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In network glass including chalcogenides, the network topology of microscopic

structures can be tuned by changing the chemical compositions. As the composition

is varied, an intermediate phase (IP) singularly different from the adjacent floppy or rigid

phases on sides has been revealed in the vicinity of the rigidity onset of the network.

Glass formers in the IP appear to be reversible at glass transition and strong in dynamical

fragility. Meanwhile, the calorimetry experiments indicate the existence of a first-order

liquid-liquid transition (LLT) at a temperature above the glass transition in some strong

glass-forming liquids. How are the intermediate phase and the liquid-liquid transition

related? Recent molecular dynamic simulations hint that the intermediate phase is

thermodynamically distinct that the transitions to IP as varying the chemical composition

in fact reflect the LLT: out of IP, the glass is frozen in vibrational entropy-dominated

heterogeneous structures with voids; while inside IP, energy dominates and the

microscopic structures of liquids become homogeneous. Here we demonstrate such

first-order thermodynamic liquid-liquid transition numerically and analytically in an elastic

network model of network glass and discuss possible experimental approaches to testify

the connection.

Keywords: rigidity transition, intermediate phase, liquid-liquid transition, network glasses, vibrational entropy

1. INTRODUCTION

In network glass, the material properties relying on structures can be tuned by changing the
chemical compositions that have different abilities to make covalent connections with its neighbor
atoms. In chalcogenides GexAsySe1−x−y, for example, selenium (Se) forms only two bonds while
arsenic (As) and germanium (Ge) form three and four respectively. First pointed out by Maxwell
(1864), a general network will lose rigidity as the network connectivity is reduced to below certain
critical connectivity when the average number of constraints per atom, n, is equal to the degrees
of freedom, i.e., nc = d in spatial dimension d. This rigidity loss also applies to the chalcogenides
when selenium concentration is high, predicted by Phillips in Phillips (1979) and Thorpe (1985),
where he showed that counting both radial and angular constraints of covalent bonds gives
nSe = 2, nAs = 9/2, and nGe = 7, indicating a chalcogenide glass is marginally rigid at a
composition with average number of covalent bonds rc = 2.4. Since then, more and more works
have shown that the thermodynamic and dynamic features of glass-forming liquids (not limited to
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chalcogenides) are strongly regulated by the rigidity transition of
the microscopic networks (Hall andWolynes, 2003; Shintani and
Tanaka, 2008; Mauro et al., 2009; Yan et al., 2013). One of the
most interesting discoveries is the intermediate phase (IP) near
rc (Boolchand et al., 2001; Wang et al., 2005; Rompicharla et al.,
2008; Bhosle et al., 2012), which remains a big puzzle.

The intermediate phase appears to be singularly distinct from
the adjacent rigid or floppy phases: the non-reversible heat, a
glass-transition equivalent of the latent heat, vanishes (Boolchand
et al., 2001); the stress heterogeneity disappears (Wang et al.,
2005; Rompicharla et al., 2008); the molar volume and fragility
are sharply smaller (Bhosle et al., 2012). All available pieces of
evidence suggest that the glass undergoes some transitions when
entering IP from either side (Bhosle et al., 2012). However, both,
Maxwell’s rigidity theorem and the rigidity percolation theory
that takes into account fluctuations of random networks (Jacobs
and Thorpe, 1995, 1996; Barré et al., 2005) predict only a single
transition in network constraint number n. Noticed the interval
of the two rigidity transition points in two theories, Thorpe
and his colleagues proposed a self-organized transition scenario,
which predicts a rigidity window in between two transitions—
one corresponding to the loss of percolating rigidity as in the
rigidity percolation theory and the other corresponding to the
loss of ability to relax stress as in the Maxwell’s theorem (Thorpe
et al., 2000; Chubynsky et al., 2006). This stress-free rigidity
window relies on a subtle balance between the fluctuation
or entropy facilitating the rigidity percolation and the energy
eliminating the stress throughout the range, which is, however,
fragile to the ubiquitous perturbations such as Van der Waals
(VdW) forces and temperature (Yan andWyart, 2014). Despite in
a more recent paper (Kirchner and Mauro, 2019), Kirchner and
Mauro provide a robust approach of computing the constraint
number to determine IP in the presence of finite temperature,
the heterogeneous nature captured by a diverging correlation
length at n = nc (Brière et al., 2007), in fact, still contradicts the
observations of a homogeneous IP.

