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Department of Materials Science and Engineering, University of California, Davis, Davis, CA, United States

A variation of the topological constraint theory is proposed where an atomic network is

modeled as a collection of rigid polytopes, and which explicitly distinguishes the bond

angle constraints as well as rigid bond angles from flexible ones. The proposed theory

allows for direct quantitative estimation of the fraction f of zero-frequency or floppymodes

of the network. A preliminary model is proposed to connect the theory to the two key

experimental observables that characterize glass-forming liquids, i.e., the glass transition

temperature Tg and fragilitym. The predicted values are tested against the literature data

available for binary and ternary chalcogenides in the Ge-As-Se system. The Tg is related

to f in this model by the activation entropy associated with the bond scission-renewal

dynamics that is at the heart of transport and relaxation in glass-forming liquids. On the

other hand, the large and temperature-dependent conformational entropy contribution

of the 1-polytopes, i.e., the selenium chain elements in these chalcogenide glass-forming

liquids, plays a key role in controlling the variation of m with f .

Keywords: supercooled and glassy state, rigid polytope, activation entropy, glass transition, fragility, topological

constraint theory

1. INTRODUCTION

The deformability, entropy and even temperature-dependent disintegration modes of a random
atomic network are largely determined by the network’s rigidity. Seminal works by Phillips
(1979), Phillips (1981), Thorpe (1983), and He and Thorpe (1985) have shown the existence of
a floppy-to-rigid transition in such networks in the form of rigidity percolation. The prevailing
model suggests that the network is floppy when the number of degrees of freedom per atom exceeds
the number of interatomic force field constraints, and the transition to rigidity occurs when these
two quantities are equal. The network’s rigidity therefore depends on the average coordination
number 〈r〉, and various arguments suggest that the floppy-to-rigid transition occurs at the critical
value rp = 2.4. Although Phillips (1979) and Phillips (1981) originally attempted to relate the
glass-forming ability of a network to its entropy and deformability, Thorpe (1983) placed the
idea of network rigidity on more formal footing by considering the number of zero-frequency
vibrational modes, i.e., continuous deformations with no energy penalty. The fraction f of such
modes is predicted to decrease with increasing 〈r〉 to zero at or near rp where rigidity percolates,
and increasing the connectivity further only serves to overconstrain the network.

The rigidity percolation model suggests that there could be an underlying universal dependence
of the physical properties of glasses on composition that is effectively insensitive to their chemical
details. The chalcogenide glasses provide an ideal testbed in this regard, being characterized by
energetically similar covalent bonds and a wide range of network connectivity. As it is practically

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#editorial-board
https://www.frontiersin.org/journals/materials#editorial-board
https://www.frontiersin.org/journals/materials#editorial-board
https://www.frontiersin.org/journals/materials#editorial-board
https://doi.org/10.3389/fmats.2019.00213
http://crossmark.crossref.org/dialog/?doi=10.3389/fmats.2019.00213&domain=pdf&date_stamp=2019-09-04
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles
https://creativecommons.org/licenses/by/4.0/
mailto:sbsen@ucdavis.edu
https://doi.org/10.3389/fmats.2019.00213
https://www.frontiersin.org/articles/10.3389/fmats.2019.00213/full
http://loop.frontiersin.org/people/165908/overview
http://loop.frontiersin.org/people/760991/overview


Sen and Mason Topological Constraints and Rigid Polytopes

impossible to directly obtain f for these complex amorphous
networks, typical studies in the literature instead report
the variation of physical properties with 〈r〉 (Tanaka, 1989;
Kamitakahara et al., 1991; Yang et al., 2010, 2013; Wang et al.,
2014; Sen et al., 2019). However, it remains unclear what would be
the signature of the rigidity percolation in the physical properties
of amorphous networks as a function of the connectivity. In fact,
a wide variety of physical properties including elastic moduli,
refractive index and the glass transition temperature Tg of
glasses in the Ge-Se system show continuous and monotonic
change through rp (Yang et al., 2013). On the other hand,
Boolchand and coworkers have suggested that the floppy-to-rigid
transition may not be sharp at rp, but rather that the network is
optimally constrained and therefore stress-free over a range of 〈r〉
around the threshold value of 2.4 (Wang et al., 2000; Boolchand
et al., 2001, 2005; Chakravarty et al., 2004). These authors used
modulated differential scanning calorimetry (MDSC) to show
that Ge-Se glasses with such optimally constrained networks
are characterized by vanishing non-reversing enthalpy, and
identified this as a property of the “Intermediate Phase” (IP). It
was further suggested that these IP glasses would be completely
resistant to aging or relaxation below Tg . However, subsequent
direct aging studies of IP glasses in the Ge-Se and Si-Se systems
by other researchers showed the presence of both structural and
enthalpy relaxation (Edwards and Sen, 2011; Zhao et al., 2013;
Marple et al., 2019), thus questioning the validity of the existence
of such IP.

