combinatorial approach
(Abdolhosseini Qomi et al., 2014b). This initial tobermorite
crystal consists of pseudo-octahedral calcium oxide sheets
that are surrounded on each side by silicate chains. These
negatively charged calcium–silicate layers are separated from
each other by both dissociated and undissociated interlayer
water molecules and charge-balancing calcium cations. Starting
from this structure, the Ca/Si molar ratio is gradually increased
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from 1.0 to 1.9 by randomly removing some SiO2 groups
(Qomi et al., 2019). The introduced defects offer some possible
sites for the adsorption of extra water molecules, which is
performed via the Grand Canonical Monte Carlo method—
ensuring equilibrium with bulk water at constant volume and
room temperature. Eventually, the ReaxFF potential—a reactive
potential—was used to account for the chemical reaction of
the interlayer water with the defective calcium–silicate sheets
(Manzano et al., 2012a,b). The use of a reactive potential
allows us to model the dissociation of water molecules into
hydroxyl groups. This model has been shown to predict realistic
compositions, structure, mechanical, dynamical, and thermal
properties for C–S–H (Abdolhosseini Qomi et al., 2014a,b, 2015;
Bauchy et al., 2015a, 2016a). The details of the methodology used
for the preparation of the models, as well as multiple validations
with respect to experimental data can be found in Abdolhosseini
Qomi et al. (2014b) and in previous works (Abdolhosseini Qomi
et al., 2013, 2014a, 2015; Bauchy et al., 2014a,b,c, 2015a,b, 2016b;
Qomi et al., 2015; Bauchy, 2017; Liu et al., 2018). Figure 1 shows
some snapshots of the C–S–H model herein for select Ca/Si
molar ratios.

Simulation Details
The structural, mechanical, and dynamical properties of the C–
S–H samples considered herein are studied by MD simulations
using the LAMMPS package (Plimpton, 1995). To account for
the potential dissociation of water molecules into hydroxyl
groups, we adopt the ReaxFF potential parameterized by
Manzano et al. with a timestep of 0.25 fs (Manzano et al.,
2012b). Unless specified otherwise, all the simulated samples
comprise around 500 atoms. All the samples are relaxed under
300K and zero pressure in the NPT ensemble prior to any
further characterization. More simulation details can be found
in Abdolhosseini Qomi et al. (2014b) and the supplementary
material thereof.

Enumeration of the
Topological Constraints
Assessing the state of rigidity of the disordered materials requires
an accurate knowledge of their atomic structure—which is readily
accessible from MD simulations. Here, we use the outcome of
the MD simulations to enumerate the number of constraints
per atom (nc) in C–S–H as a function of the Ca/Si molar
ratio by following a well-established methodology (Bauchy and
Micoulaut, 2011, 2013a,b,c; Bauchy et al., 2011, 2013, 2014d;
Bauchy, 2013; Micoulaut and Bauchy, 2013; Micoulaut et al.,
2013, 2015; Bauchy and Micoulaut, 2015). This method is based
on the idea that topological constraints remove some internal
degrees of freedom by preventing some relative motion between
atoms. In turn, a large relative motion is indicative of the absence
of any underlying constraints. In detail, the number of radial
BS constraints acting on a central atom can be assessed by
calculating the radial excursion of each neighbor. As detailed in
Bauchy et al. (2014a), we observe a clear gap between intact (low
radial excursion) and broken constraints (high radial excursions).
The limit between intact and broken interatomic BS constraints
was found to be at around 7% of relative motion (Bauchy and

Micoulaut, 2011; Bauchy et al., 2014a), which is fairly close to the
Lindemann criterion (Lindemann, 1910). Similarly, the number
of BB constraints created by a central atom can be assessed
by computing the excursion of all the angles formed by the
central atom 0 and its neighbors 1, 2, 3, etc. (the neighbors are
here ranked based on their respective distance from the central
atom). Again, as detailed in Bauchy et al. (2014a), we observe
a clear gap between intact (low angular excursion) and broken
constraints (high angular excursions). Based on previous work,
the limit between intact (low angular excursion) and broken
(high angular excursion) BB constraints was found to be around
13–15◦ (Bauchy and Micoulaut, 2011; Bauchy et al., 2014a). Note
that, since the excursions associated with intact and broken BS
or BB constraints are significantly different from each other, the
number of BS and BB constraints computed through this method
does not depend on the specific choice of the threshold used to
discriminate intact from broken constraints.

