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We have developed a concept of hybrid carbon nanomaterials, where different allotropes

of carbon are integrated into a structure. In order to facilitate the long-termmeasurements

in vivo, the cellular response at the bioelectric interface should be optimized. Indeed,

failure of implant integration has been proposed to be the main reason for sensor

failure in vivo. Most strategies to enhance electrode integration into target tissue

exploit a protective layer or barrier on an electrode substrate. For the detection of

neurotransmitters, this is not as suitable strategy, because (1) such films give rise

to an increased background electrode capacitance and impedance, and (2) act as

a diffusion barrier and as a result, a decreased amount of the analyte reaches the

electrode surface and the kinetics is compromised. Here we demonstrate that we can

regulate the cellular response just with the electrode material. Specifically, we will show

that it is possible to combine the properties of different carbon allotropes to obtain

hybrid materials with enhanced neural response. We will present three examples of the

approach: (i) functionalized nanodiamonds on tetrahedral amorphous carbon (ta-C), (ii)

multi-walled carbon nanotubes grown directly on top of ta-C, and (iii) carbon nanofibres

synthesized on top of ta-C thin films.We demonstrate that hybrid structuresmay promote

neural integration as, for example, hydrogen–terminated nanodiamonds enhance neural

cell viability and while not increasing glial cell viability. Moreover, carbon nanofibers

show prominence for tuning the cellular response as their dimension match biologically

relevant cues. We show that nanofiber dimensions significantly alter glial and neural

cell adhesion as well as their morphology. The properties of the hybrid structures can

be tailored, both geometrically and chemically, with high definition. Consequently, these

materials possess exceptionally high potential to achieve optimal host response just with

the electrode material.

Keywords: biocompatibility, neural cells, carbon nanotubes, carbon nanofibers, diamond-like carbon,

nanodiamonds

INTRODUCTION

For therapeutic purposes, an accurate measurement of dopamine (DA) and glutamate (Glu) levels
in situ would be highly desirable. Long-term DA recording systems have only begun to gain
widespread use (Clark et al., 2010; Howe et al., 2013; Schwerdt et al., 2017). Unfortunately, with
the carbon fiber microsensors currently in use, only moderate chemical selectivity is achieved
(Roberts and Sombers, 2017; Rodeberg et al., 2017). The present–day Glu sensors enable short–
term usage and can perform measurements at second–to–second level in vivo (e.g., Dash et al.,
2009; Hunsberger et al., 2015). However, there is a critical need for the improvement in the temporal
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resolution to monitor both the release and uptake of Glu: it has
been suggested that the complete transport cycle takes only 70ms
(Wadiche et al., 1995).

We have developed a concept of hybrid carbon nanomaterials,
referring to a new material where integration of two or more
carbon allotropes with possible additions of selected metallic
nanoparticles into a new hybrid has been carried out and which
exhibits emerging properties that go significantly beyond those
of its building blocks (reviewed by Laurila et al., 2017a). By
utilizing these novel materials, we have achieved, for example,
selective dopamine detection at the physiological concentration
using carbon nanotube/tetrahedral amorphous carbon (CNT/ta-
C)-hybrid (Sainio et al., 2015a; Palomäki et al., 2018) and
ultrafast (<0.05 s) detection of glutamate using carbon nanofiber
CNF/ta-C-hybrid (Isoaho et al., 2017). CNF/ta-C-hybrid shows
prominence also in non-enzymatic detection of glutamate,
although the response probably arises from changes in pH
(Laurila, 2015; Sainio et al., 2015b). In conclusion, outstanding
performance has been achieved in physiological saline. However,
in order to achieve long-term measurements in vivo, the implant
interface needs to be enhanced.

Biocompatibility is defined as the ability of materials to
locally trigger and guide normal [scar–free] wound healing,
reconstruction and tissue integration (Ratner, 2016). By this
definition, majority of the current biomaterials are only
biotolerable, i.e., able to reside in the body for long periods
with only low degrees of inflammatory reaction. Accordingly,
failure of integration has been proposed to be the main reason
for sensor failure in vivo (Wisniewski and Reichert, 2000).
Developing strategies for improved cell–material interaction is
critical especially for all sensing and stimulating devices, such
deep brain stimulator. Current strategies to enhance electrode
integration into neural tissue exploit a protective layer or
barrier on the surface. Such strategy jeopardizes the sensitivity
and temporal resolution of a sensor and effectiveness of a
stimulating device.