Considering that Tg depends strongly on the connectivity
of a network, its monotonic variation with 〈r〉 raises further
questions about the use of the average coordination number as
a governing variable for rigidity percolation. For example, the
Gibbs–DiMarzio model of the chain polymer glass transition
(Gibbs and DiMarzio, 1958; DiMarzio and Gibbs, 1964) predicts
that Tg (along with the available free volume, chain stiffness and
degree of polymerization) is described by themonotonic function
Tg = T0/(1 − κX) where X is the cross-linking density of
the chains and κ is a universal constant. Note that while the
chain length in chain polymers is not affected by cross-linking,
this does result in progressively shorter chains for chalcogenides.
Despite this difference, Sreeram et al. (1991) found that for
chalcogenide networks the compositional variation of Tg could
be described by the same equation if κX is replaced by β(〈r〉 −
2) where β is a system-dependent parameter. Naumis (2006)
and Naumis (2015) included the effect of floppy modes on the
vibrational density of states to provide theoretical justification
for this observation by suggesting that the Lindemann criterion
for atomic displacements at the melting point could also be
applied to the glass transition. Other previous studies (Buchenau
et al., 2014; Toledo-Marín and Naumis, 2017) have shown the
existence of a fundamental connection between the temperature
dependence of the atomic mean square displacement and viscous
flow or shear relaxation in glass-forming liquids. However, the
glass transition is not a true thermodynamic transition and is
only significant for the fact that, by definition, the structural
relaxation timescale at Tg is on the order of ∼100 s. Therefore,
the validity of applying the Lindemann criterion to the glass
transition remains questionable.

On the other hand, several studies have reported sharp
changes in the activation energy of viscous flow near Tg , or in
the related fragility parameter (Angell, 1991):

m =
∂ log10 η

∂(Tg/T)

∣

∣

∣

∣

T=Tg

(1)

where η is the viscosity, in the vicinity of Tg . That said,
the original form of the rigidity percolation model cannot
explain temperature-dependent dynamics in supercooled liquids
because it does not include any mechanism for the thermal
energy to overcome the interatomic constraints. Gupta and
Mauro (2009) attempted to address this by explicitly introducing
temperature-dependent network constraints in the rigidity
model. This involves assigning each network constraint a
switching temperature such that the constraint becomes active
only when the system temperature drops below the switching
point. Although this approach is used extensively in the literature
to model the compositional variation of the thermophysical
properties of a wide range of glass-formers, direct experimental
verification of the key assumption about the switching behavior
has yet to be made.

Naumis (2005) and Naumis (2015) attempted to connect the
rigidity percolation model to statistical mechanics by suggesting
that the floppy modes provide channels in the potential energy
landscape that serve as pathways for the network to explore
many local minima, and hence make a contribution Sc to the
configurational entropy. This entropy was calculated as Sc =

fNkB ln�, where � is the number of accessible microstates per
atomic degree of freedom and is independent of f . Floppy modes
indeed provide an important source of entropy, though their
connection with structural relaxation is not obvious from the
standpoint of the energy landscape where metabasin hopping
and vibrational excitations within the metabasins are expected
to be temporally decoupled. A possible connection between
the short- and long- timescale processes has been proposed
by Dyre and coworkers with their elastic “shoving” model,
where the rapid increase with cooling of the activation energy
for structural relaxation in a fragile glass-forming liquid is
attributed to a corresponding anharmonic increase of the high-
frequency shear modulus (Dyre, 2006). Additionally, an exact
solvable glass transition model by Toledo-Marín and Naumis
(2017) has related the short-time process to the frequency of
probing transition states of the energy landscape, while the
long-time relaxation process represents the transition between
metastable states.

The rigidity percolationmodel is undoubtedly useful as means
to understand the behavior of random networks around the
glass transition. Nevertheless, the model makes some predictions
that are not consistent with experimental observations, and
the average atomic coordination number 〈r〉 is not always an
appropriate measure of the network connectivity (section 2.1
gives an example), at least not without qualifications described
by Thorpe (1983). Moreover, a connection between the model
and the statistical mechanics of glass-forming liquids has yet
to be conclusively established. That is to say, the topological
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constraint theory of glasses should not be considered complete
and inviolable.

This article proposes a variation of the topological constraint
theory where, for the purposes of calculating the available degrees
of freedom, the network is considered as being constructed
from a collection of rigid polytopes. This view is supported by,
e.g., Sidebottom’s observation that the mean connectivity of a
network’s weakest links is more closely related to the fragility
than the mean coordination number (Sidebottom, 2015, 2019),
and is related to the concept of rigid unit modes in the context
of negative thermal expansion materials (Evans, 1999; Fang
et al., 2014). The theory is motivated and developed in section
2, along with a preliminary model that relates the available
degrees of freedom to the relaxation time of a glass-forming
liquid. The resulting equations are tested and evaluated for the
family of chalcogenide glasses in section 3, and suggest that this
variation of the topological constraint theory could be useful
more generally.

2. NETWORKS OF RIGID POLYTOPES

This section revisits the rigidity percolation model. First, the
limits of this model are explored using the example of an
octahedral network, with the purpose of reinforcing that the
underlying assumptions in the model are more subtle than
is sometimes believed. Second, a variation on the topological
constraint theory is derived where rigid polytopes are considered
as the structural units of the network instead of atoms. This
follows from the conceptual separation of the degrees of freedom
into three classes, namely, those that are directly constrained
by strong interatomic bonds, those that are constrained by the
connectivity of the network, and those that are unconstrained.
Apart from offering more flexibility in the application of the
model, the resulting formula for the fraction of unconstrained
degrees of freedom is quantitatively different from Thorpe
(1983). Third, the implications of the revised model for the
dynamical properties of supercooled liquids in the immediate
vicinity of the glass transition are explored. The predictions of
this model are compared with experiments in section 3.