Mechanical Properties
of Calcium–Silicate–Hydrate
In the following, we use previously reported values of fracture
toughness, fracture energy, unrecovered volume, and creep
compliance for the C–S–H samples considered herein and argue
that such properties offer some signatures of the existence of an
intermediate phase in C–S–H.

The fracture toughness and fracture energy of the C–S–H
samples considered herein were reported in Bauchy et al. (2016a).
To characterize the resistance to fracture of C–S–H, we first
prepare some larger C–S–H systems made of around 4,500 atoms
by replicating the initial systems into a 3×1×3 supercell. We then
create a notch in these configurations by inserting a sharp initial
crack into the structure while ensuring that the system remains
neutral. The notched systems are then further relaxed in the
NPT ensemble. The notched configurations are then elongated
stepwise along the weakest direction z (i.e., the direction that is
orthogonal to the silicate layers) by small 1% increments of the
tensile strain. At each step, after an initial equilibration of 50
ps, the stress along the z-axis is averaged for an additional 50
ps—which yields a strain rate of 0.1 ns−1. As detailed in Bauchy
et al. (2016a), such a strain rate was found to be low enough
to offer an accurate description of the fracture response of the
C–S–H samples considered herein. The fracture energy is then
computed from the integral of the obtained stress–strain curve
(Brochard et al., 2013). The fracture toughness is subsequently
calculated based on the Irvin formula (Brochard et al., 2013).
More details about the computation of the fracture energy and
fracture toughness can be found in Bauchy et al. (2015a).

To assess the mechanical reversibility of the C–S–H samples,
we subject them to a loading-unloading cycle and determine
the extent of unrecovered volume (Bauchy et al., 2017). To
this end, starting from C–S–H configuration relaxed under zero
pressure, each system is hydrostatically compressed under 10
GPa. The system is then relaxed under this load for 10 ns
in the NPT ensemble—which is found to be long enough to
ensure a convergence of energy and volume. The system is then
subsequently relaxed back to zero pressure for 10 ns in the NPT
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FIGURE 1 | Snapshots of the atomic structure of select calcium–silicate–hydrate systems with (A) Ca/Si = 1.09, (B) Ca/Si = 1.50, and (C) Ca/Si = 1.89. Ca, Si, H,

and O atoms are indicated in blue, yellow, white, and red, respectively.

ensemble. We then define the fraction of unrecovered volume
(Vunrecovered) by comparing the initial volume (V i) of the system
to that achieved after the loading-unloading cycle (V f):

Vunrecovered = (Vi − Vf)/Vi (1)

Note that a perfectly elastic/reversible system would not exhibit
any unrecovered volume.

Finally, the creep compliance of the C–S–H samples
considered herein was reported in Refs. (Pignatelli et al.,
2016; Bauchy et al., 2017). Since a direct simulation of the
creep dynamics of C–S–H is, at this point, unachievable
by conventional MD simulations, we adopt the accelerated
relaxation technique (ART), which was recently developed to
investigate the relaxation of silicate glasses (Yu et al., 2015,
2017b). This method consists in subjecting the system to small,
cyclic perturbations of isostatic stress ±1σ . At each stress
cycle, a minimization of the energy is performed, wherein the
system has the ability to deform (in terms of both shape and
volume) in order to reach the target stress. Note that the
resulting relaxation does not depend on the choice of 1σ—
provided that this stress remains sub-yield (see Bauchy et al.,
2017). This method mimics the artificial aging observed in
granular materials subjected to vibrations (Boutreux and de
Geennes, 1997; Richard et al., 2005)—wherein small vibrations
tend to induce the compaction of granular materials, that is,
to make the system artificially age. In contrast, large vibrations
would tend to randomize the arrangements of the grains, which
decreases the overall compactness and, therefore, makes the
system rejuvenate (Bauchy et al., 2016b). Here, we mimic the
stress condition experienced in deviatoric creep by imposing
a constant shear stress τ0, such that 1σ < τ0. As shown in
Bauchy et al. (2017), we find that the stress perturbations induce
a gradual shear deformation of the C–S–H samples. In detail, the
configurations exhibit a shear strain γ that increases linearly with
the applied shear stress τ0 and logarithmically with the number

of stress cycles N—in agreement with experimental observations
(Vandamme and Ulm, 2009). This allows us to define the creep
modulus C as:

