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In this work, Al-doped ZnO (AZO) nanosheets (NSs) were successfully synthesized on

graphene-coated polyethylene terephthalate (GPET) flexible substrate via hydrothermal

method. Studies have indicated that with the addition of Al3+, the nanostructure of ZnO

gradually grows from nanorods (NRs) to NSs, and the (100), (002), and (101) diffraction

peak strength of ZnO that grows perpendicularly to the substrate along the c-axis

weakened. The mechanism of hydrothermal growth of AZO/GPET was also studied. The

electrochemical properties of the samples were investigated by cyclic voltammetry (CV)

and electrochemical impedance spectroscopy (EIS), and it was concluded that AZO NSs

grown onGPET substrates has better capacitance performance than undoped ZnONRs.

Keywords: ZnO, Al-doped, hydrothermal method, graphene-based flexible substrates, electrochemical

performance

INTRODUCTION

Up to now, energy reserves and environmental contamination are still the focus of extensive
attention, especially the problems of air pollution, water pollution, global warming, and renewable
energy, which are closely linked with our lives. In order to solve these problems, batteries and
supercapacitors have become research hotspots of electrochemical energy storage systems. Among
them, supercapacitor (SC), is of great attention in the fields of automobiles (Cao and Emadi, 2011;
Biplab et al., 2017), wind power systems (Abbey and Joos, 2007), solar cells (Narayanan et al.,
2015; Xu et al., 2015), and so on, because of its great power density, lack of required maintenance,
wide operating temperature range, green environmental protection, long cycling life, etc. (Zhao
et al., 2011). In addition to those, SCs can provide high power pulses in a short period of time
compared to conventional capacitors or storage batteries. SCs, for example, are often used for
intelligent start-stop control systems (lightweight hybrid power system), which are particularly
prominent in plug-in hybrid electric vehicles (Cao and Emadi, 2011). Due to the different energy
storage mechanism, SCs can be divided into electric double-layer capacitors (EDLCs) and faraday
pseudo-capacitors. The former generates and stores energy by adsorption of a pure electrostatic
charge on the electrode surface and the latter uses redox reaction to store electrical energy in
an electrochemical manner (Liu et al., 2014). The properties of SCs are closely related to the
electrode materials used, and examples of materials used in current research are: carbon materials
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(Salinas-Torres et al., 2019), metal oxides (Wu et al., 2018) and
conductive polymers. Of all electrode materials, carbon materials
with high specific surface area and low internal resistance receive
more attention, including activated carbon fibers (Ren et al.,
2013), carbon aerogel (Liu et al., 2018), carbon nanotubes (Futaba
et al., 2006), activated carbon (Wang et al., 2014; Isabel et al.,
2016), porous carbon (Yang et al., 2019), and graphene (Zhang
et al., 2016; Ren et al., 2018).

The theoretical specific capacity of semiconductor oxides such
as ZnO, SnO2, and TiO2 is 2,3 times that of graphite, which
has attracted enormous attention. Among them, ZnO, as a n-
type semiconductor, has tremendous senses for the fields of
chemicals, electronics, and optics owing to its superior properties
[i.e., a large exciton binding energy (60 meV) and a wide
bandgap of about 3.3 eV at room temperature] (Klingshirn,
2010). In addition, as the electrode material of supercapacitor,
ZnO has been paid more and more attention because of its
advantages of high chemical stability and thermal stability, low
cost, environment friendly, and easy doping. However, ZnO has
the disadvantages of poor conductivity and large volume effect
in the process of charging and discharging, which affects the
practical application of ZnO as an electrode material. Graphene,
a two-dimensional carbon nanomaterial with zero bandgap, is
attractedmuch attention that as a prospective candidate electrode
material for EDLCs due to its high carrier mobility, great
chemical resistance, large surface area, high conductivity, and
transparency (Han et al., 2014; Ren et al., 2018). However, the
presence of Van der Waals makes graphene easy to reunite,
thus reducing the specific surface area and specific capacity of
graphene. Therefore, ZnO and graphene materials composite
and doped, can achieve the complementary advantages of
material properties.

