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(TiB+La2O3)/IMI834 titanium matrix composites (TMCs) were developed by in situ

synthesized in a consumable vacuum arc-remelting furnace. A new TRIPLEX treatment

and β heat treatment were developed in this study. The effect of heat treatment on

microstructure, tensile properties and creep rupture behavior of in situ synthesized

(TiB+La2O3)/IMI834 titanium matrix composites (TMCs) and corresponding matrix

alloy were investigated. The results show that widmanstätten and lamellar α structure

formed after the new TRIPLEX heat treatment procedures. Compared with traditional

β heat treatment, the creep strain rate increases slightly, but the elongation increases

significantly (increase 126% at 293K, 59.13% at 873K). The fracture mechanism is

attributed to the broken of TiB whiskers after bearing high stress. The creep fracture

mechanism is due to the load transfer of TiB whiskers and interfacial debonding. The

Creep strain rates of TMCs are lower than that of matrix alloy, which is attribute to that

loading of TiB and the pinning effect of finer La2O3 particles on dislocation movement.

Keywords: titanium matrix composites, reinforcement, microstructure, creep, strengthening mechanism

INTRODUCTION

Continuous/discontinuous reinforcements could be used to greatly improve the mechanical
properties of Ti and Ti-alloys by different processing routes (Imayev et al., 2014; Liu et al., 2018). In
these several decades, in situ synthesized Ti matrix composites (TMCs) are proved to have superior
mechanical properties compared with those of matrix Ti alloy (Wang et al., 2015; He et al., 2017;
Ma et al., 2018; Vasanthakumara et al., 2019). The near-α IMI834 Ti alloy has good combination
of creep and fatigue resistance at elevated temperatures, service temperatures up to 873K, which
is developed primarily for rotating components in the compressor part of advanced jet engines
(Ghavam et al., 2015; Li et al., 2018; Zhang and Chen, 2018). Therefore, IMI834 is best candidate as
matrix alloy, which is reinforced with ceramic particles are investigated in detail.

As is well-known, the service life and safety reliability are important for high temperature Ti
alloy (Su et al., 2018). Creep rupture behavior is one of the most important considered factors for
evaluating the quality of high-temperature Ti alloys (Balasundar et al., 2014; Jiao et al., 2017). Ti
alloys will undergo elastic deformation during long-term creep at high temperatures, when the
elastic deformation accumulates to the limitation, plastic deformation would occur and eventually
fails, as the plastic deformation increases (Nie et al., 2016). From the literature review, IMI834
and TMCs are designed as high-temperature structural material, it is necessary to focus on the
creep resistance for long time service. Especially on the investigation of microstructural evolution
during the creep deformation process. It is important for understanding the creep properties
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determined by the forming and heat treatment (Hosseini et al.,
2017; Ozerov et al., 2019). The bimodal microstructure consists
of equiaxed α grains and α+β colonies, creep strain rates reduce
with equiaxed α decreasing in bimodal microstructure during
primary and secondary creep. The widmanstätten structure
treated by β heat treatment, consists of α+β colonies in β grain.
The widmanstätten structures have better creep resistance and
worse ductility, compared with those of bimodal microstructures
(Zhang et al., 2010; Liu et al., 2019; Wang et al., 2019). Therefore,
the comprehensive mechanical properties could be improved by
the optimum heat treatment processing.

In this study a new TRIPLEX heat treatment method is
developed to improve the comprehensive mechanical properties.
The microstructural characteristics of IMI834 and TMCs
after β and TRIPLEX heat treatment were investigated,
respectively. It will deepen the quantitative understanding of
the relationship between microstructural features and creep
rupture properties.

EXPERIMENTAL PROCEDURE

The near α high temperature Ti alloy IMI834 (Ti-5.8Al-4Sn-
3.5Zr-0.7Nb-0.5Mo-0.35Si-0.06C wt%) is adopted as matrix
alloy. TiB short fibers and La2O3 particles are synthesized via
internal reaction during the vacuum arc re-melting: 12Ti +

2LaB6 + 3[O] = 12TiB+La2O3. The volume fraction of TiB
and La2O3 is designed as 1.8 and 0.6 V%, respectively. In situ
synthesized (TiB+La2O3)/Ti composites (TMCs) and matrix
alloy IMI834 were prepared in a consumable vacuum arc melting
furnace. The ingots were hot forged into 815mm in diameter.
The beta transformation temperature of matrix alloy and TMCs
are∼1303, 1313 K.