γ = (τ0/C) log(1+ N/N0) (2)

where N0 is a fitting parameter. We then define the creep
compliance J as the inverse of the creep modulus C.

Structural Analysis
To seek a structural signature for the intermediate phase,
we compute all the partial pair distribution functions. The
partial structure factors are then computed from the Fourier
transform of the partial pair distribution functions (Bauchy,
2012; Abdolhosseini Qomi et al., 2013). Special focus is placed
on the first sharp diffraction peak (FSDP) of the partial
structure factor, which captures the existence of medium-range
order structural correlations within the structure (Wilson and
Madden, 1994; Elliott, 1995). To this end, the position of
the FSDP (QFSDP) is determined by fitting the FSDP with a
Lorentzian function (Bauchy, 2012). This allows us to define a
typical medium-range repetition distance (d) for each pair of
atoms as (Du and Corrales, 2005):

d = 2π/QFSDP (3)

Computation of the Internal Stress
To determine the degree of stress acting in the atomic network of
the C–S–H, we adopt the concept of “stress per atom.” Although
stress is ill-defined at the atomic level, we rely here on the
formalism proposed by Thompson et al. (2009), which expresses
the contribution of each atom to the virial of the system. The
local “hydrostatic pressure” applied to each atom is then defined
as the ratio of the trace of the calculated local stress tensor
divided by the volume of the atom, which is here taken as the
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Voronoi volume. Note that, although the network as a whole
is at zero pressure, some bonds are under compression while
others are under tension—so that they mutually compensate
each other. This approach was recently used to quantify the
internal stress exhibited by stressed–rigid atomic networks (Li
et al., 2019), mixed alkali glasses (Yu et al., 2015, 2017a,b,
2018), and colloidal systems (Liu et al., 2019). It should be
noted that, in the thermodynamic sense, stress is only properly
defined for a large ensemble of atoms, so that the physical
meaning of the “stress per atom” is unclear. Nevertheless,
this quantity can conveniently capture the existence of local
instabilities within the gel due to competitive interatomic forces
(Ioannidou et al., 2017).

Based on this framework, we compute the local stress
experienced by each Si atom, since the silicate chains constitute
the rigidity backbone of C–S–H. To isolate the contribution
of the network connectivity to the stress of each Si atom,
the “stress per atom” calculation is repeated in Qn clusters
(n = 0-to-4) that are fully isolated, that is, with no effect
of the network connectivity (here, a Qn unit denotes a SiO4

tetrahedron that is connected to n other SiO4 tetrahedra, i.e.,
with 4 – n terminating O atoms). The isolated clusters are
prepared by placing the atoms as perfect SiO4 tetrahedra,
charge-balancing the terminating O atoms by Na cations,
and performing an energy minimization prior to the stress
calculation. Finally, the internal stress of each Si atom in
the system is calculated from the difference between its
states of stress in the network and isolated cluster (ensuring
a consistent Qn state in network and isolated cluster).
More details about the stress calculation can be found
in Li et al. (2019).

Computation of the Internal Mobility
Finally, we estimate the internal rigidity (or mobility) of the
system. To this end, we first cool the C–S–H sample to 0K
in the NPT ensemble with a cooling rate of 1 K/s to access
their inherent configuration. We then apply an instantaneous
energy bump of 0.1 eV/atom. Due to the equipartition of the
energy, half of the energy is used to increase the temperature
while the other half is used to increase the potential energy
of the system through some atomic displacements. Note that
the energy is here chosen to be high enough to allow some
atomic motion over low energy barriers, but low enough to
avoid any melting of the system (Bauchy et al., 2014c). Following
the energy bump, the system is then allowed to relax in the
microcanonical NVE ensemble for 100 ps. During this stage,
we track the mean square displacement (MSD) of each atom.
Although the MSD of H atoms exhibit a diffusive regime and
continuously increase over time (Abdolhosseini Qomi et al.,
2014a), we note that the MSD of Si and Ca atoms exhibit a
plateau. This indicates that the energy bump makes it possible
for the Si and Ca atoms to overcome some small energy
barriers and to experience some local reorganizations. We then
use the final average MSD of Si and Ca atoms as a measure
of the internal mobility of the system, whereas a low MSD
is indicative of a rigid system, that is, characterized by large
energy barriers.