Bhirud et al. prepared N-doped ZnO/graphene (NZO/GR)
by situ wet chemical method and studied their electrochemical
properties. It was observed, the specific capacitance of NZO/GR
was 555 Fg−1, which was 529 Fg−1 and 20% higher than
pure ZnO/GR (Bhirud et al., 2015). Cu/ZnO doped graphene
nanocomposites was investigated by Jacob et al. (2018).
Electrochemical analysis showed that the material has a specific
capacity of 630 mAhg−1 and retains around 95% of this capacity
after 100 cycles. Faraji and Ani (2014) reviewed the application
of microwave-assisted metal oxide thin film electrodes in
supercapacitors. And they noted that ZnO/GR composites
have high specific capacitance and good reversible charge-
discharge performance. Many previous studies have used the
hummer method to prepare graphene to prepare ZnO/graphene
nanoparticles (Wang et al., 2011; Bu and Huang, 2015;
Zhang et al., 2015). Therefore, it is necessary to explore
the preparation of ZnO nanofilms based on transparent
conductive flexible graphene-coated polyethylene terephthalate
(GPET) substrates.

In this paper, ZnO nanosheets (NSs) with different Al
doped concentration on GPET substrates were fabricated by a
simple-green hydrothermal method, and their electrochemical
properties were studied. The effect of adding different
concentrations of Al on electrochemical properties of ZnO
composite nanostructures was compared.

EXPERIMENTAL

Synthesis of ZnO Nanosheets
The Al-doped ZnO (AZO) NSs with different concentrations
were prepared on GPET substrates. The ZnO seed layer (about
30 nm thickness) was sputtered by radio frequency magnetron
sputtering on the surface of GPET substrates, which used acetone
(10min), methanol (10min), and deionized (DI) water to clean
in turn by ultrasonic cleaning machines. In the hydrothermal
growth process of AZO NSs, zinc nitrate hexahydrate (Zn
(NO3)2·6H2O), and hexamethylenetetramine (C6H12N4) were
mixed in DI water to prepare precursor solutions (30ml). Then
added aluminum oxide (Al2O3) as dopant to the solutions
with the concentration of 0.1 and 0.05 mol/L, and kept
stirring for 30min under mild magnets. The precursor solutions
were transferred to a Teflon-lined stainless-steel autoclave,
and then the GPET substrates were immersed in it. After
that, the autoclave was sealed and put into an oven, and
heated at a temperature of 95◦C for 6 h. The products on the
substrates were washed with DI water and dried naturally at
room temperature.

Structural Characteristics
Field emission scanning electron microscope (FESEM, by FEI
Magellan 400) and X-ray diffraction (XRD, by Rigaku D/MAX-
Ultima with Cu Kα radiation) were used to characterize
the microscopic morphology and crystal structure of the
samples, respectively.

Electrochemical Measurement
The cyclic voltammetry (CV) and electrochemical impedance
spectroscopy (EIS) of the samples have used electrochemical
workstation (CHI760E) to test. AZO NSs on GPET substrates
as a working electrode, Ag/AgCl as a reference electrode, and
platinum foil as counter electrode comprise the three-electrode
test system. 1 mol/L Na2SO4 solution be used as electrolyte in
this process of electrochemical measurement.

RESULTS AND DISCUSSION

The SEM and XRD images of ZnO with different Al doped
concentration (doping concentrations of 0, 0.05, and 0.1 mol/L)
prepared on GPET substrates are seen in Figure 1. As shown
in Figure 1A, in the case of the undoped Al elements, ZnO
has a vertically arranged NR structure with hexagon of its
top and a uniformly dense cover on the surface of GPET
substrate, suggesting that undoped ZnO has a good degree of
orientation. With the addition of Al elements, the structure
of ZnO is gradually changed from NR to NS, which clearly
observed in Figures 1B,C. It is not difficult to see that AZO
NSs, with its smooth surface, still grow perpendicularly to the
GPET substrate and are connected together to form a network
structure. Compared with the ZnO NRs, the conductivity of
obtained electrodes of the AZO NSs can be improved due to
the fact that the AZO NSs array can develope the branched
network. And the pseudo-capacitance of ZnO nanostructure
may improve its capacitance value and thus obtain an excellent
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FIGURE 1 | (A–C) FE-SEM image of Al-doped ZnO nanostructure grown on GPET substrate at different Al doped concentration: (A) 0 mol/L; (B) 0.05 mol/L;

(C) 0.1 mol/L; (D) XRD spectra of all samples. The inset in (A–C) correspond high-magnification images.

FIGURE 2 | Schematic diagram of hydrothermal growth mechanism of ZnO nanostructures.

electrochemical property (Zhang et al., 2015). As can be seen
from the XRD image (Figure 1D), except for the characteristic

peaks belonging to graphene and GPET substrate appearing

at 26◦ and 54◦, the other peaks are the diffraction peaks

of ZnO, which are basically in agreement with the standard

PDF card (JCPDS 89-1397) of ZnO. Moreover, the (002)
diffraction peak strength is higher than (100) and (101),
which indicates that AZO grow preferentially perpendicular
to the substrate along the c-axis. The doping of Al generates
stress during crystallization, and the crystal structure of ZnO
changes accordingly. Further, the intensity of the diffraction
peaks of (002) may become weak due to the incorporation of
Al elements.