Heat treatment procedure for matrix alloy and TMCs
of this paper are β heat treatment (HT1), TRIPLEX heat
treatment (HT2).

• β heat treatment (HT1): air cooling (AC) in β phase region
(1328K, 0.5 h/AC), then aging (923K, 2 h/AC).

• TRIPLEX heat treatment (HT2): β solution [1328K, 0.5 h/oil
quenching (OQ)], α+β solution (1248K, 1 h/AC), and then
aging (923K, 2 h/AC).

Room temperature tensile tests were performed on Zwick T1-
Fr020TN testing machine. High temperature tensile tests were
performed on CSS-3905 testing machine. The gauge section size
of the tensile specimens is 15 × 4 × 1.5mm. The strain rate of
tensile tests is 10−3s−1 at room temperature, 873, 923, and 973K,
respectively. The creep rupture properties were tested on CSS-
3905 testing machine in air at 873, 923, and 973K, respectively.
The temperature was controlled by three thermocouples placed
at the top, center, and bottom position of the specimen, and the
fluctuations were controlled in ± 0.2 K. Creep specimens were
cut in the hot forging direction. The creep specimens gauge size
is 8 5 × 25mm. The tensile and creep tests specimens were
fabricated in the hot forged rods by using wire electrical discharge
machining. Each specimen was ground using SiC papers up to
2,000 grits and then polished using a polishing cloth.

Microstructure was observed by optical microscope (OM).
The reinforcements (TiB whiskers and La2O3) were observed
by JEM-2000 EX transmission electron microscopy (TEM), and
JSM-6700F scanning electron microscope (SEM) was used to
observe electron backscattered diffraction (EBSD) and fracture
surfaces of specimens after tensile and creep tests. The SEM
specimen were ground using SiC papers up to 2,000 grits and
then polished using a polishing cloth according to standard
metallographic procedures. Specimens for EBSD and TEM were
prepared by electropolishing.

RESULTS AND DISCUSSION

Microstructure
Figure 1 shows the microstructures of matrix alloy and TMCs
after heat treatment. The microstructure of matrix alloy and
TMCs is widmanstätten (Figures 1A,C) after HT1, and the
microstructure shows lamellar structure (Figures 1B,D) after
HT2 for matrix alloy, TMCs. Lamellar α morphology and size
are affected by the heat treatment processing parameters, such
as heating temperature, holding time, cooling rate (Guo and
Baker, 1992). As the cooling rate increasing, the lamellar α

thickness generally decreases and lamellar structure changed
into basketweave and martensite structure. Rapid cooling would
resulted in the formation of martensite structure during the
Oil or water quenching process. Low cooling rates result
in formation of coarse α lamellar (Wang et al., 2006). The
HT2: oil quenched in β phase region, the fine and acicular
martensite forms. if air cooled in α+β phase region, the
martensite would decompose into fine acicular and coarse α

phase, thus, α+β colony size of matrix alloy and TMCs is
much longer, thinner than those HT1 procedure. The TiB
whiskers are observed in Figures 1C,D, which aligned along
the forging direction. TiB whiskers will rotate and gradually
parallel to the direction of deformation during hot deformation
(Ma et al., 2016, 2017a).