FIGURE 2 | Number of constraints per atom (nc) in calcium–silicate–hydrate

networks as a function of the Ca/Si molar ratio. The gray area indicates the

location of the intermediate phase wherein structural and mechanical

properties show some anomalous behaviors (see following figures).

RESULTS AND DISCUSSION

Rigidity Transition
We first assess the rigidity state of the C–S–H samples considered
herein as a function of composition. Figure 2 shows the number
of constraints per atom (nc) computed from the MD simulations
(see section Enumeration of the Topological Constraints) as a
function of the Ca/Si molar ratio. Overall, we find that the
number of constraints per atom decreases with increasing Ca/Si
molar ratio (Bauchy et al., 2016a), which is in agreement with
the fact that the degree of connectivity of the silicate chains (i.e.,
as captured by the mean chain length) decreases with increasing
Ca/Si molar ratio (Abdolhosseini Qomi et al., 2014b). This also
echoes the fact that both the stiffness and hardness of C–S–H
decrease with increasing Ca/Si molar ratio (Abdolhosseini Qomi
et al., 2014b), since these mechanical properties have been shown
to scale with the number of topological constraints (Smedskjaer
et al., 2010; Bauchy et al., 2015b; Yang et al., 2019).

More specifically, we observe the existence of a rigidity
transition in C–S–H that is driven by composition (Bauchy et al.,
2016a). Namely, C–S–H is found to be stressed–rigid (nc > 3) at
low Ca/Si, flexible (nc < 3) at high Ca/Si, and isostatic (nc ≈ 3)
at Ca/Si≈ 1.5 (see Figure 2). Interestingly, this rigidity transition
manifests itself in the structure of C–S–H, as the system is found
to be largely crystalline and anisotropic for Ca/Si < 1.5, whereas
it is fairly amorphous and isotropic for Ca/Si> 1.5 (see Figure 1)
(Abdolhosseini Qomi et al., 2014b).

Mechanical Signatures of the
Intermediate Phase
Fracture Toughness
Having established the existence of a composition-driven rigidity
transition in C–S–H, we now seek some mechanical signatures
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associated with this transition. As previously mentioned, we first
note that both the stiffness and hardness of C–S–H do not exhibit
any anomalous behavior at the vicinity of the rigidity transition—
in agreement with the fact that these mechanical properties
simply scale with the number of topological constraints
(Smedskjaer et al., 2010; Bauchy et al., 2015b; Yang et al., 2019).
In contrast, the response to fracture of C–S–H presents a clear
signature of the rigidity transition. Figures 3A,B shows the
computed values of the mode I fracture toughness and fracture
energy (see section Mechanical Properties of Calcium–Silicate–
Hydrate) as a function of the number of constraints per atom.
We observe that both the fracture toughness and fracture energy
exhibit a maximum at the vicinity of the isostatic threshold (nc ≈
3) (Bauchy et al., 2016a).

Interestingly, a local maximum of fracture toughness also
observed at the vicinity of the isostatic threshold was also
reported in sodium silicate and chalcogenide glasses (Guin et al.,
2002; Varshneya and Mauro, 2007; Bauchy et al., 2016a; Bauchy,
2019). The harmony among these observations over various
families of systems (i.e., oxides and chalcogenides) suggests that
this feature might be generic to isostatic disordered materials
(Bauchy et al., 2016a). This anomalous behavior has been
explained by the fact that flexible networks (nc < 3) have the
ability to locally deform due to the existence of some internal
degrees of freedom but tend to easily break, and they exhibit
a low cohesion due to their low connectivity. In contrast,
highly connected stressed–rigid networks (nc > 3) feature higher
cohesion but tend to break in a fully brittle fashion due to the
existence of some internal stress that prevents any local ductile
event (Wang et al., 2016). In turn, isostatic networks (nc ≈ 3)
feature an optimal balance between cohesion and ability to show
ductile deformation since they are rigid but free of internal stress
(Bauchy et al., 2016a).