The typical outcome of host response of neural implants is
the formation of glial–scar over the electrode surface, causing
complication to reliable neuron–electrode coupling. Neural
interfaces that maintain close physical coupling of neurons to an
electrode surface are required for both implantable and in vitro
neural recording electrode arrays. Currently, this is one of the
major challenges in the designing of neural interfaces. Previous
research shows that carbon nanomaterials reduce the functions of
astrocytes (McKenzie et al., 2004). Nanostructures may enhance
neuron–electrode coupling through suppression of scar tissue
formation, it the structure reduces the glial cell coverage while
preserving the high neuronal coverage (Chapman et al., 2015).

Nanostructured materials in neural interfaces need the
ability to use both chemical and topographical cues to
achieve the desired tissue response. It has been reported that
random topographies, with a specific roughness value, affect
adhesion and spreading of neuroglial cells (i.e., astrocytes)
inducing the dissociation of the astrocytes from the neurons
(Blumenthal et al., 2014; Chapman et al., 2015). Such response
correlates either (i) with the topography–induced changes in the
morphology of astrocytes (Blumenthal et al., 2014) or (ii) the

topography–induced selection of the neurons over the astrocytes
due to their different morphologies (Chapman et al., 2015).

Here, we demonstrate that it is possible to combine the
properties of different carbon allotropes to obtain hybrid
materials with enhanced neural response. Three following
examples of the approach are given: (i) functionalized
nanodiamonds (ND) on ta-C, (ii) multi-walled CNTs grown
directly on top of ta-C, and (iii) CNFs synthesized on top of
ta-C thin films. We have published some of the data regarding
the biocompatibility of the hybrid structures earlier: ND/ta-C in
Peltola et al. (2017a), CNT/ta-C in Palomäki et al. (2018), and
CNF/ta-C in Isoaho et al. (2018b). Here we performed some
additional viability and morphology measurements to enable
better comparison of the different hybrid materials.

MATERIALS AND METHODS

Sample Fabrication
We fabricated three hybrid carbon structures: (i)
functionalized ND/ta-C, (ii) CNT/ta-C, and (iii) CNF/ta-C.
Thin film ta-C were investigated as a reference material.

Fabrication of Thin Films
20 nm Ti adhesion layer (Laurila et al., 2014b) was deposited
by direct-current magnetron sputtering on highly conductive
(0.001–0.002� cm) p-type (100) Si wafers (Ultrasil). Thin film
ta-C of 7 nm were deposited on top of the Ti adhesion layer by
filtered cathodic vacuum arc in the same deposition chamber.
Further details are described by e.g., Palomäki et al. (2015) and
Peltola et al. (2017a).

Platinum thin films were utilized as reference samples for
platinum based CNF/ta-C hybrid. For this purpose, a 10 nm Pt
thin film was coated on Si using cathodic arc deposition.

Fabrication ND/ta-C
We investigated four types of functionalized NDs: zeta-positive
NDandante with amino and carboxyl functional groups, zeta
positive amino functionalized NDamine, carboxyl functionalized
zeta-negative NDvox, and zeta positive hydrogen terminated
NDH (Carbodeon uDiamonds, Carbodeon, Vantaa, Finland).
A spraying technique was used for ND coating on ta-C
substrates. Spraying solution was prepared from ND-water
solutions with concentrations of 5 wt% (NDandante, NDvox), 0.99
wt% (NDamine), and 2.5 wt% (NDH). The ND-water solutions
were diluted in ethanol and final concentration used for spraying
was 0.05 wt%. The spraying was done from a distance of 10 cm
and the scanning was repeated 10 times. Pressurized air was
utilized as carrying gas, the pressure being 3.5 bars.

Fabrication CNT/ta-C-Hybrid
A by RF-sputtering and e-beam evaporation were used for the
deposition of a multilayer catalysts film of 0.2 nm Al, 3 nm Co,
and 3 nm Fe was on the top of ta-C. A low pressure chemical
vapor deposition (CVD) reactor (Aixtron, BlackMagic) was used.
The samples were heated to 550◦C process temperature using
an electrical heated graphite holder in NH3 (250 sccm) at 10
mbar pressure for 10min to reduce catalyst metals. Subsequent to
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chamber evacuation and refilling with N2 buffer gas (250 sccm)
back to 10 mbar process pressure, a carbon precursor (C2H2) was
introduced into the chamber (25 sccm) for another 10min for the
MWCNT synthesis while keeping the temperature at 550◦C.