2.1. Limits of the Rigity Percolation Model
Thorpe’s rigidity percolation model (Thorpe, 1983) begins by
classifying atoms in a random network by the number of bonds in
which they participate, without distinguishing bonds of different
types. If nr is the number of atoms with r bonds, then 3

∑

r nr is
the number of degrees of freedom. Specifying the bond lengths
and bond angles around an atom with r bonds imposes r/2
and 2r − 3 constraints, respectively, on the degrees of freedom.
If all of these constraints are independent, then the fraction of
unconstrained degrees of freedom f is given by:

f =
3
∑

r nr −
∑

r nr[r/2+ (2r − 3)]

3
∑

r nr
. (2)

The average coordination number 〈r〉 is defined to be
∑

r nrr/
∑

r nr (despite the misprint in Thorpe, 1983), reducing

FIGURE 1 | (A) Perovskite materials with formula ABO3 contain a regular

network of corner-sharing BO6 octahedra, with the position of the A atom in

light gray. (B) Patterns of octahedral tilting (Glazer, 1972) are low-frequency

modes of the network.

this to the standard equation:

f = 2− 5〈r〉/6. (3)

Since f = 0 when 〈r〉 = 2.4, the model is often believed
to predict that rigidity should percolate through the network
and various properties of the system should be discontinuous
around this critical value. Thorpe’s original article included
several qualifications to this conclusion that are unfortunately not
consistently discussed in the literature, but that indicate that the
situation is more nuanced than suggested by Equation (3).

Consider applying this model to the regular network of
corner-sharing octahedra in a perovskite material, as shown
in Figure 1A. If the formula for this material is ABO3, then
a single octahedron contains one B atom with six bonds and
three O atoms with two bonds each. The average coordination
number for the octahedral network is then three, and the model
would seem to predict that the network is not only rigid but
highly overconstrained. Nonetheless, it is widely recognized that
various patterns of octahedral tilting (Glazer, 1972), including
the one in Figure 1B, are low-frequency modes of the network.
In fact, such soft modes are believed to be responsible for
displacive phase transitions and negative thermal expansion in
a number of systems (Evans, 1999; Fang et al., 2014). Possible
resolutions to this apparent contradiction are considered below
to help to clarify the limitations of the model as frequently
interpreted, and to suggest refinements to be included in the
subsequent derivation.

Our first attempt begins with the observation that the
symmetry of the ideal system allows only a constant number of
octahedral tilting modes, independent of the number of atoms.
Hence, as the system size approaches the thermodynamic limit,
the fraction of zero-frequency modes goes to zero and the model
gives the expected result. This argument is not entirely satisfying
though; the number of octahedral tilting modes is constant
because they extend throughout the entire network, but it is
difficult to exclude the possibility of localized zero-frequency
modes whose number scales with the size of a disordered system.
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Thorpe (1983) discussed this possibility, saying that “the number
of zero frequency modes is not zero at 〈r〉 = rp because floppy
inclusions still exist”. Perhaps then the presence of localized zero-
frequency modes is less relevant to the system properties than a
percolating network of identical ideally rigid bonds. The difficulty
with this is that bonds in physical systems are neither identical
nor ideally rigid; van derWaals forces allow systems with 〈r〉 < rp
at room temperature to solidify at low temperatures, and bond
breaking allows systems with 〈r〉 > rp at room temperature to
liquify at high temperatures. The conclusion here is the same as
the one arrived at by Thorpe (1983), namely, one should neither
expect to observe discontinuous behavior in the number of zero-
frequency modes, nor in the properties of glass-forming liquids,
at any particular value of the average coordination number.

Our second attempt considers the possibility that the number
of constraints is overestimated in Equation (3). Initially observe
that if the bond angles of the oxygens at the corners of the
octahedra were fixed, then the octahedra would not be able
to tilt. Thorpe (1983) anticipated this possibility as well: “For
example in SixO1−x...it is reasonable not to count the angular
force at the oxygen atoms”. Since the bond angle constraints do
not explicitly appear in Equation (3), such a modification needs
to be performed using Equation (2). Unfortunately, excluding
the oxygen bond angle constraints is insufficient to make f
nonnegative, and only increases the apparent value from −0.5
to −0.25. This idea should instead be taken much further, with
only independent constraints included in Equation (2) (Thorpe,
1983). The difficulty with this is that while many constraints
are dependent for the octahedral network, distinguishing the
dependent from the independent ones is not at all obvious due
to the interactions being nonlocal (e.g., a set of bonds could
form a ring). While there do exist approaches to identifying
the set of independent constrains (e.g., the pebble game; Jacobs
and Thorpe, 1995, 1996), these require much more detailed
knowledge of the network configuration than is generally
available in practice.