Figure 2 shows EBSD microscopy of TMCs after heat
treatment. The blocks are α+β colonies. The lamellar α with
nearly the same orientation is labeled by the same color.
In Figure 2A, the larger α+β colonies are marked as large,
differently colored areas in widmanstätten treated by HT1.
Figure 2B shows EBSD microscopy of TMCs after HT2. The
aspect ratio of α+β colonies treated by HT2 is larger than that
of HT1 procedure. The percentage of high angle boundaries in
TMCs treated by HT2 is larger than that of HT1, few larger α+β

colonies are identified in Figure 2B.
Figure 3 shows misorientations of TMCs after different heat

treatment procedure. The colored lines are the misorientation
angles (θ) between neighboring grains. The green lines represent
low angle boundaries in 2 < θ < 17◦, other colors are high angle
grain boundaries in θ > 17◦. The grain boundaries between α/α
lamella are low angle boundaries in α+β colony. The boundaries
of α/α grains, α/α+β colony and α+β colony are high angle
boundaries (Li et al., 2016). Most low angle boundaries are in
the high angle boundaries, which is observed in Figures 3A,B.
Figures 3C,D shows the number of misorientations of TMCs
after heat treatment. The percent of low angle boundaries in
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FIGURE 1 | The microstructure of specimens after heat treatment. (A) Matrix alloy, HT1. (B) Matrix alloy, HT2. (C) TMCs, HT1. (D) TMCs, HT2.

FIGURE 2 | EBSD microscopy of TMCs after heat treatment. (A) HT1. (B) HT2.

TMCs treated by HT2 significantly is lower than that of HT1,
which is observed in Figures 3A–D.

Tensile Properties
Figure 4 shows the yield strength and elongation of matrix
alloy and TMCs after heat treatment at room temperature. The
yield strength of matrix alloy after HT2 increases 0.5% (1073
± 20 MPa) than that of HT1 (1068 ± 25 MPa), the elongation
improves 100% (from 5 ± 1.5% HT1 to 10 ± 3% HT2). The
change of room temperature tensile property of TMCs appears
the same trend with that of matrix alloy. The yield strength of
TMCs after HT2 (1,125± 28MPa) increases 0.9%, the elongation
(16 ± 3%) improves 128%, compared with those of HT1 (1,115
± 22 MPa, 7 ± 2%). The yield strength and elongation of TMCs
are better than the matrix alloy.

The high temperature ultimate strength and elongation of
heat-treated matrix alloy and TMCs are shown in Figure 5. The
all ultimate strength decreases, while the elongation increases,
with the temperature increasing. The ultimate strength and
elongation of matrix alloy treated by HT1 is 711 ± 25 MPa,
20 ± 4% 873K, 595 ± 18 MPa, 23 ± 4.5% 923K, and 423 ±

15 MPa, 44 ± 5% 973K, respectively. The ultimate strength of
matrix alloy treated by HT2 changes slightly, while elongation
improves significantly, increase about 25, 35, and 41% from 873
to 973K, respectively, compared with those of HT1. The ultimate
strength and elongation of TMCs treated by HT1 is 799 ± 20
MPa, 22 ± 3%, 735 ± 19 MPa, 28 ± 5% or 652 ± 15 MPa, 56
± 4% at 873, 923, and 973K, respectively. The ultimate strength
of TMCs treated by HT2 changes slightly, while elongation
improves significantly, increase about 59, 28, and 31% from 873
to 973K, respectively, compared with those of HT1. The ultimate
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FIGURE 3 | Misorientations of TMCs after different heat treatment procedure. (A) HT1. (B) HT2. (C) Number of misorientations of HT1. (D) Number of misorientations

of HT2.

strength of TMCs is higher than that ofmatrix alloy. Significantly,
which increased by about 12, 26, and 50% treated by HT1 at 873,
923, and 973K. The ultimate strength and elongation of TMCs
improve significantly at high temperature, compared with those
of matrix alloy. The tensile properties of HT2 are superior to that
of HT1 at high temperatures.

Because the microstructures treated by HT1 and HT2 are α+β

colonies, and the reinforcement morphology have no changes
before and after HT1 and HT2, the same results are observed
in the near fracture surfaces, as shown in the SEM image of
HT1 and HT2 after tensile test. Only two images are used to
discuss the results. Figure 6A shows a SEM image of matrix alloy
near fracture surfaces after tensile test at 923K. Most lamellar
α grain boundaries are continuous, and both transgranular and
intergranular cracks are observed in Figure 6A. A SEM image of
TMC near fracture surfaces after tensile test at 923K is shown
in Figure 6B. The lamellar α grain boundaries are continuous,
and some broken TiB whiskers are observed near the tensile
fracture in Figure 6B. The stress is easily transferred frommatrix
to TiB whiskers in the tensile test process, TiB whiskers would
load intensive stress, and broken as the load increases, which
is the typical fracture mechanism of TMCs in reinforcement
TiB whisker (Gorsse and Miracle, 2003; Boehlert et al., 2006;
Ma et al., 2017b).