Fabrication of CNF/ta-C-Hybrid
Prior to the CNF growth, a 10 nm Pt or 20 nm Ni catalyst layer
was deposited on top of the ta-C thin films using cathodic arc
deposition. The CNFs were grown with plasma-enhanced CVD
at 750◦C for 30 (Pt-CNF) or 60 (Ni-CNF) by utilizing C2H2 as a
precursor. Further details are described by Sainio et al. (2015b).

Cell Cultures and Analysis
Prior to the cell culture experiments, the samples were sterilized
in 70% ethanol for 10min. Cells were cultured in humidified
incubator with 5% CO2 in the air.

C6 (ATCCsCCL-107TM) rat glial cells and PC12 (adherent
type, ATCCsCRL1721.1TM) rat neuroblastic cells were cultured
in F12-K medium (or F12-K/DMEM without phenol red)
supplemented with 2.5% fetal bovine serum (FBS) and 15% horse
serum. Mouse neural stem cells (mNSC, ATCC R© CRL2926TM)
were cultured in Eagle’s Minimum Essential Medium (without
phenol red) supplemented with 4 mML-Glutamine and 10% FBS.
All media were supplemented with antibiotics, 100 IU/ml of
penicillin and 100µg/ml of streptomycin.

Samples (1 cm2) were placed on 12-well plates and cells
were seeded on the surfaces. The seeding densities for each
cell line corresponded to the recommended seeding densities:
approximately 30,000 cells cm−2 for mNSC and PC12 cells and
70,000 cells cm−2 for C6 cells.

Staining
Cells were cultured for 24 h on the surfaces. Cells were fixed
with 4% paraformaldehyde fixation and permeabilized using
0.5% triton-X. Actin cytoskeleton was stained during 30min
incubation with phalloidin-568-label (Biotium 1:50 in PBS) and
nuclei was stained using Vectrashield mounting medium with
DAPI. Samples were coverslipped to prevent dehydration. Cells
were imaged using Olympus BX51M microscope and Leica
DCF420 digital microscope camera. Cell count was calculated
from nuclei staining. Cell area was calculated directly from actin
images and divided by the number of the cells calculated from
nuclei staining. At least three images per sample type were
analyzed. The software used for image processing was ImageJ Fiji.

SEM
For scanning electron microscopy, the cells were cultured on
the surfaces for 24 h prior to fixation in 2.5% glutaraldehyde in
PBS overnight at 4◦C. Subsequent to fixation, the samples were
washed in PBS. Dehydration was performed in increasing ethanol
series and completed using hexamethyldisilazane (Sigma-
Aldrich). A chromium layer was coated on the samples to
improve conductivity. Samples were inspected with a scanning
electron microscope (JEOL JSM-6335F, field emission SEM).

MTT
3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide
(MTT) assay was utilized to evaluate the viability of cells grown

on ND/ta-C-hybrid samples. Cell were allowed to attach and
grow for 24 h culture. Then, the samples were transferred to a
clean 24-well plate in order to exclude the cells growing outside
the samples on the plastic well and 1 mg/ml of MTT (Sigma
Aldrich) was added in the medium. The samples were incubated
for 3 h at 37◦C in a humidified chamber. Cell culture medium
was removed and MTT crystals were dissolved in 500 µl of
isopropanol. Dissolved MTT was transferred to another 24-well
microplate for absorbance measurement at 570 nm. Data was
collected from triplicate samples using automated plate reader
(FLUOstar Optima, Ortenberg, Germany).

XTT
MTT is not suitable for the viability assessment of MWCNTs
as MTT-formazan crystals may react with MWCNTs (Wörle-
Knirsch et al., 2006; Casey et al., 2007). 2,3-bis-(2-methoxy-
4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT)
assay was used instead.

Samples were placed on multi-well plates and cells were
cultured for 22 h (PC12, C6) or 48 h (mNSC). Samples were
transferred to a clean 24-well plate and freshly preparer activated
XTT solution (XTT cell viability kit, Biotium) was added to the
medium (ratio 1:4) and incubated for 3.5 h before measurement
of the absorbance signal at 450 nm. Medium without phenol
red was utilized. For PC12 and C6 cells a diluted concentration
of serum (7.5% of horse serum and 1.25% of FBS, i.e., 50%
of the normal concentrations) was utilized with XTT as the
kit instructions recommend medium concentration to be at
most 10%.