Perhaps since all of the quantities in Equation (2) are defined
using only local information, f is more closely related to the
properties of an average local environment than the overall
network. Indeed, f could be interpreted as an estimate for the
average fraction of unconstrained degrees of freedom per atom.
A value of f = −0.25 for the octahedral network could then
be rationalized as a consequence of the atoms at the centers
of the octahedra being highly overconstained. If f is truly a
local quantity though, one should not expect it to provide
any information about the existence of nonlocal zero-frequency
modes. That is, interpreting f in this way resolves the apparent
contradiction introduced as motivation for this section, but raises
the question of whether there is some other property that would
be more relevant to the experimental properties of the system.

A revised topological constraint theory would ideally address
the several concerns identified in the preceding discussion:

1. There is more than one kind of atomic interaction, and the
model should distinguish rigid bond angles from flexible ones.

2. Bond angle constraints should be explicit in the model, and
included only where dictated by intuition.

3. The model should suggest a connection to the nonlocal
properties of the system that is explicit and consistent
with experiments.

Section 2.2 proposes a revised topological constraint theory that
is motivated by the first and second points, while the third is the
subject of section 2.3.

2.2. Revised Topological Constraint Theory
The concept of a metabasin requires separating two types
of relaxations in glass-forming liquids, namely, local
rearrangements of particles and substantial structural
relaxations (Stillinger, 1995). If the available kinetic energy
is such that the system is confined to a single metabasin,
then the system is expected to behave as a solid. Conversely,
a system that often experiences the substantial structural
relaxations associated with transitions between metabasins
explores more of the configuration space and is expected
to behave as a liquid. This suggests that characterizing
the metabasins is essential to understanding the glassy
state, and much effort has been expended in this direction
(Doliwa and Heuer, 2003; Heuer, 2008).

Suppose that the local rearrangements in this picture can be
identified with operations involving a small number of covalent
bonds, and structural relaxations with changes to the network
conformation or connectivity. Constraints associated with
individual bonds would then be less relevant to understanding
the glass transition than constraints imposed by the network
connectivity on larger structural units. This serves as motivation
for the topological constraint theory developed in this section,
where the network is considered as being composed of rigid
polytopes rather than individual atoms, and any relaxations
involving bonds within a rigid polytope are explicitly not
considered. While others have used rigid polytopes for this
purpose before (Cooper, 1978, 1982; Gupta and Cooper, 1990),
and even general networks composed of multiple types of rigid
polyhedra with edge and face sharing (Gupta, 1993), those
authors specifically considered the restricted question of whether
topologically-disordered networks could exist. Moreover, those
theories consider the number of degrees of freedom per vertex
(rather than the fraction of unconstrained degrees of freedom)
and require considerably more detailed knowledge of the
constituent polyhedra than the theory developed here.

A polytope is a generalization of polygons and polyhedra to
any nonnegative dimension. More precisely, an i-polytope is a
finite region of i-dimensional space that is bounded by a finite set
of (i − 1)-dimensional hyperplanes. The boundary of a polytope
is itself comprised of polytopes, and a j-polytope of this type
is called a j-facet1. For example, a polyhedron (3-polytope) is
bounded by faces (2-facets), the faces can join at edges (1-facets),
and the edges can join at vertices (0-facets). This article only
considers i-polytopes for 0 ≤ i ≤ 3, and requires two polytopes
to intersect on a shared facet or not at all. For example, two
tetrahedra could intersect on a 0-polytope (corner sharing), a

1Formally, a i-polytope is its own i-facet.
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FIGURE 2 | Two tetrahedra could intersect not at all, on a 0-polytope (Left),

on a 1-polytope (center), or on a 2-polytope (Right), corresponding to corner

sharing, edge sharing and face sharing.

FIGURE 3 | A portion of an atomic network (Top left) contains 2- and

3-coordinated white and gray atoms, respectively. The same network can be

modeled using rigid polytopes (Top right), where the bonds around gray

atoms are replaced by triangles and the remaining bonds by line segments.

More precisely (Bottom), the network is composed of five direct polytopes

(two 1-polytopes and three 2-polytopes) and four intersection polytopes (three

0-polytopes and one 1-polytope).

1-polytope (edge sharing), or a 2-polytope (face sharing), as
indicated in Figure 2.

Following the discussion above, a network of atomic bonds is
represented as a network of rigid polytopes. The construction of
the polytopes is flexible by design and not entirely algorithmic,
but there are several general principles to follow. A polytope is
usually constructed as the convex hull of a set of contiguous
bonds. Substantial changes to the angles of bonds within the set
should be energetically expensive since the polytopes are assumed
to be rigid, and any internal degrees of freedom are explicitly
ignored. This construction implies that every polytope vertex
coincides with some atom; if the system contains one or more
atomic species for which the bond angles are not entirely fixed
(e.g., oxygen), then these should be placed at the vertices.