An alternative set of theoretical insights on IP is from the
molecular dynamics simulations (Micoulaut and Bauchy, 2013;
Bauchy et al., 2014; Bauchy andMicoulaut, 2015), where a similar
intermediate range of homogeneous structures is revealed by
continuously tuning the pressure instead of composition. In the
simulation, as the pressure gradually increases, the amorphous
structure undergoes a liquid-liquid transition (LLT) from a more
structured low-modulus low-density amorphous phase to a more
homogeneous rigid high-density phase (Yildirim et al., 2018).
When the composition is varied, the transition pressure shows
a non-monotonic pattern with a lower value in an intermediate
range near rc, same as the pattern of the stress percolation
pressure in chalcogenides (Wang et al., 2005). In addition,
in experiments, a transition between two thermodynamically
different liquids is indicated by a lambda peak in specific heat
at a temperature above the glass transition in some strong
glass-formers close to the rigidity threshold, including silica
(SiO2) (Angell, 2008, 2011; Wei et al., 2011, 2013). These
materials imply that the glass in IP may be rather in a different
thermodynamic phase resulted from a transition above the
glass transition and the transitions to IP directly reflect such

liquid-liquid transitions. So what are the two different liquid
phases in network glass?

In the previous work (Yan, 2018), one of the authors showed
with a network model that the vibrational entropy facilitates
the rigid-floppy separated heterogeneous network structures
close to the rigidity transition nc as floppy modes store large
amounts of vibrational entropy (Naumis, 2005) while cost little
configurational entropy in marginally rigid networks. On the
opposite, the elastic energy is lower in homogeneous structures
with stresses evenly distributed (Yan and Wyart, 2014). So under
cooling, a network near nc inevitably undergoes a first-order
transition from an entropy-dominated heterogeneous phase to
an energy-dominated homogeneous phase. The interplay of the
glass transition temperature Tg and the LLT temperature TLLT

would then be key in determining which liquid phase thematerial
is frozen in at the glass transition and all the consequential
features. Here, we investigate the transition separating the two
liquid phases by studying the thermodynamics of the same
network model. We show that the network undergoes a first-
order phase transition where free energy crosses over, associated
energy and entropy are discontinuous, and specific heat jumps
in the thermodynamic limit. Finally, we discuss how this liquid-
liquid transition could be probed in experiments in order to
understand the intermediate phase.

2. MODEL

We consider a two-dimensional triangular lattice of N particles
with periodic boundary conditions (Yan and Wyart, 2014, 2015;
Yan, 2018), where a small regular deformation of the lattice is
imposed to avoid non-generic singular modes. We model all
radial and angular constraints of covalent interactions by Ns =

Nn linear springs of stiffness k, connecting the nearest neighbors
on a triangular lattice, as shown in Figure 1. We incorporate
quenched disorder of glassy energy landscape by rest length
mismatches of springs to the lattice bond lengths: lγ = lγ ,0 +

ǫγ for spring γ . Mismatches {ǫγ } are i.i.d. random Gaussian
variables with mean zero and variance ǫ2. By setting kB = 1,
kǫ2 = 1 defines the unit of, both, energy and temperature.
Furthermore, we include also the weak VdW interactions by
adding weak fixed springs of stiffness kw ≪ k connecting any
particle to all its six next-nearest neighbors as shown in Figure 1.
The mean-field effect of these weak long-range non-specific
interactions can be captured by a control parameter α = 3kw/k≪
1 (Yan et al., 2013; Yan and Wyart, 2015).

In the model, the microscopic configuration depends on how
the network is connected or which lattice bonds are occupied by
strong springs, denoted by Ŵ ≡ {γ ↔ (i, j)}, for particle i and
j connected by spring γ . Given Ŵ, when particles deviate from
the mechanical equilibrium by |δR〉, the elastic energy potential
to the linear order is,

V(Ŵ, |R〉) = H(Ŵ)+
1

2
〈δR|M(Ŵ)|δR〉, (1)

where H is the energy of the inherent structure of configuration
Ŵ and the second term corresponds to the vibration from
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FIGURE 1 | Sketch of the model. The black circles represent the particles, the

purple springs represent the strong interaction between nearest neighbors

while the blue lines represent the VdW interactions between next nearest

neighbors. We color one of the particles in red with bold blue lines for

illustration purposes.