RESULTS AND DISCUSSION

We tested three types of hybrid carbon nanostructures, where
a carbon nanostructure is combined with thin film ta-C.
ND/ta-C-hybrid is a first generation hybrid carbon material,
or pseudo hybrid, with no physical integration of the different
carbon allotropes. CNT/ta-C-hybrid and CNF/ta-C-hybrid
present second generation of hybrid carbon materials, where
different carbon allotropes are physically integrated. The second-
generation approach brings an important benefit for biomedical
applications as the integrated structures are less likely to detach,
reducing the risk for nanotoxicity.

Neural Cells on ta-C
Thin film ta-C is the substrate utilized in all of the hybrid
structures presented in this paper. Thin film ta-C is characterized
by excellent physical properties including high hardness and high
elastic modulus as well as chemical inertness to any acids, alkaline
solutions, and organic solvents. The ta-C films have a high sp3

content (58.9%), and the surface region is significantly rich in
sp2 (Sainio et al., 2016b). The films are extremely smooth with
a roughness (Rrms) of 0.81 nm (Wester et al., 2018) and the
samples contain <10 at% of oxygen, the functional groups being
ketone/aldehyde groups (Sainio et al., 2016b). Electrochemical
properties of ta-C include extremely wide (3.7 V) and stable
water window and relatively low capacitive background current
(Kaivosoja et al., 2014). In addition, ta-C has facile electron
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transfer kinetics and high sensitivity, but no selectivity, toward
dopamine (Laurila et al., 2014a).

Here we compared cell viability on untreated ta-C to
poly-L-lysine (PLL) coated ta-C. Polylysine (PLL or poly-D-
lysine, PDL) is commonly used as a coating material in the
preparation of neuronal cultures (Yavin and Yavin, 1974).
Interestingly, however, PLL increases only viability of mNSCs
and glial C6 cells and not viability of neuroblastic PC12 cells
(Figure 1). Moreover, the increase in the viability of mNSCs
is not statistically significant. We have similar results also on
mesenchymal stem cell differentiation into neurons: ta-C with
PDL-coating increased glial fibrillary acidic protein (GFAP) levels
of differentiating neurons indicated a presence of glial-like cells
rather than neurons (not shown). This indicates that ta-C surface
may be particularly suitable for direct neuronal interfacing. This
is supported by a previous study showing that diamond film is
suitable for direct neuronal interfacing, whereas glial cell growth
required a protein coating (Bendali et al., 2014). However, this
is not true for all carbon thin films. For example, a significant
increase in PC12, C6, and mNSC viability is measured, for
instance, on pyrolytic carbon with PLL coating compared to
pyrolytic carbon without any coatings (Peltola et al., 2017b).
Figure 1 presents images of C6 and mNSC on ta-C without any
coating, showing well-adhered and spread cells.

Neural Cells on ND/ta-C
The protein-sized dimensions provides NDs the ability to
influence on neuronal adhesion on a nanoscale subcellular level.
The radial curvature of NDs is similar to proteins resulting
in point-contact protein adsorption. Consequently, proteins
are electrostatically adhered strongly to NDs but remain in
their native structural and functional shape, as dictated by the
hydrophobic force (Edgington et al., 2013). As an example, a
previous study shows the bovine serum albumin (BSA) adsorbs
with high affinity to NDs without conformational changes (Wang
et al., 2011). Moreover, a small radius of curvature is reported
to enhance the functional adsorption of (in particular) fragile
globular proteins including vitronectin and fibronectin (Roach
et al., 2006). Interestingly, previous research has further shown
that ND layering provides an excellent growth substrate on
various materials for functional neuronal networks and bypasses
the necessity of protein coating (Thalhammer et al., 2010).

We examined the effect of surface functionalization of
monodispersed NDs on ta-C on glial and neural cell viability.
The investigated NDs had four types of functionalization:
zeta-positive NDandante with amino and carboxyl functional
groups, zeta positive amino functionalized NDamine, carboxyl
functionalized zeta-negative NDvox, and zeta positive hydrogen
terminated NDH. Details on ND/ta-C hybrid characterization are
published previously (Peltola et al., 2017a). From sensing point,
compared to ta-C, the ND/ta-C hybrid has enchased sensitivity
toward dopamine and the detection limit is improved by two
orders of magnitude (50 vs. 100µM) (Peltola et al., 2017a).