Figure 3 considers an example fragment of an atomic network
containing two types of atoms, one 3-coordinated and the
other 2-coordinated (bonds to the surroundings are omitted for
simplicity). If the bond angles around the gray atoms are fixed
and those around the white atoms are not, then the atomic
network can be represented as a network of rods and triangles.
The polytopes constructed as convex hulls of sets of atomic bonds
(i.e., the rods and triangles) are called direct polytopes. The facets
where direct polytopes intersect are called intersection polytopes,
and encode any constraints imposed by the connectivity of the
network on the motion of the direct polytopes. For example,
the network in Figure 3 contains three intersection 0-polytopes,
the existence of which requires the adjoining direct polytopes to
share a vertex. Alternatively, one could imagine being given a
collection of direct and intersection polytopes, and having to join

FIGURE 4 | A direct d-polytope can contribute fewer than φ(d) degrees of

freedom. For a direct 3-polytope connected to a single intersection 0-polytope

(left), the two orientational variables do not affect the network’s behavior, and

the direct polytope can safely be replaced by a direct 0-polytope. More

generally, only the connection of a direct polytope to an intersection polytope

affects the network behavior, and the direct polytope can be replaced by the

convex hull of the connected intersection polytopes.

direct polytopes along the intersection polytopes (with none left
over) to create a facsimile of the atomic network.

The objective of a topological constraint theory is to estimate
f , the fraction of unconstrained degrees of freedom available to
the network. The direct polytopes contribute degrees of freedom
whereas the intersection polytopes contribute constraints; if
the number of degrees of freedom contributed by a direct
polytope and the number of constraints contributed by an
intersection polytope are known, and every constraint is assumed
to be independent, then f is straightforward to estimate. This
reduces the objective of this section to the calculation of the
number of degrees of freedom or constraints contributed by a
given polytope.

Consider a single direct polytope. A 0-polytope requires three
variables to specify the three spatial coordinates. A 1-polytope
requires five variables, three for a 0-facet and two for the
orientation of the attached edge. A 2- or 3-polytope requires six
variables, five for a 1-facet and one for the rotation angle about
that facet. For notational purposes, let d be the dimension of a
direct polytope and define:

φ(d) =











3 d = 0

5 d = 1

6 d = 2, 3

.

It is tempting to say that φ(d) is the number of degrees of
freedom made available to the network by a direct d-polytope,
but this is not necessarily the case; Figure 4 shows several
situations where a direct d-polytope contributes fewer than
φ(d) degrees of freedom. For example, the direct 3-polytope
on the right constrains the distance between the connected
intersection 0-polytopes, but can rotate about the relevant edge
without affecting the configurations available to the network
(direct polytopes not connected by intersection polytopes do not
interact). That is, this direct 3-polytope effectively functions as
a direct 1-polytope. Along with the other examples in Figure 4,
this suggests that a direct d-polytope actually contributes only
φ(δ) degrees of freedom, where δ ≤ d is the dimension of the
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convex hull of the connected intersection polytopes and is called
the reduced dimension.

For the intersection polytopes, the configurational variables
of a single intersection d-polytope contribute φ(d) degrees of
freedom. Connecting an intersection d-polytope to a direct
polytope imposes φ(d) constraints on the direct polytope though,
since the relevant configurational variables of the intersection
and direct polytopes must be the same. There could be k
additional angular constraints associated with the intersection
polytope as well (counted only after reducing the dimension
of the connected direct polytopes). An intersection d-polytope
connected to j direct polytopes would therefore contribute a total
of (j − 1)φ(d) + k constraints. For example, the intersection
0-polytope on the left of Figure 4 contributes three positional
degrees of freedom, imposes three positional constraints on each
of the connected direct polytopes, and has zero associated angular
constraints for a total of three constraints.

At this point, the number of unconstrained degrees of freedom
can be estimated by substracting the sum of the constraints
imposed by intersection polytopes from the sum of the degrees
of freedom contributed by direct polytopes. Let ni be the number
of direct polytopes with reduced dimension i, and mijk be
the number of intersection i-polytopes with j connections to
direct polytopes and k associated angular constraints. Then
the proposed topological constraint theory gives the following
estimate for the fraction of unconstrained degrees of freedom:

f =

∑

i niφ(i)−
∑

i

∑

j

∑

kmijk[(j− 1)φ(i)+ k]
∑

i niφ(i)
. (4)

The use of this equation can be clarified with several examples.
For SiO2, a network with n direct 3-polytopes (SiO2 tetrahedra)
would have 2n intersection 0-polytopes (oxygen atoms), each
with two connections to direct polytopes and no associated
angular constraints. Evaluating Equation (4) indicates that f = 0
for the SiO2 network, in agreement with the conventional model.
For the octahedral network in Figure 1, a network with n
direct 3-polytopes would have 3n intersection 0-polytopes with
the same properties as those for SiO2. Evaluating Equation
(4) for this network gives f = −0.5, a quantitatively different
value from the −0.25 given by Equation (2) (modified to
remove angular constraints on the oxygen atoms). Since the
numerators of Equations (2) and (4) are both the number of
unconstrained degrees of freedom (a property of the network that
is independent of the model), the difference should be caused by
the denominators. That is, there is a quantitative difference that
results from choosing atoms or rigid polytopes as the structural
units of the network. The preferred choice should depend on
whether Equations (2) or (4) is more strongly correlated with the
experimental data.