Creep Properties
As is well-known, creep strain rate is the strain rate in the steady-
state creep stage, when the temperature and stress are low. The
minimum strain rate is creep strain rate when temperature and
stress are high. Figure 7 shows the creep strain rate of matrix

alloy and TMCs after heat treatment. As the temperature or stress
increases, the steady-state creep strain rate also increases.

The creep strain rates of matrix alloy and TMCs after HT2
increase slightly compared with those of HT1, but the creep strain
rate is in the same range magnitude except matrix alloy at 973
K/80 MPa, TMCs 973 K/200 MPa. Compared with matrix alloy,
the creep strain rate of TMCs decreases, especially decreases
one magnitude at 973K 150 MPa (TMCs 10−7, matrix alloy
10−6), 873K 200 MPa (TMCs 10−9, matrix alloy 10−8), 923K
200 MPa (TMCs 10−8, matrix alloy 10−7). The creep strain rates
of TMC are significantly lower than those of matrix alloy due to
reinforcements added in TMCs.

The relationship between creep rate and stress and
temperature can be expressed by the following Equations
(1–3) (Li et al., 2008; Wang et al., 2009, 2019):

·
ε = Aσ n exp

(

−
Q

RT

)

(1)

n =
d ln

·
ε

d ln σ
(2)

Q = −R
d ln

·
ε

d 1000
T

(3)

Where ε̇ is the creep strain rate of specimen, A is a material
constant, σ is the applied stress added during creep test, n is the
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FIGURE 4 | Room temperature tensile properties of heat treatment of matrix

alloy and TMCs. (A) Yield strength. (B) Elongation.

stress exponent, Q is the activation energy, R is the gas constant
and T is the Kelvin temperature. According to Equation (2),
apparent stress exponents can be determined by the Arrhenius
plot of logarithmic ε̇ vs. stress. According to Equation (2), ln ε̇

and ln σ are linear at the same temperature, and the slope of
straight line is the apparent stress exponents.

Figure 8 show the curve of logarithmic creep strain rates–
logarithmic stress of matrix alloy and TMC. According to the
slope of straight line in Figure 8A, apparent stress exponents
of matrix alloy treated by HT1 and HT2 are 4.6, 4.5 at 923K,
respectively. Effects of heat treatment and temperature on the
apparent stress exponents are not significant in matrix alloy.
According to the slope of straight line in Figure 8B, apparent
stress exponents of TMCs treated by HT1 and HT2 are 5.3,
5.0 at 923K, respectively. Apparent stress exponents decrease
with temperature increasing. The apparent stress exponents
of matrix alloy are lower than those of TMCs. Wang et al.
(2009) have reported that the creep behavior can be divided
into two categories: one creep behavior controlled by viscous
dislocation sliding is different; other creep behavior controlled
by dislocation climb. Koike et al. (1995) report that dislocation

FIGURE 5 | High temperature tensile properties of matrix alloy and TMCs after

heat treatment. (A) Ultimate strength. (B) Strain.

sliding is dominant when the stress exponent is 3.5, when the
stress exponent is 4.6, dislocation climb is governing.

The activation energy can be deduced by the curve
of logarithmic ε̇–reciprocal Kelvin temperature 1,000/T at
constant stress, according to Equation (3). Figure 9 shows the
activate energy of the matrix alloy and TMCs at constant
stresses. The activation energies of matrix alloy treated
by HT1 and HT2 are 357 kJ/mol, 350 kJ/mol at 150
MPa. The activation energies of TMCs treated by HT1
and HT2 are 387 kJ/mol, 379 kJ/mol at 200 MPa. The
activation energies of matrix alloy are lower than those
of TMCs.