We observed significant effect of the ND functionalization on
the viability of cells (Figure 2). Some surfaces, namely NDH and
NDandate, showed ability to specifically support neuroblastic cells.
The viability PC12 cells and mNSCs increased by over 50% on

NDH surface and over 20% on NDandate surface compared to ta-
C reference. In contrast, on NDvox and NDamine surfaces, the
viability of mNSCs reduced down to 90% and the viability of
PC12 down to 50% compared to ta-C reference. Interestingly, the
viability of C6 cells was not affected by surface functionalization,
suggesting that ND surfaces will not cause excess gliosis. Previous
study shows that amino-functionalized surfaces direct neural
differentiation to glial lineages (Yao et al., 2015), which is in
agreement with the finding that NDamine rather supports glial
C6 cells than neuroblastic PC12 cells. However, the effects of
surface chemistries on protein adsorption and cell adhesion
on flat surfaces cannot be directly extrapolated to effects on
nanostructured surfaces.

The different chemical functionalities influence the adsorption
of macromolecules on the surfaces. According to a widely
accepted assumption, proteins form a monolayer on the surfaces
(Horbett, 1993). The Vroman effect suggests that small and
abundant proteins will first cover a surface, but they will be
replaced over time by proteins with stronger affinity for that
particular surface (Vroman and Adams, 1969a,b). It is likely
that the homogeneous NDamine or NDvox surfaces possess over
dominance of certain proteins and lack of others, consequently
affecting cell viability. NDH is homogeneous as well, but
hydrogen functionalization does not provide specific binding
cites for proteins. NDandante, for comparison, posses both
carboxyl and amino functionalizes and, consequently, the surface
is heterogeneous. The heterogeneous surface does not result in
similar over dominance of some proteins as a homogeneous
surface may. However, heterogeneous surfaces may even repel
protein adsorption (Shen and Zhu, 2016), which could be
exploited in applications, which are sensitive for biofouling.

Neural Cells on CNT/ta-C-Hybrid
The size and shape of CNTs are similar to neuronal processes;
they are strong yet flexible. High conductivity is an advantageous
property as electrical stimulation has been shown to enhance
nerve functions and regeneration (Heiduschka and Thanos, 1998;
Kotwal and Schmidt, 2001).

Our process, where CNTs are grown on ta-C, has the benefit
that the electrical connections between the carbon allotropes
are well-established. When CNT coatings are fabricated with
methods such as drop casting the electrical connections might
not be well-established with the substrate. The multi-walled
CNTs with a diameter of 20–40 nm and length <10µm
form a continuous film on top of the ta-C (Laurila, 2015;
Laurila et al., 2015). Metallic elements, such as (Fe, Co)-
silicides and Fe–Co particles formed during the activation of
the catalyst and the growth of the nanotubes, remain in the
material (Laurila, 2015; Laurila et al., 2015). Electrochemical
properties of the CNT/ta-C hybrid include a relatively wide water
window (2.7V) (Sainio et al., 2015a). Furthermore, depending
on the thickness of the underlying ta-C film, the CNT/ta-C
hybrid has a relatively low detection limit for DA (42–77 nM),
and more importantly, it provides excellent selectivity toward
dopamine in the presence of ascorbic acid and uric acid at
physiologically relevant concentrations using cyclic voltammetry
(Palomäki et al., 2018).
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FIGURE 1 | (A) Shows the viability (MTT) of cells on ta-C with PLL coating compared to ta-C without any coatings. Viability is normalized to ta-C. (B) Shows mNSC on

uncoated ta-C (actin on red, nuclei on blue), and (C) presents SEM image of C6 cells on uncoated ta-C (scale bar is 100µm). Both cell types show typical morphology.

FIGURE 2 | Viability (MTT) of cells on functionalized hybrid ND/ta-C surfaces. Viability is normalized to ta-C. Modified from Peltola et al. (2017a).

Unfortunately, comparison of cell growth on different CNTs is
challenging due to the limited amount of information provided.
Too often, there is no information of the original seed material
used for the growth of CNT or information of the size of the
CNTs, or even if the CNT were single walled or multiwalled or
opened (Laurila et al., 2017a). Moreover, common approaches
for fabricating CNT based materials is mixing CNTs with a
polymer or polyelectrode. Consequently, the cellular response is
dominated by the polymer or polyelectrode rather than CNTs.
Furthermore, for biocompatibility point of view, it is to be noted
that impurities can constitute up to 20% of CNTs.