equilibrium with M being the Hessian matrix of energy H. We
thus perform a Metropolis Monte Carlo simulation (Newman
and Barkema, 1999) to sample the configurations according to
their Boltzmann weight e−F(Ŵ)/T with free energy,

F(Ŵ) = H(Ŵ)− TSvib(Ŵ), (2)

with the volume of thermal vibrations counted in the
vibrational entropy,

Svib(Ŵ) = ncN lnT −
1

2
ln detM = −

∑
ω

lnω(Ŵ)+ c, (3)

where ω2 are the eigenvalues of the Hessian matrix.
Without loss of generality, we assume the independence of

mismatch ǫγ on the particle distances of the distorted lattice
rij so that the Hessian matrix becomes only a function of the
occupation {σ }, where σij = 1 if particle i and j are connected by
a spring and σij = 0 otherwise. The stress energy of the network
at mechanical equilibrium can thus be computed by,

H(Ŵ) =
1

2
〈ǫ|K− KSM

−1
S
T
K|ǫ〉 , (4)

where K is the diagonal spring stiffness matrix and S is the
structural matrix, both depending only on occupation {σ }.
The detailed derivations and expressions of these matrices
and the numerical implementation are documented in the
Supplementary Notes 1, 2.

3. RESULTS

3.1. Network Structures
As proven in Yan (2018) and directly inferred by Equation (3),
vibrational entropy is large for floppy modes with a vanishing
ω. When the total number of constraints is fixed, the total
entropy can gain from additional floppy modes in phase
separation of a very rigid subnetwork where the springs
cluster and a very floppy counterpart where floppy modes
cluster. This phase separation is shown in the snapshot of
a system of 576 particles at high temperature in the left
panel of Figure 2. On the contrary, networks with constraints
homogeneously distributed store lower elastic energy than other
configurations given the number of springs, as shown in Yan
and Wyart (2014). At low temperature, when elastic energy
dominates, homogeneous microscopic structures with no rigid-
floppy phase separation will be sampled, as shown in the right
panel of Figure 2. In the following, we will show that these
heterogeneous and homogeneous structures correspond to two
distinct thermodynamic liquid phases that are separated by a
first-order liquid-liquid transition at a critical temperature TLLT .
We will further argue that depending on the relation between
TLLT and the glass transition temperature Tg , the liquid can be
frozen into different thermodynamic phases, which could be the
origin of the singular intermediate phase in network glass.

3.2. Thermodynamics
The numerical results of thermodynamics of the model are
shown in Figure 3 together with the theoretical predictions of
both heterogeneous and homogeneous phases. In the upper
left panel of Figure 3, for a given connectivity n = 2.06,
we find the total free energy of the networks equilibrated at
given temperature T can be perfectly fitted by the theoretical
predictions of heterogeneous networks at high temperature end
(in red) and of homogeneous networks at low temperature
end (in blue). Moreover, the numerics and the free energy
prediction of heterogeneous networks are consistently lower than
the prediction of the homogeneous phase when the temperature
is higher than certain transition temperature TLLT ≈ 0.2.
At the free energy crossover TLLT , marked in Figures 3B–D,
we are also observing the convergence to discontinuous
jumps at the transition in the thermodynamic limit N →

∞ from a higher value in high temperature heterogeneous
phase to a lower value in the low temperature homogeneous
phase in stress energy, vibrational entropy, and the specific
heat. This result demonstrates that the heterogeneous and
homogeneous structures are thermodynamical phases, separated
by a first-order phase transition where, both, energy and entropy
are discontinuous.

In Figure 3, the data points of energy E = H
T
in the upper

right panel of Figure 3 and vibrational entropy Sv = Svib
T
in

the lower left panel of Figure 3 are averages of Equations (3) and
(4) over the Monte Carlo courses at given temperature T. The
specific heat C in the lower right panel of Figure 3 is obtained
from the mean energy fluctuation over the Monte Carlo courses

normalized by temperature squared, C = (H2
T
−E2)/T2. Finally,

the main numerical result of free energy F in the upper left panel
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FIGURE 2 | Snapshot of the system above (A) and below (B) the critical temperature for a system of 576 particles with the constraint number n = 2.06 > nc. The

purple lines represent the springs. (A) Heterogeneous structure: At high temperature T = 10, the entropy dominates over the internal stress energy, in particular, the

vibrational entropy maximizes by phase separating into rigid and floppy regions. (B) Homogeneous structure: At low temperature T = 0.001 the energy of the

inherent structures dominates over the internal energy, this energy minimizes by a homogeneous distribution of constraints.