More interestingly, we observe that, rather than presenting
a single maximum at the isostatic threshold (nc = 3), both the
fracture toughness and fracture energy appear to exhibit a broad
maximum within a window of composition ranging from Ca/Si
= 1.3-to-1.5 or nc = 3.0-to-3.16. We note that, in turn, both
of these properties exhibit a sudden drop at nc < 3.0 and nc
> 3.16. These observations suggest that C–S–H may feature an
isostatic atomic network (i.e., rigid but free of internal stress)
within this range of composition rather than only at a single
isostatic threshold (nc = 3). This suggests the existence of an
intermediate phase (which separates the flexible and stressed–
rigid phases) in C–S–H. As shown below, the fracture toughness
and fracture energy are only some of the many features that
present an unusual behavior within the compositional window.

Reversibility Under Load
We now assess the degree of mechanical reversibility of the
atomic structure. To this end, we subject the C–S–H structure
to a loading-unloading cycle and compute the fracture of
unrecovered volume (see section Mechanical Properties of
Calcium–Silicate–Hydrate). Note that a perfectly reversible,
elastic structure would exhibit a zero unrecovered volume.
Figure 3C shows the fracture of unrecovered volume as a
function of the number of constraints per atom. In general, we

FIGURE 3 | (A) Mode I fracture toughness (KIc ), (B) fracture energy, (C)

unrecovered volume after a loading-unloading cycle, and (D) creep

compliance as a function of the number of constraints per atom (nc). The

creep compliance values are compared with experimental measurements (red

diamonds) obtained by micro-indentation (Nguyen et al., 2014) and

nano-indentation (Vandamme and Ulm, 2009). The gray area indicates the

location of the intermediate phase wherein structural and mechanical

properties show some anomalous behaviors.

observe that C–S–H is not mechanically reversible, that is, its
volume tends to decrease following a loading-unloading cycle
(i.e., C–S–H remains permanently densified even after being
relaxed to zero pressure).
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Interestingly, we observe that the fracture of unrecovered
volume exhibits a minimum at the vicinity of the isostatic
threshold (see Figure 3C), which indicates that such structures
exhibit a nearly fully mechanically reversible structure. This
echoes with previous results observed for Ge–Se glasses, wherein
isostatic glasses were also found to exhibit minimumunrecovered
volume (ormaximum recovered volume) (Mauro andVarshneya,
2007). The fact that this feature has been observed both in
oxide and chalcogenide systems suggests that it might be
generic to isostatic disordered networks. This behavior has
been explained from the fact that flexible networks (nc <

3) exhibit some internal floppy modes of deformation, which
facilitate some irreversible reorganizations of the atoms upon
loading, which, in turn, induce a permanent densification of
the network upon loading. In contrast, stressed–rigid networks
(nc > 3) tend to remain locked in their densified state, as
the presence of internal stress prevents the full relaxation
of the network during unloading. In turn, isostatic networks
(nc ≈ 3), which are both free of internal stress and modes
of deformation, tend to feature maximum volume recovery
(Mauro and Varshneya, 2007; Bauchy et al., 2017; Bauchy, 2019).

Again, we note that this anomalous behavior (i.e., minimum in
unrecovered volume) is observed within a range of composition
rather than at a fixed threshold (see Figure 3C). Interestingly,
this composition matches with that wherein the fracture
toughness and fracture energy are found to be maximum (see
Figures 3A,B), which suggests that the fracture of unrecovered
volume may constitute another signature of the existence of
an intermediate phase in C–S–H. Interestingly, the mechanical
reversibility of isostatic networks evidenced herein echoes the
thermodynamic reversibility of isostatic glasses during the glass
transition (Bauchy and Micoulaut, 2015; Mantisi et al., 2015).