We evaluated the viability of glial (C6), neuroblastic (PC12),
and neural stem cells on CNT/ta-C hybrid compared to thin
film ta-C. Intriguingly, compared to ta-C thin films, CNT/ta-
C-hybrid increased the viability of neuroblastic PC12 cells and
decreases the viability of C6 glial cells (Figure 3A). The number
of mNSCs showed no difference and Figure 3B shows that the
mNSCs mostly grew in clusters and no significant differences
between cell morphology on CNT/ta-C and ta-C thin film could
be detected.

PC12 preference for CNT surface may be explained by the
anisotropic nanotopography, which has been shown to be crucial

to neuron growth and differentiation (Dang and Leong, 2007;
Wang et al., 2012). The anisotropic structure aids cell migration
and organization along the nerve fiber preferred direction. It has
been shown that aligned and conductive fibrous scaffolds could
provide better contact guidance effects in neurite outgrowth
(Ghasemi-Mobarakeh et al., 2008; Zhang and Chang, 2008;
Tonsomboon and Oyen, 2013; Masaeli et al., 2014; Zhang et al.,
2016). Interestingly, neural stem cells elongate and their neurites
outgrow along with the aligned fibers regardless of their diameter;
however, nanofibers with a diameter of 250 nm promote cell
differentiation compared to microfibers (1.25µm) (Yang et al.,
2005). These CNT networks with well-established electrical
connections to the substate have high potential for direct neural
interfacing. However, the optimal CNT configuration is yet to
be defined.

Neural Cells on CNF/ta-C-Hybrid
The CNF structure is a repetition of some type of graphite
structure, such as bamboo-like, fishbone, platelet or ribbon types.
The structure and dimensions of the CNFs are governed by
the reactor type as well as the growth seed, temperature, and
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FIGURE 3 | (A) Shows viability (XTT) of cells on CNT/ta-C hybrid compared to ta-C. Viability is normalized to ta-C. (B) Shows mNSCs cultured on CNT/ta-C hybrid

(actin red, nuclei blue).

time. For example, the presence of ta-C changes CNF structure
from tubular like CNF to platelet like structure (Sainio et al.,
2016a). The growth of CNF is a stochastic process and the
consequential structure is highly heterogeneous. Accordingly, the
interaction of cells and CNFs is rather complicated. However,
this heterogeneous structure may better mimic the natural
environment of the cells than highly ordered nanostructures.

Here we tested Pt and Ni based CNF/ta-C hybrid materials,
which have been exhaustively characterized previously, Pt-CNFs
by Laurila et al. (2017b) and Ni-CNFs by Sainio et al. (2016a).
Both CNF/ta-C hybrids have a stacked platelet like structure.
The structure of the Pt-CNF fibers somewhat less ordered than
Ni-CNF and the platelet edges are aligned toward the seed
particle (Laurila et al., 2017b). Moreover, the Pt-CNS seems to
have hollow or amorphous core, surrounded by several layers
of stacked platelets (Laurila et al., 2017b). Furthermore, the
dimensions of Ni-CNF and Pt-CNF are clearly different: Pt-CNFs
have a smaller diameter, varying from 5 to 45 nm (Isoaho et al.,
2018b), whereas Ni-CNFs are thicker, with a diameter from 50
to 500 nm (Sainio et al., 2016a). Further, Pt-CNF are shorter and
have a height of 60–600 nm (Isoaho et al., 2018a), whereas Ni-
CNF are typically taller, being closer to 1µm (Sainio et al., 2016a).
Pt and ta-C thin films were used as reference samples. From
biocompatibility point of view, Ni hypersensitivity is an issue, and
Pt provides a better option. Indeed, complete removal of metal
catalyst particles from CNFs and other carbon nanostructures
is extremely difficult (Sainio et al., 2016c). In Pt-CNFs, the Pt
remnants have application-specific role, enabling the detection
of H2O2. This allows the detection of many biological analytes,
such as glucose and glutamate, which are detected by utilizing
an oxidase enzyme that catalyzes the formation of H2O2. We
have shown that one of the most important benefits of Pt-
CNF/ta-C hybrid is that it provide ultrafast (<0.05 s) glutamate
detection (Isoaho et al., 2017). Ni-CNF/ta-C hybrid, on the other
hand, enhances dopamine detection (1µM) and selectivity in the
presence of ascorbic acid compared to ta-C (Sainio et al., 2015b).