FIGURE 3 | Thermodynamics of the network model near the rigidity transition n = 2.06. The thermodynamics is characterized by the basic thermodynamic quantities,

including free energy, internal energy, entropy, and specific heat, shown vs. temperature in markers for simulation results and in curves for analytical predictions. The

simulations are done for different system sizes N (see legends) and the analytical predictions are obtained in the thermodynamic limit N → ∞ for homogeneous

networks in blue and heterogeneous networks in red (see Supplementary Notes 3, 4 for detailed descriptions). (A) The numerical results of free energy follow the

prediction of a homogeneous network at low temperatures until the homogeneous-heterogeneous first order phase transition around T ≈ 0.2 and then cross over to

the prediction of a heterogeneous network. The yellow star in the inset marks this crossover. (B) Data points follow the homogeneous and heterogeneous predictions

in the same low and high temperature ranges corresponding to the free energy, while separated by a discrete transition that the numeric result is converging to in the

thermodynamic limit. (C) Similarly, the vibrational entropy results also converge to a discrete jump at the crossover of free energy. (D) At the phase transition, the

specific heat is also characterized by has a jump, seen in the largest system size.

of Figure 3 combines both direct measurement of energy E and
the inferred total entropy S = Sv + Sc by integrating over the
specific heat C,

S(T) = S(∞)−

∫ ∞

T

C(T)

T
dT, (5)

as F = E − TS. The theory derivations and the way
we consistently fit parameters are fully documented in
the Supplementary Notes 3–5 or see Yan and Wyart

(2015) for homogeneous networks and Yan (2018) for
heterogeneous networks.

3.3. Spatial and Temporal Correlations
We have shown the existence of two distinct thermodynamic
liquid phases of networks with the basic thermodynamic
quantities. Among these quantities, the specific heat is a good
experimental indicator to detect the two liquid phases and the
transition: one can look for a lambda divergence or a peak in
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FIGURE 4 | (A) Spatial correlation function and (B) time correlation function for N = 576. Red curves correspond to temperatures T (m) = 10/2m with m = {0, ..., 5}

and blue curves correspond to temperatures T (m) with m = {6, ..., 16}. The blue open symbols correspond to temperatures T . α, i.e., of the order of the weak

interactions. The wavenumber k has been averaged over three different directions. The time correlation function was computed using samples taken every 103 Monte

Carlo steps.

specific heat above glass transition Tg , as found in certain strong-
type glass-forming liquids and water (Angell, 2008, 2011; Wei
et al., 2011, 2013). Here we present also the spatial and temporal
correlation profiles of the two phases that could be directly
measured in experiment to probe the transition. The spatial and
temporal correlations are investigated by the structure factor and
the time autocorrelation function as shown in Figure 4. They are
defined by the occupation {σ } as,

Sf (k) =
1

3N(3N − 1)

∑
ij 6=kl

(σij − σ̄ )(σkl − σ̄ )eikrij,kl , (6)

G(t) =
1

Ttot − t

∑
τ

1

3N

∑
ij

[σij(τ )− σ̄ ][σij(τ + t)− σ̄ ], (7)

where σ̄ = n/3.
For temperatures higher than the transition temperature

TLLT ≈ 0.2, we observe a plateau to finite correlation in
the time range scanned in simulation and a strong signal in
structure factor averaged over that time scale, which reflects
the heterogeneous phase as in the snapshot in the left panel of
Figure 2. On the contrary, for temperatures lower than TLLT ,
we observe normal homogeneous liquid, where the correlation
quickly relaxes to zero with no special structure in wave vector
space after averaged over time, as in the snapshot in the right
panel of Figure 2. In the left panel of Figure 4, we also notice
that the systems in the heterogeneous phase yield two relaxation
times: the system first relaxes to a plateau rapidly, yet in this
plateau, the system is also relaxing but with a much larger
characteristic time. It implies that the rigid and floppy clusters
are not held fixed in a given position and the structural features
in Sf (k) will also vanish when averaged at the time longer than
the second relaxation as in liquids. These features of spatial and
temporal correlations emerging at an intermediate time scale
should be looked for in distinguishing the two liquid phases and
detecting the transition.