Creep
We now focus on the response of the C–S–H samples under
sustained loading (i.e., creep). Figure 3D shows the computed
creep compliance of C–S–H (see section Mechanical Properties
of Calcium–Silicate–Hydrate) as a function of the number of
constraints per atom. Note that low values of creep compliance
(or high values of creep modulus) are indicative of a high
resistance to creep, that is, low delayed deformations under
sustained loading. As reported in Refs. (Pignatelli et al., 2016;
Bauchy et al., 2017), we find that C–S–H exhibits minimum creep
compliance at the vicinity of the isostatic threshold (nc ≈ 3). The
existence of a minimum in creep compliance around Ca/Si =
1.5 is also supported by available experimental data obtained by
micro-indentation (Nguyen et al., 2014) and nano-indentation
(Vandamme and Ulm, 2009). This has been explained from
the fact that flexible networks exhibit some internal degrees of
freedom, which allow the atom to jump over some low energy
barriers during sustained loading, which, in turn, facilitates
permanent deformations. In contrast, the presence of internal
stress in stressed–rigid systems acts as an elastic energy penalty
that stimulates the relaxation (i.e., deformation) of the system
toward lower states of energy upon creep. In turn, isostatic
networks, which are free of both internal stress and modes of

deformation, exhibit maximum resistance to creep deformations
(Bauchy et al., 2017).

Once again, we find that, rather than being minimum at a
fixed threshold composition, the creep compliance exhibits a
broad minimum within a range of composition that matches
that wherein the fracture toughness/energy and the unrecovered
volume are maximum and minimum, respectively. In turn,
the creep compliance presents a sudden jump at lower and
higher number of constraints per atom. This suggests that the
creep compliance acts as another signature of the intermediate
phase evidence herein. The fact that the resistance to creep is
maximum within the intermediate phase echoes the fact that
intermediate phase chalcogenide glasses have been found to
exhibit minimum relaxation at the vicinity of the glass transition
andminimum aging at room temperature (Boolchand et al., 2001;
Chakravarty et al., 2005).

More generally, the fact that stiffness (which essentially
depends on the curvature of the local energy landscape) does
not present any signature of the intermediate phase suggests
that the nature of the intermediate phase is not encoded in the
near-equilibrium topography of the energy landscape, but rather
in its far-from-equilibrium topography, i.e., that explored upon
fracture and plastic non-reversible deformations (i.e., creep) or
densification (i.e., unrecovered volume).

Structural Signatures of the
Intermediate Phase
We now seek a structural signature of the intermediate phase in
C–S–H, as the question as to whether any structural signature
of the intermediate phase can be found in isostatic glasses
remains unclear (Wang et al., 2017; Zeidler et al., 2017). We first
note that we do not observe any obvious anomalous behavior
in the short-range order structure of C–S–H (e.g., partial pair
distribution function, bond distance, bond angle, coordination
number, etc.) (Abdolhosseini Qomi et al., 2014b). As such, we
focus our attention on the medium-range order structure—
which is encoded in the FSDP of the structure factor (see
section Structural Analysis). Figure 4A shows the position of
the FSDP of the Si–Si partial structure factor, which captures
the existence of some medium-range structural correlations
among Si tetrahedra. We observe that the position of the
FSDP of the Si–Si partial structure factor shows a maximum
at the vicinity of the isostatic threshold (nc ≈ 3). Since the
position of the FSDP is inversely related to a typical repetition
distance in the medium-range order (see Equation 3), the
maximum in the position of the FSDP is associated with a
minimum of the Si–Si medium-range order repetition distance
(see Figure 4B). Importantly, we note that the compositional
window wherein the position of the Si–Si FSDP is maximum
(or the Si–Si repetition distance minimum) matches with
that of the intermediate phase, wherein several mechanical
properties show anomalous behavior (see Figure 3). As shown in
Figures 4C,D, similar behavior is observed for the Ca–O FSDP.
This suggests that the position of the FSDP of partial structure
factors offers a structural signature of the intermediate phase
in C–S–H.