The creep resistance of Ti alloy increases with the increasing
of average grain sizes. Creep strain rates are higher due to
the grain boundary sliding increases in small grained Ti alloy
(Sastry et al., 1980). Moreover, Ti alloys absorb oxygen in process
of long-term creep in the air. The oxygen content increases
with grain size decreasing in Ti alloy. The elongation and
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FIGURE 6 | SEM images of matrix alloy and TMCs near fracture surfaces after 923K temperature tensile test. (A) Matrix alloy after HT1. (B) TMCs after HT2.

FIGURE 7 | Creep strain rate of specimen after heat treatment. (A) Matrix alloy. (B) TMCs.

FIGURE 8 | Curve of logarithmic creep strain rates–logarithmic stress at different temperatures. (A) Matrix alloy. (B) TMCs.

creep resistance decrease significantly, when oxidation content
increases in Ti alloy (Pitt et al., 2004). The grain and α+β

colonies size of HT2 sample are smaller than those of HT1.

So, the creep resistance of HT2 is much lower. The α+β

colonies and lamellar α of TMCs are finer than those of
matrix alloy, but the creep properties of TMCs is higher than
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FIGURE 9 | The activate energy of the matrix alloy and TMCs at constant stresses. (A) Matrix alloy. (B) TMCs.

FIGURE 10 | Threshold stresses of TMCs after heat treatment.

that of matrix alloy, due to the hard reinforcements added in
matrix alloy.

The apparent stress exponents of TMCs are higher than
that of matrix alloy, because of threshold stress in TMCs. The
abscissa intersection of the ε̇1/n – σ curve is the threshold
stress. Threshold stresses of TMCs after heat treatment are
shown in Figure 10. The value of true stress exponent n is
usually considered as stress exponent of matrix alloy (Wang
et al., 2009; Xiao et al., 2009). The stress exponent n value
of matrix alloy is all close to 4.5, which is considered that
creep mechanism is the typical dislocation climbing (Hofmann
et al., 1998). So, the true stress exponent value is set as 4.5,
then this value n = 4.5 is used to calculate the threshold
stress of TMCs. Figure 10 shows good linear relationships
between ε1/4.5 and σ , which indicate that choosing true stress
exponent of TMCs n = 4.5 is reasonable. The threshold
stress decreases with the temperature increasing. The threshold
stresses of TMCs treated by HT1 are bigger than those of
HT2. Creep properties of TMCs are still better than that of
matrix alloy, it is attributed to the TiB whiskers and La2O3

particles, which is considered as main reason for the generation
of threshold stress.

Reinforcements
The similar results are observed in the near fracture surface SEM
images of HT1 and HT2 after creep test. Two images are used
to discuss the change of grain boundaries and the strengthening
mechanism of TiB whiskers. The microstructure of matrix alloy
treated by HT1 near fracture surfaces after 923 K/200 MPa creep
fracture test is shown in Figure 11A. The grain boundaries of
lamellar α become discontinuous, and a lot of cavies are formed
on grain boundaries. The creep fracture is attributed to the
disintegration of lamella α boundaries. The great deformations
and bending lamellar α near fracture surfaces after creep test
can be observed in Figure 11A. The grain boundary strength
decreases, as the exposure time at high temperature increases,
so the fracture mechanism of creep becomes intergranular
crack (Es-Souni, 2000; Wang et al., 2006). Figure 11B shows
SEM image of near fracture surfaces for TMC treated by HT2
after 923K, 300 MPa creep fracture test. The lamellar α grain
boundaries become discontinuous. Some crack and interfacial
debonding of TiB whiskers and intergranular cracks are observed
in Figure 11B. The TiB interfacial debonding indicated that the
interface strength decreased after exposure for a long time at
high temperature.