3.4. Dependence on Network Topology
Finally, we derive the liquid-liquid transition temperature TLLT

for varying constraint number n but close to nc where a

heterogeneous phase exists at high temperature, shown in
Figure 5A1. Unlike the glass transition temperature Tg , which
increases monotonically with n, TLLT varies non-monotonically
and is maximal at n = nc, which is also consistently shown by
numerical results of the model as data points in Figure 5A. This
result implies that for certain range of parameters, the networks
undergo LLT to a thermodynamic homogeneous phase before
they are dynamically trapped in glass, when TLLT(n) > Tg(n)
or nf < n < nr , which is likely to occur in the vicinity of
the rigidity threshold nc due to the different dependences of
TLLT and Tg on n. The liquids frozen in homogeneous networks
become glass in the IP, while the network glass out of the IP is
then frozen in the heterogeneous network structures as the glass
transition happens first under cooling, as illustrated in Figure 5B.
The transitions to the IP are thus transitions between different
frozen thermodynamic liquid phases in this picture.

4. DISCUSSION

Relying on how and where Tg and TLLT intersect with each
other, this new picture of the intermediate phase is potent to
explain some of the material features in the experiments. First,
depending on the relative strength of the Van der Waals forces,
the constraint numbers where Tg and TLLT intersect vary, which
leads to different widths and locations of the intermediate phase
when changing the chemical compositions (Boolchand et al.,
2001; Yan, 2018). Second, as the dynamics have shown to bemuch
less fragile in a liquid with homogeneous structures, the liquid-
liquid transition from the high-temperature heterogeneous to
low-temperature homogeneous phase implies the dynamics of a
liquid in the intermediate phase potentially undergoes a fragile
to strong transition under cooling as observed in water (Angell,
2011) and in-silico silica (Horbach and Kob, 1999; Sastry

1Notice that the temperature predicted here is in the unit of covalent bond bending

and stretching energy. For instance, in the case of silica with an average constraint

number nSiO2 = 3.67, the liquid-liquid phase transition temperature has been

experimentally reported at TLLT ≈ 1820K (Brueckner, 1970; Horbach and Kob,

1999) and glass transition at Tg ≈ 1425K. The bond energy is estimated at 621.7

kJ/mol (Jutzi and Schubert, 2007), and the bond bending/stretching energy can be

estimated by Lindemann’s criterion with kǫ2 = 2×0.32×621.7 ≈ 112kJ/mol. We

then have TLLT ≈ 0.14 and Tg ≈ 0.11 in the unit of kǫ2 for silica.
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FIGURE 5 | (A) Liquid-liquid transition temperature vs. number of constraints, predicted by theory (blue line) and measured numerically for the network model for

N = 256 (data points). Details of the theory and numerical extraction of TLLT are documented in Supplementary Note 6. (B) Illustration of different dependence of

TLLT and glass transition Tg on the number of constraints n. When n is close to nc where TLLT becomes >Tg, liquid is frozen in a homogeneous intermediate

phase at Tg.

and Angell, 2003). Finally, as a byproduct of our theory, the
disappearance of heterogeneous phases at very high and very
low n may explain the transitions beyond the intermediate
phase far from the rigidity threshold (Bhosle et al., 2012), as
depicted in Figure 5B.

To test this picture of the intermediate phase experimentally,
one could look for direct signals of the liquid-liquid transition,
including a lambda peak in the specific heat and loss of structural
features from the scattering experiments under cooling. The
direct evidence should be most likely to be found in compounds
close to the boundaries of the intermediate phase, where
the liquid-liquid transition temperature is comparable to the
glass transition temperature. As the glass transition reflects the
dynamic aspect while the liquid-liquid transition reflects the
thermodynamic aspect of the material, one could also tune one
of the transitions by increasing the cooling rate, or adding a small
amount of impurities, or exerting a certain amount of pressure to
check if the range of the intermediate phase can be perturbed in
a predictable way.

5. CONCLUSIONS

In this paper, we have shown with an elastic network
model that the microscopic structure of a network glass
undergoes a liquid-liquid transition from an entropy-dominated
heterogeneous phase to an energy-dominated homogeneous
phase under cooling. At this first-order transition, the specific
heat diverges, structural features disappear, and relaxation
plateau vanishes. The transition temperature scales as the
average frustration energy stored in covalent bonds and varies
non-monotonically on the network connectivity. As the glass
transition temperature scales positively with the connectivity,
the two transition temperatures could cross at two constraint
numbers. Inside the two constraint numbers, we would observe
the liquid-liquid transition first under cooling and obtain

homogeneous network glass at glass transition as in the
intermediate phase.
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