Frontiers in Materials | www.frontiersin.org 7 July 2019 | Volume 6 | Article 157

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Zhou et al. Intermediate Phase in C–S–H

FIGURE 4 | (A) Position of the first sharp diffraction peak (QFSDP) of the Si–Si

partial structure factor and (B) corresponding typical repetition distance (D).

(C) Position of the first sharp diffraction peak of the Ca–O partial structure

factor and (D) corresponding typical repetition distance. The gray area

indicates the location of the intermediate phase wherein structural and

mechanical properties show some anomalous behaviors.

Interestingly, such behavior was also previously observed in
oxide and chalcogenide glasses. First, the positions of the Si–
O and O–O FSDP were also found to be maximum in isostatic
densified sodium silicate glasses (Micoulaut and Bauchy, 2013).
A weakly defined maximum in the position of the As–Se FSDP
was also observed in As–Se chalcogenide glasses (Bauchy et al.,

2013). Finally, the rigidity of the network was also found to
be encoded in the position of FSDP of the structure factor
in irradiated silica samples (Wang et al., 2017). All these
observations across various families of materials suggest, once
again, that this feature might be a generic signature of isostatic
disordered networks.

These results suggest that the intermediate phase is encoded
in the medium-range (rather than short-range) order structure
of C–S–H. The fact that the typical repetition distance
is minimum in the intermediate phase can be related to
the fact that intermediate-phase glasses have been shown
to exhibit an optimal space-filling tendency (for instance,
several chalcogenide glasses exhibit a minimum in molar
volume in the intermediate phase) (Rompicharla et al.,
2008; Boolchand et al., 2018). This can be understood
from the fact that, due to their low connectivity, flexible
networks tend to present large rings or terminating bonds,
which decreases the packing efficiency of the atoms. In
turn, since their structure is fully locked by the high
number of constraints, stressed–rigid networks are unable
to reorganize their structure to achieve more efficiently
packed configurations.

Rigidity and Stress Signatures of the
Intermediate Phase
Finally, we investigate the nature of the atomic mechanism
giving birth to the intermediate phase in C–S–H reported herein.
To this end, we first assess the rigidity of the network by
subjecting the C–S–H configurations to an energy bump and
tracking the resulting atomic motion (see section Computation
of the Internal Mobility). The methodology has presently been
used to characterize the topography of the energy landscape
of disordered networks (Sastry et al., 1998; Krishnan et al.,
2017b). Indeed, configurations featuring small energy barriers
(i.e., smooth energy landscape) tend to exhibit some large atomic
motion following an energy bump, whereas those presenting
large energy barriers (i.e., rough energy landscape) tend to show
very limited energy atomic motion since the atoms are trapped in
their energy basins.

Figure 5A shows the average final MSD of the Ca and Si
atoms after an energy bump of 0.1 eV/atom as a function
of the number of constraints per atom. We observe that
the computed MSD values remain very small (around 0.2
Å2) for nc > 3. This indicates that, in this regime, the
system is rigid so that the atoms only vibrate around their
average position following the energy bump. In contrast,
we observe that the MSD presents a sudden increase for
nc < 3. This shows that, at this point, the system becomes
flexible and features some internal mobility. Similar behavior
was observed in flexible irradiated silica samples (Krishnan
et al., 2017b; Wang et al., 2017). This can be understood
from the fact that, for nc < 3, the configuration presents
more internal degrees of freedom (i.e., initially 3 per
atom) than constraints, so that the system comprises some
internal floppy modes of deformation (whose number
of given by 3 – nc) (Thorpe, 1983; Boolchand et al.,
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FIGURE 5 | (A) Mean-square displacement of the Ca and Si atoms after an

energy bump of 0.1 eV/atom (i.e., a signature of internal mobility within the

atomic network) and (B) average atomic-level stress undergone by Si atoms

(i.e., a signature of internal stress within the atomic network). The gray area

indicates the location of the intermediate phase wherein structural and

mechanical properties show some anomalous behaviors.

1995). Such floppy modes manifest themselves by the
formation of some channels in between the basins of the
energy landscape, which enhance the internal mobility of
the system.