2.3. A Model for Entropy and Relaxation
Ideally, the relevance of the topological constraint theory
developed in section 2.2 to physical systems would be established
by connecting the fraction of unconstrained degrees of freedom
f to an experimentally-observable quantity, and comparing the
predicted and experimental values of that quantity. The purpose

FIGURE 5 | Consider part of a network containing only chains of length n, with

v chains connected to a single gray atom (Left). One possible bond-breaking

event would convert one of these chains into two chains of length ∼n/2

(Right), increasing the entropy of the system.

of this section is to motivate and derive an equation for the
relaxation time τ of a glass-forming liquid that depends explicitly
on f . This will imply functional dependencies of the glass
transition temperature Tg and the fragility m on f that will be
compared with experiments in section 3.

Given a single primary relaxation mechanism, a relaxation
time τ can be modeled as having an Arrhenius dependence on
temperature, at least over a limited temperature range near Tg .
The relaxation time τ can then be simply written as:

τ = τ0 exp

(

1G

kBT

)

.

The free energy of activation 1G can be written in terms of an
activation enthalpy and entropy. If only the activation entropy
1S depends explicitly on f , the expression for τ can be re-
written as:

τ = τ0 exp

(

−
1S(f )

kB

)

exp

(

1H

kBT

)

. (5)

This leaves only the construction of a model for 1S(f ) to be able
to relate f to an experimental observable.

For this purpose, assume that the configurational entropy
of a network containing chain-like moieties cross-linked
by pyramidal or tetrahedral units is dominated by the
conformational entropy of the chains. A simple model of such
a network could contain 2-coordinated white atoms and v-
coordinated gray atoms with all of the white atoms participating
in chains of length n, as on the left of Figure 5. A single chain
can be modeled as a self-avoiding walk (SAW), with a number of
configurations approximately given by:

Z(n) = Aµnnγ−1

where A, µ and γ are constants (Madras and Sokal, 1988;
Schram et al., 2017). Using Boltzmann’s formula S = kB lnZ, the
conformational entropy of a single chain depends on n as:

S(n) = kB[lnA+ n lnµ + (γ − 1) ln n]

where kB is Boltzmann’s constant. Since entropy is an extensive
quantity, the change in configurational entropy when breaking a
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bond to convert one chain of length n into two chains of length
∼n/2, as on the right of Figure 5, is:

1S = 2S(n/2)− S(n)

= kB[(γ − 1) ln(n/4)+ lnA]. (6)

This is interpreted as the activation entropy for the bond scission-
renewal dynamics. While many distinct microscopic events are
expected to contribute to the effective bond-breaking mechanism
in practice, the reasoning above is intended only to motivate the
form of the dependence of 1S on n.

The dependence of n on f for the system on the left of Figure 5
can be established using Equation (4). Specifically, a single chain
contributes n direct 1-polytopes (n− 1), intersection 0-polytopes
with two connections to direct polytopes along the chain, and 2/v
intersection 0-polytopes with v connections to adjoining chains.
Evaluating Equation (4) gives:

f =
2

5
−

3− 6/v

5n

for the fraction of unconstrained degrees of freedom f as a
function of n. Solving instead for n gives:

n =
3− 6/v

2− 5f
(7)

which indicates that the chain length diverges as f → 0.4. Since
repeating the derivation with the chain segments as 3-polytopes
instead of 1-polytopes and not using the reduced dimension
makes the chain length diverge as f → 0.5, a significant change
is expected in the properties of most glass-forming liquids in the
interval 0.4 ≤ f ≤ 0.5. Substituting Equation (7) into Equation
(6) gives:

1S(f ) = −kB

{

(γ − 1) ln(0.4− f )−

[

(γ − 1) ln

(

3− 6/v

20

)

+ lnA

]}

= −kB[a ln(b− f )− c]

for the change in configurational entropy, where a, b and c are
constants. The value of a is expected to be around 0.157 from
the literature (Madras and Sokal, 1988; Schram et al., 2017),
and b is expected to be in the interval 0.4 ≤ b ≤ 0.5 by the
above reasoning. Finally, substituting the equation for 1S(f ) into
Equation (5) gives:

τ = τ ′0(b− f )a exp

(

1H

kBT

)

(8)

for the relaxation time, where τ ′0 = τ0 exp(−c). If there is
a characteristic relaxation time τg ≈ 100 s that is a universal
constant at the glass transition temperature Tg , then Equation (8)
can be inverted to find Tg as a function of f :

Tg =
1H/kB

ln(τg/τ
′
0)− a ln(b− f )

. (9)

The fragility m, on the other hand, is related by the Adam-Gibbs
model of relaxation (Adam and Gibbs, 1965) to the temperature
dependence of the configurational entropy Sc:

m ∝
∂Sc

∂T

∣

∣

∣

∣

T=Tg

. (10)

Sidebottom (2015) has recently suggested that the temperature
dependence of Sc is governed by the connectivity of a network.
Estimating the conformational entropy of a network formed via
progressive cross-linking of chains indicated an abrupt rise in
m as the average chain length n between cross-linking points
increased beyond ∼ 3. Substituting this value of n into Equation
(7) gives 0.30 ≤ f ≤ 0.33 for 3 ≤ v ≤ 4, values typical for
chalcogenide glasses. Taken together, these results suggest that
fragility m is expected to rise abruptly as f increases beyond
0.3. These predictions for the dependence of Tg and m on f are
compared with experimental results for chalcogenide systems in
section 3 below.