TiB reinforcements take load from the matrix, and then break.
A coefficient β can be indicated the effect of load transfer by
following equations (Wang et al., 2009):

(1− β)n =

·
ε c
·
ε m

(4)

Where n is the true stress exponent. εc and εm are the creep strain
rate of the matrix and composite, respectively. The coefficient
β indicates effect of load transfer from matrix to reinforcement.
The β value is 0–1(the β value of matrix is 0). The stress of TMCs
and load transfer coefficient can be expressed as the following
equations (Wang et al., 2009; Xiao et al., 2009):

σ r = Erε0

[

1−
tan h

(

ps
)

ps

]

(5)

Frontiers in Materials | www.frontiersin.org 7 November 2019 | Volume 6 | Article 276

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Li et al. Ti Matrix Composite’s Creep Properties

FIGURE 11 | SEM image of matrix alloy and TMCs near fracture surfaces after creep test. (A) Matrix alloy after HT1 at 923K, 200 MPa. (B) TMC after HT2 at 923K,

300 MPa.

FIGURE 12 | Schematic of TiB strengthening mechanisms during creep rupture.

σ0 = σ rνr + σmνm = ε0

{

νrEr

[

1−
tan h

(

ps
)

ps

]

+ (1− νr)Em

}

(6)

β =
σ rνr

σ0
=

νrEr
[

1− tan h
(

ps
)

/ps
]

νrEr
[

1− tan h
(

ps
)

/ps
]

+ (1− νr)Em
(7)

Where Er is elastic modulus of the reinforcement, Em is elastic
modulus of the matrix alloy, σ is the average transferred stress,
ε0 is the strain, νr is the reinforcement volume percent, p and
s are geometric shape parameters of the reinforcements. Em
decreases with temperature rising (Wang et al., 2009). From
Equations (5–7), it can deduce that with temperature rising, β

increases, threshold stress decreases, load transfer increases, and
the strengthening mechanism changes from threshold stress to
load transfer.

Figure 12 show the schematic of TiB strengthening
mechanisms during creep rupture. As the creep test progresses,
the TiB whiskers take load from the matrix and crack, then
debonding from matrix and intergranular cracks appears
(Rabadia et al., 2018). These cavities around debonding TiB
whiskers and intergranular cracks cause stress concentration,
which prompts TMCs fracture during accelerating
creep process.

Figure 13 shows bright field the TEM microscopy
and diffraction pattern of La2O3 particles after creep
at 923K, 300 MPa. The synthesized dispersed small
La2O3 particles make the dislocation pile-ups around
their boundaries (Figure 13). The precipitation hinders
dislocation motion. The strengthen increases by dislocation

FIGURE 13 | Bright field TEM microscopy and diffraction pattern of La2O3

particles after creep at 923K, 300 MPa.

pinning (Rabadia et al., 2019). The dislocation density
is effective enhanced by La2O3 particles, and then creep
resistance improved, which is explained by Orowan stress.
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The Orowan stress can be calculated by using equations
(Kawabata et al., 2004):

τo = Gb/λ (8)

Where G is the shear modulus, b is the Burgers Vector, λ is the
average distance between reinforcement particles. Other La can
reduce oxygen content in Ti alloys, which is helpful to improve
the mechanical properties of Ti alloys.

Creep properties of TMCs are still better than that of matrix
alloy. Strengthening mechanisms of reinforcements is the TiB
whiskers take load from thematrix and the dislocationmovement
is pinned by fine La2O3 particles during creep procedure.

CONCLUSIONS

The effect of β heat treatment (HT1) and a new TRIPLEX heat
treatment (HT2) on creep properties of IMI834 and TMCs has
been conducted. This study shows the following conclusions.

(1) The widmanstätten structure is formed by HT1 for IMI 834
and TMCs, lamellar α structure is formed by HT2. The
proportion of low angle boundaries of TMCs treated by HT2
(22%) is lower than that of HT1 (26%).

(2) The creep resistance of HT2 drops slightly, but elongation
enhances significantly. The lamellar α microstructure of

IMI834 and TMCs overcomes the shortcomings of HT1, and
an optimum combination of creep and tensile properties
is obtained.

(3) Creep resistance of TMCs is higher than that of matrix alloy,
which is attribute to that the TiB whiskers take load from the
matrix and crack, then debonding from matrix, and La2O3

particles pin the dislocationmovement. This is strengthening
mechanisms of TMCs during creep.
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