For yet an unknown reason, XTT did not give reliable
values for viability of cells on CNFs. Although some insoluble
tetrazolium salts such as MTT are known to interact with carbon

nanostructures (Wörle-Knirsch et al., 2006), the interaction has
not been an issue with the soluble tetrazolium salts such as XTT.
However, the stacked platelet like structure has an excess amount
of graphitic edge planes, which may interact with the XTT.

As an alternative, we utilized fluorescence microscopy images
of cell nuclei for counting the cells and evaluating the viability. Pt
thin films and ta-C samples were used as reference samples. We
observed no statistically significant changes in cell count on the
samples (Figure 4). As both C6 and mNSC show spreading on
the surface and cell count is comparable to Pt and ta-C thin films,
both CNF surfaces exhibit good biocompatibility.

The dimensions of CNF vary from a few tens of nm to
hundreds of nm. This range is particularly interesting as it
matches biologically relevant dimensions of cell adhesions. A
single integrin has a diameter of 10 nm (Nermut et al., 1988;
Erb et al., 1997), whereas the adhesion complexes are rather
large, micron, structures. The sub-adhesion integrin organization
can divided into intermediate lenghts (50–500 nm) or at short
lengths consisting a few integrins (<50 nm). Moreover, previous
research shows a link in short (<50 nm) and intermediate (50–
500 nm) range integrin organization and the eventual signaling
and anchoring capacity of adhesive complexes (Comisar et al.,
2011). Interestingly, traction force increases with size for focal
adhesions larger than 1µm, whereas no correlation exists for
smaller adhesions and the traction forces on these small focal
adhesions can be very high (Tan et al., 2003).

Although no differences were observed in cell count, the
adhesion and morphology of the cells is clearly affected by
the CNFs. Most likely, the changes occur due to the different
dimension of the nanofibers. Most apparent change is seen in the
morphology of C6 cells (Figure 5). On Pt-CNF, which posses a
smaller diameter compared to Ni-CNF, the C6 cells are spreading
equally on all directions. In contrast, on Ni-CNF, the C6 cells are
more oriented and possess an elongated morphology.

Interestingly, also the formation of filopodia is affected by the
CNF dimensions. On Ni-CNFs, the cells possess an extensive
amount of filopodias, whereas the number of filopodias on Pt-
CNF is increased only to some extent compared to ta-C or Pt
thin films (Figure 5). However, the effect on filopodias is not
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FIGURE 4 | (A) Cell count and (B) cell area on CNF/ta-C hybrid materials. Sample surface are in (A) corresponds to planar surface area, not the geometrical one.

Modified from Isoaho et al. (2018b).

FIGURE 5 | C6 cells on CNFPt/ta-C hybrid (A,C) and CNFNi/ta-C hybrid (B,D). Fluorescent image (A,B) present actin on red and nuclei on blue. Cells on CNFNi/ta-C

hybrid present elongated morphology and extensive amount of filopodia compared to cells on CNFPt/ta-C hybrid. Scale bar in (C,D) is 1µm. (C,D) reproduced from

Supplementary Material of Isoaho et al. (2018b)—Published by The Royal Society of Chemistry.

unexpected as the CNF diameters are comparable to cell adhesion
dimensions. A filopodia has a diameter of 100–300 nm (Mattila
and Lappalainen, 2008) and accordingly, a filopodia encounters
just a single Ni-CNF fiber (or a bundle of collapsed Ni-CNFs).
Previous studies also present a critical lateral interdistance of
about 60–70 nm between integrin RGD ligands, above which
integrin clustering and focal adhesion formation is hindered.
If the spacing extends this critical distance, it inhibits cell

attachment and spreading (Arnold et al., 2004; Selhuber-Unkel
et al., 2010). This critical lateral distance probably follows the
dimensions of ordered structures in the native extracellular
matrix. For example, collagen fibrils have a 67 nm D-periodicity.
As observed here, and reported before (Nguyen-Vu et al.,
2007), the CNFs have a tendency to collapse into microbundles.
Consequently, the distance between Ni-CNFs increases above
the stated critical lateral interdistance. Moreover, the plentiful
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number of filopodia seen on Ni-CNF, may be explained by the
cell adhesion forces. Previous research shows that cell adhesions
smaller than 1µm2 are able to produce large adhesion forces (Tan
et al., 2003).