We now focus on the quantification of the internal stress
acting in the network (see section Computation of the Internal
Stress). Figure 5B shows the average atomic-level internal stress
undergone by Si atoms as a function of the number of constraints
per atom. We find that, at low nc, no significant internal
stress is observed (Krishnan et al., 2017a). In contrast, we
observe a sharp increase in the internal stress at high nc. This
indicates that, in this regime, the configuration experiences
some local instability wherein some bonds are under tension,
whereas some others are under compression (note that the
total pressure remains zero in all the C–S–H systems). The
existence of some internal stress in highly connected glasses
has also been observed in previous experiments (Wang et al.,
2005) and simulations (Li et al., 2019). This arises from the
fact that, at high nc, the system eventually comprises more
constraints than degrees of freedom. In this regime, some
constraints become mutually dependent, so that the constraints

cannot all be satisfied at the same time (just like the angles
of a triangle with three fixed edges cannot present arbitrary
values). At this point, the weaker constraints yield to the
stiffer ones, which results in the formation of some internal
stress (Bauchy et al., 2015b).

Importantly, we observe that the rigid-to-flexible (see
Figure 5A) and stressed-to-unstressed (see Figure 5B)
transitions do not occur at the same composition. Interestingly,
the locations of these two transitions correspond to the beginning
and the end of the intermediate phase reported herein (i.e., from
nc = 3.00-to-3.16). This signals that the intermediate phase
is characterized by an atomic network that is rigid (i.e., with
no significant internal flexibility) but also free of internal
stress. Although the location of the rigidity transition (at nc
= 3.00) is expected from a mean-field enumeration of the
constraints (i.e., the point at which the constraints completely
exhaust the atomic degrees of freedom), that of the stress
transition (at nc = 3.16) cannot be predicted from a mean-field
enumeration—which would also predict a stress transition at
nc = 3.00, that is, when the number of constraints exceeds
the number of atomic degrees of freedom. The fact that the
stress occurs at nc > 3 suggests that the system presents some
level of self-organization to avoid the formation of any internal
stress—since stress otherwise comes with an energy penalty
(Bauchy and Micoulaut, 2015; Yan, 2018). These results suggest
that the bifurcation between the rigidity (at nc = 3.00) and stress
(at nc = 3.16) transitions is at the origin of the intermediate
phase reported herein and explain the anomalous behaviors
in the mechanical and structural properties of C–S–H in this
composition window.

CONCLUSION

Overall, these results present a large array of mechanical,
structural, and dynamical signatures of an intermediate phase in
calcium–silicate–hydrate systems. We find that configurations
belonging to the intermediate phase exhibit maximum fracture
toughness and fracture energy, reversibility under load, and
minimum propensity for creep relaxation—which might
constitute some generic features of the intermediate phase.
These results suggest that the nature of the intermediate phase is
not encoded in the near-equilibrium topography of the energy
landscape, but rather in its far-from-equilibrium topography.
In addition, we report the existence of a structural signature
of the intermediate phase, which manifests itself as an optimal
space-filling tendency in the medium-range (rather than
short-range) order structure of the atomic network. Based on
these simulations, we demonstrate that the intermediate phase
observed in this system arises from the fact that the flexible-to-
rigid and stressed-to-unstressed transitions are decorrelated from
each other and do not occur at the same compositional threshold.
These results offer a unified picture for the intermediate phase.
Further, the observation of an intermediate phase in C–S–H
(which, despite being disordered, is not a traditional glass)
suggests that the intermediate phase might be generic to
disordered materials. However, the formation of an intermediate
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phase requires some level of structural flexibility (i.e., to enable
the network to self-organize to postpone the onset of stress).
For instance, although select stoichiometric glasses (e.g., SiO2

and P2O5) present an isostatic network, such monolithic glasses
do not appear to have the ability to self-organize to remain
isostatic if a small fraction of network modifiers is added (Vaills
et al., 2005; Mohanty et al., 2019). Nevertheless, although it has
initially been observed in chalcogenide glasses (Boolchand et al.,
2001), the intermediate phase has since then been reported to
also exist in silicate (Vaills et al., 2005; Bauchy and Micoulaut,
2015; Mantisi et al., 2015) and phosphate glasses (Mohanty
et al., 2019)—which suggests that intermediate phases are not
restricted to select families of glasses.
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