3. CONNECTION WITH EXPERIMENTS

For the examination of select thermophysical properties of glass-
forming networks as a function of f , we restrict ourselves
to binary and ternary compositions in the Ge-As-Se system
ranging from pure chalcogen Se to up to the stoichiometric
compositions along the GeSe2-As2Se3 join. This system is
chosen as it represents a simple compositional evolution from
a chain-like structure for pure Se to a 3-dimensional network
for the stochiometric compositions. There is the additional
advantage that the nature and strength of the homopolar
Se-Se and heteropolar Ge/As-Se bonds in this system are
similar, which ensures that their effects on the network rigidity
can be considered comparable. Although other chalcogenide
systems, i.e., the sulfides and the tellurides, share similarities
in the compositional variation of their physical properties, the
increasingly ionic behavior in sulfides and metallic behavior
in tellurides result in significant differences in the nature of
the homopolar and heteropolar bonds (Wei et al., 2017). The
analysis of S-rich glasses is further complicated by the presence
of S8 rings that do not participate in the network (Zhu et al.,
2018). The chalcogen-deficient glass-forming compositions are
not considered either, since such networks are over-constrained
and the estimation of f for such networks is not physically
sensible. Moreover, the structure of chalcogen-deficient Ge-As-
Se networks is known to be complicated by the formation of
molecular elements of the type As4Se3, As4Se4 and As4, as well
as the appearance of Ge-Ge bonds in ethane-like Se3/2-Ge-Ge-
Se3/2 units and Ge-As bonds (Sen and Aitken, 2002; Yang et al.,
2010; Kaseman et al., 2014). The quantitative estimation of the
relative concentrations of these structural units and their effects
on the network rigidity are not straightforward and will be
considered in the future. Finally, it is well known that the GeSe4/2
tetrahedral units in the structural network of GexSe1−x glasses
over the composition range 0 ≤ x ≤ 0.33 are predominantly
corner-sharing, but a small fraction (15–35%) that increases
monotonically with x form edge-sharing tetrahedral units
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(Salmon, 2007; Edwards and Sen, 2011). Sidebottom (2015)
suggested that the edge-sharing tetrahedra provide more degrees
of freedom to the network compared to their corner-sharing
counterparts since the shared edge does not participate in the
connectivity of the rest of the network. However, this does not
account for the fact that edge-sharing between tetrahedra or other
rigid polytopes can severely over-constrain the local degrees of
freedom of the polytope itself (Gupta and Cooper, 1990; Marple
et al., 2019). Here we assume that these effects approximately
cancel, and that all of the tetrahedra are corner-sharing at the
concentrations considered below.

Now consider the fractional degrees of freedom f of a
chalcogenide network with composition GexAsySe1−x−y that
contains na atoms and nd direct polytopes. Let α be the fraction
of direct polytopes that are GeSe4/2 tetrahedra (3-polytopes), β
be the fraction that are AsSe3/2 triangles (reduced 2-polytopes),
and (1 − α − β) be the fraction that are Se2/2 line segments
(1-polytopes). The first step to calculate f is to find expressions
for the direct polytope fractions α and β in terms of the atomic
fractions x and y. Equating the number of Ge, As, and Se atoms
with those that appear in the direct polytopes gives the following
system of equations:

xna = αnd

yna = βnd

(1− x− y)na = (1+ α + 0.5β)nd

Solving for the number of direct polytopes nd as a function of
x and y and substituting the result into the first and second
equations gives:

α =
x

1− 2x− 1.5y

β =
y

1− 2x− 1.5y

for the fractions of direct 3-polytopes and direct 2-polytopes.
The second step to calculate f is to find the types and numbers
of all intersection polytopes. Given the assumption that all
direct polytopes are corner sharing, the network contains only
intersection 0-polytopes, each with two connections to direct
polytopes and no associated angular constraints. Since there
is precisely one intersection 0-polytope for every Se atom, the
number ni of intersection 0-polytopes is:

ni = (1− x− y)na

=
1− x− y

1− 2x− 1.5y
nd.

Evaluating Equation (4) for a network containing αnd direct
3-polytopes, βnd direct 2-polytopes, (1 − α − β)nd direct 1-
polytopes, and ni intersection 0-polytopes gives:

f =
2− 6x− 3.5y

5− 9x− 6.5y
(11)

for the fraction of unconstrained degrees of freedom.

FIGURE 6 | Fractional degrees of freedom f as a function of average

coordination number 〈r〉. Composition ranges for the various systems are

GexSe1−x with 0.0 ≤ x ≤ 0.33, AsxSe1−x with 0.0 ≤ x ≤ 0.40, and

GexAsySe1−x−y with 0.05 ≤ x ≤ 0.312 and 0.025 ≤ y ≤ 0.325.