Schematic diagram of hydrothermal growth mechanism of
ZnO NSs in Figure 2 revealed that incorporation of Al inhibits
the growth of ZnO NRs, thereby forming AZO NSs. The ZnO

crystal has a (0001) plane and a (0001) plane, that is, a Zn positive
polar surface and an O negative polar surface and six non-polar
surfaces. Al2O3 dissolved in the solution to produce complexing
ions, and the positive polar surface (0001) of the ZnO lattice
is more likely to adsorb the Al (OH)−4 complexing ions with
negative charges, which can hinder the growth of ZnO along the
[0001] direction. The growth of NRs was inhibited along c-axis,
which promoted the lateral growth of ZnO, and then formed ZnO
NSs (Figure 2C; Koh et al., 2004). The main chemical reactions
occurring in the solution during the formation of the ZnO NSs
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were involved in the following Equations (1) and (4):

C6H12N4 + 10H2O ⇋ 6HCHO+ 4NH3·H2O (1)

Zn2+ +NH3·H2O ⇋ Zn(NH3)
2+
4 (2)

Zn(NH3)
2+
4 +OH−

⇋ ZnO+NH3H2O (3)

Al+ 4OH−
⇋ Al(OH)−4 (4)

In order to study the effects of different concentrations
of Al doping on the electrochemical characteristics of ZnO
nanostructures, the CV curves of three different samples were
analyzed under a potential range of −0.8 to 0.9V at scanning
rates of 100 mV/s.

The CV curves, which has been clearly observed by
Figure 3A, revealed that redox peaks of 0.1 mol/L AZO NSs can
be significant observed, which indicated that the synthesized
active substances are beneficial for rapid redox reactions (Pu

et al., 2014). Comparing the integrated area of the samples
on the current-potential axis (Figure 3A), it is well-known
that the integrated area of the 0.1 mol/L AZO NSs is larger,
indicating that the 0.1 mol/L AZO NSs has a stronger charge
storage capacity. Further study on the of different scanning rates
of 5, 10, 20, 30, 50, and 100 mV/s on the electrochemical
characteristics of 0.1 mol/L AZO NSs nanostructures
(Figure 3B), and the results showed that the electrical current

density increases with the increases of scan rates, which

confirmed that 0.1 mol/L AZO NSs nanomaterials have excellent

scanning ability.
The Nyquist plots of AZO/GPET electrodes are shown

in Figure 4. The impedance curves of all obtained samples

consisted of high frequency zones (shown as semicircle),

which reflects the charge transfer resistance (Rct) of the

electrode, and low frequency zones (shown as slash),

FIGURE 3 | (A) CV curves of all samples at a scan rate of 50 mV/s. (B) CV curves of 0.1 mol/L AZO nanostructures grown on GPET substrates with different scan

rates in the range of 5–100 mV/s.

FIGURE 4 | Nyquist plots of 0 mol/L ZnO, 0.05 mol/L AZO, and 0.1 mol/L AZO. Inset is the enlarged high frequency zones.
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which mirrors the diffusion resistance of the ions of the
electrode. The semicircular diameter of the high-frequency
zone is basically the same, indicating that the addition
of Al does not enhance the charge transfer ability of
ZnO/GPET electrode. In the low frequency zones the
diffusion rate of electrode is proportional to the slope
of impedance curve. The diffusion rate of AZO/GPET
electrode is significantly greater than that of ZnO/GPET
electrode, which indicated that AZO/GPET electrode has better
electrochemical properties.

CONCLUSIONS

In summary, AZO NSs, which are evenly grown perpendicular
to the GPET substrate, were successfully prepared using
hydrothermal method assisted by ion sputtering. The structure,
microscopic morphology and growth mechanism of the samples
were analyzed, and it was concluded that the incorporation
of Al3+ inhibited the growth of ZnO NRs, but promoted
the formation of ZnO NSs, and weakened the characteristic
diffraction peak intensity of ZnO growing perpendicular to the
substrate along the c-axis. The electrochemical performance
test of the samples concluded that the AZO NSs have

better electrochemical performance than the undoped ZnO
NRs, which have broad application prospects in the field
of capacitors.
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