In contrast, the Pt-CNFs posses smaller dimensions (5–
45 nm). Consequently, cell filopodia encounters several Pt-CNF
fibers, allowing the cell to move flexibly. Nanoscale dimensions
are important for the formation of proper synaptic connections.
For example, a previous report shows that astrocytic syncytium
level maximized at 50 nm dot arrays, compared to dot diameters
ranging from 10 to 200 nm (Lee et al., 2014).

Considering cell response, it is possible that thin fibers in the
range of a few dozen nm are more suitable option than thick
fibers, with a diameter larger than 100 nm. Nonetheless, it is yet
to be investigated what kind of effects the dimension of CNFs will
have on cell metabolism and functions. Here we observed that
although the C6 cells grown on Pt-CNF appear to be spreading
well (Figure 5), they are smaller compared to C6 cells grown
on Ni-CNF, ta-C, or Pt thin films (Figure 4). It is assumed that
that the CNF dimensions will cause further effects on cells, as
the effect on cell size and morphology is so robust. In order to
comprehend the impact of different fiber dimensions on cells
and to achieve the optimal biological response, a more systematic
study on the effect of different dimensions of CNFs is required.

Benefits of Hybrid Structures
Many of the hybrid structure growth processes are
Complementary–Metal–Oxide–Semiconductor (CMOS)
compatible and by utilizing different microsystem technologies
it is possible to make devices out of these materials. Here we
showed that these hybrid structures have high potential for direct
neural interfacing. Consequently, these materials are highly
attractive option for neural electrodes.

Table 1 summarizes the special features as well as the
observations of neural cells on carbon nanostructure/ta-C
hybrid materials. ND/ta-C hybrid with hydroxyl and carboxyl-
amino functionalization as well as CNT/ta-C hybrid promotes
the viability of neural PC12 cells and decreases viability of
glial C6 cells. Consequently, these surfaces have potential
for supporting neural differentiation over glial differentiation.
As a result, tissue integration may be improved and glial
scar formation prevented, guaranteeing an effective transfer
of signal and stability of implant. CNF/ta-C hybrid structure
has the advantage that the dimensions can be tailored. The
size of the fibers affect cell adhesion and morphology, but
further effects need to be investigated. A significant benefit
of the presented hybrid structures is that we can tailor
the properties of the structures relatively easily by adjusting
processes, and it is possible to control both geometry and
chemistry of the resulting typically have more well-defined
structures, both geometrically and chemically. As show here,
both the chemistry and physical dimension are significant for
the cell adhesion, and whether the surface is preferred by neural
or glial cells. Consequently, these surfaces have potential in
improved tissue integration and prevention of the glial scar
formation. The hybrid structures have exceptional potential for
highly defined structures, both geometrically and chemically,

TABLE 1 | Special features and neural cell response on hybrid carbon materials.

Hybrid

material

Special features Neural cell response

ND/ta-C ND size and curvature

comparable to proteins.

Functionalization with hydrogen

or mixed functionalization with

carboxyl-amino group resulted in

increased viability of neuroblastic

cells and neural PC12 cells.

CNT/ta-C Anisotropic topography and CNT

network conductivity.

CNTs promoted the viability of

neural PC12 cell and decreased

the viability of glial C6 cells

compared to ta-C surface.

CNF/ta-C CNF diameter can be tailored

and is comparable to cell

adhesion dimensions.

Cell morphology and size are

affected by the CNF dimensions.

No difference in cell count was

observed.

enabling optimization of the cellular response. Consequently,
these materials posses exceptionally high potential to achieve
direct neural interfacing.

CONCLUSIONS

We have demonstrated that we can modify cellular response
just with the electrode material. This is highly desirable for
sensor applications requiring fast response times. For example,
the fluctuation of neurotransmitters is in ms scale, and any
protective layer on the electrode would cause a diffusion barrier
and consequent loss of temporal resolution. Particularly surfaces
supporting neural cells over glial differentiation, namely ND/ta-C
with hydrogen or mixed (carboxyl/amino) functionalization and
CNT/ta-C, have high prominence in direct neural interfacing.
These surfaces have potential in improved tissue integration and
prevention of the glial scar formation therefore guaranteeing an
effective transfer of signal and stability of implant. Due to the
high ability to tailor the dimensions of CNF/ta-C, these materials
also exhibit significant potential in direct interfacing. However,
a more systematic study is required to understand the effects of
different fiber sizes on cells to find the optimal dimensions for
biological response.
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