The value of f is compared with the average coordination
number 〈r〉 = 2x + y + 2 in Figure 6 for the binary and ternary
Ge-As-Se compositions considered in this study. That f should
nearly be a function of 〈r〉 is surprising, given that both f and
〈r〉 are functions of two independent variables relating to the
number of tetrahedral and pyramidal cross-linking elements. It
is also immediately apparent that the variation of f with 〈r〉 is
quite different from that obtained by Thorpe using Equation
(3), since that version of f decreases linearly with 〈r〉 < rp
until the sharp transition at rp = 2.4. The f obtained using
Equation (11) is instead nearly a nonlinear function of 〈r〉 that
goes to zero at rp = 2.67. As a result, the model developed
in section 2.2 predicts that As2Se3 and GeSe4 with 〈r〉 = 2.4
are underconstrained networks, whereas Equation (3) predicts
that they are isostatically rigid; the source of this difference is in
the application of the angular constraints around Se atoms. This
prediction of our model calls into question the existence of the IP
as defined elsewhere (Wang et al., 2000; Boolchand et al., 2001,
2005; Chakravarty et al., 2004). Furthermore, one should expect
a rapid increase in the elastic moduli beyond rp = 2.67 as the
network is increasingly over constrained; such behavior is indeed
observed for a wide variety of binary and ternary Ge-As/Sb-S/Se
chalcogenide glasses (Tanaka, 1989; Yang et al., 2013).

The glass transition temperature Tg for glass-forming liquids
represents an isoviscous temperature where the viscosity is
∼1012 Pa · s and the relaxation time is ∼100 s, and is expected
to be a monotonic function of the average connectivity of a
network. Since the bond strengths of the homopolar Se-Se and
heteropolar Ge-Se and As-Se bonds are comparable, the Tg of
Ge-As-Se glasses should monotonically decrease with f . This is
borne out in Figure 7, which shows a nearly universal and linear
decrease in Tg with increasing f in these glasses. The black line
in Figure 7 is given by fitting Equation (9) to the data using
τg = 100 s, τ ′0 = 10−13 s, b = 0.45, and a standard conjugate
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FIGURE 7 | The glass transition temperature Tg for binary Ge-Se, As-Se,

Si-Se and ternary Ge-As-Se glasses is nearly a linear function of the fractional

degrees of freedom f . The black line is a fit using Equation (9) for the

parameter values reported in the text. Tg data are from Bernatz et al. (2002),

Yang et al. (2010), Musgraves et al. (2011), Wang et al. (2014), Marple et al.

(2017), Zeidler et al. (2017).

FIGURE 8 | The fragility m for binary Ge-Se, As-Se, Si-Se and ternary

Ge-As-Se glasses as a function of the fractional degrees of freedom f . Fragility

data are from Bernatz et al. (2002), Koštál and Málek (2010), Gueguen et al.

(2011), Musgraves et al. (2011), Wang et al. (2014), Svoboda and Málek

(2015), Marple et al. (2019).

gradient minimization algorithm for the remaining parameters.
This procedure gives 1H = 3.552 ± 0.001 eV and a = 36.32 ±
0.02, with parameter uncertanties estimated by calculating the
Hessian matrix at the minimum. An activation enthalpy 1H of
around twice the bond energy is reasonable enough for a scission
event given the simplicity of the model developed in section
2.3, and is roughly consistent with the value of ∼2.7 eV for the
GexSe1−x system as reported in the literature (Gueguen et al.,
2011). The deviation of a from the expected value of 0.157 is
more dramatric, with the activation entropy being ∼200 times
larger than expected. This could be related to the number of
configurations in SAW models generally being calculated for

chains on lattices rather than in continuous space, or to the
neglect of the effect of a scission event on the conformations
available to the surrounding network components.

The dependence of the fragility m on f for the same Ge-As-
Se liquids is shown in Figure 8. A nearly universal functional
dependence betweenm and f is again observed for glass-forming
liquids in this system, where m is nearly constant ∼30 for
0 ≤ f ≤ 0.3 and rapidly increases to ∼80 for 0.3 ≤ f ≤ 0.4.
Recent studies have suggested that this behavior is related to
the disappearance of the conformational entropy of the selenium
chain segments as their average length is reduced to∼3 (Naumis,
2015; Sidebottom, 2015), and is consistent with the prediction
made in section 2.3 for the corresponding threshold value of
0.30 ≤ f ≤ 0.33. By comparison, the onset of the sharp rise in
m coincides with 〈r〉 ≈ 2.3, below where the conventional
topological constraint theory predicts a transition.

4. CONCLUSIONS

A rigid polytope model of glass structure is developed and
used to calculate the relative fraction of unconstrained degrees
of freedom f , the result having a fundamentally different
dependence on 〈r〉 than that originally obtained by Thorpe (1983)
using a mean-field approximation. The variation of Tg and m
of binary and ternary chalcogenide glass-forming liquids in the
Ge-As-Se system shows nearly universal dependence on f over a
wide range of compositions. While Tg decreases almost linearly
with f , m does not vary significantly in the range 0 ≤ f ≤ 0.3
but increases rapidly with f for 0.3 ≤ f ≤ 0.4. The variation
of Tg with f can be explained by considering the change in
the conformational entropy associated with the bond scission-
renewal process of chain segments as the primary mode of
structural relaxation of the glassy network. On the other hand,
following Sidebottom (Sidebottom, 2015), the rapid increase
in m for f > 0.3 is ascribed to the corresponding rise in the
conformational entropy of the selenium chain segments as their
average length increases beyond∼3 Se atoms.
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