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It has been challenging to accurately predict the unique characteristics of

magnetorheological (MR) dampers, due to their inherent non-linear nature.

Multidimensional flow simulation has received increasing attentions because it

serves as a general methodology for modeling arbitrary MR devices. However, the

compressibility of MR fluid which greatly affects the hysteretic behavior of an MR

damper is neglected in previous multidimensional flow studies. This paper presents a

two-dimensional (2D) axisymmetric flow of the compressible Herschel-Bulkley fluid in

MR dampers. We simulated the fully coupled inertial-viscous-frictional-elastic transients

in MR dampers under low-, medium-, and high frequency excitations. An arbitrary

Lagrangian-Eulerian kinematical description is adopted, with the piston movements

represented by the moving boundaries. The viscoplasticity and compressibility of MR

fluid are, respectively, modeled by the modified Herschel–Bulkley model and the Tait

equation. The streamline-upwind Petrov–Galerkin finite element method is used to

solve the model equations including the conservation laws and mesh motion equation.

We tested the performances of an MR damper under different electric currents and

different frequency displacement excitations, and the model predictions agree well with

the experimental data. Results showed that the coupled transients of an MR damper

are frequency dependent. The weak compressibility of MR fluid, which mainly happens

in the chamber rather than in the working gap, is crucial for accurate predictions. A

damper’s transition from the pre-yield to the post-yield is essentially a step-response

of a second order mass-spring-viscous system, and we give such step-response a

detailed explanation in terms of mass flow rate.

Keywords: magnetorheological fluid damper, coupled transients, high frequency, finite element analysis, weak

compressibility
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INTRODUCTION

Magnetorheological (MR) fluids are suspensions that exhibit a
rapid, reversible and tunable transition from a free-flowing state
to a semi-solid state upon the application of an external magnetic
field (Carlson et al., 1996; Jolly et al., 1999). MR dampers,
which utilize the advantages of MR fluids, are semi-active control
devices that are capable of generating a magnitude of force
sufficient for large-scale applications, while requiring only a
battery for power (Alghamdi et al., 2014). Accurate prediction
of the unique characteristics of MR dampers has been one of the
challenging aspects for developing and utilizing these devices due
to their inherent non-linear nature. Lumped parameter models
have been the main tool for modeling of MR dampers because
of their simplicity. They are comprehensively reviewed in works
(Sahin et al., 2010; Wang and Liao, 2011), and more recent works
can be found in Yu et al. (2017) and (Chen et al., 2018).

Compared to the lumped parameter modeling, the
multidimensional flow analysis in MR dampers is not only
more accurate, but also serves as a general methodology
of modeling of MR devices with arbitrary geometries. For
example, a 2D computational fluid dynamics (CFD) model
was constructed by Sahin et al. (2013) for an MR valve having
complex flow region. The CFD model showed apparent
advantages of better agreements with the experimental data than
the lumped parameter model.

Over the past few years, CFD modeling of MR/ER devices
is receiving more and more research interests. Ursescu (2005)
simulated the ER flow in a channel with a prescribed inlet
flow velocity and the free outlet. The model was validated by
comparing with the experimental data, and was used to optimize
the configuration of the electrodes to improve the ER-effect.
With the piston movements described by a deformed mesh,
Case et al. (2016) developed a multiphysics finite element model
for a small scale MR damper. The model was concluded to be
suitable for the prediction of oscillatory MR fluid behavior and
thus for further development and optimization of the semi-active
dampers. A similar work was conducted by Sternberg et al. (2014)
in which a 3D magneto-static analysis was coupled with the flow
analysis. Zheng et al. (2015) established a more sophisticated
multiphysics model which considered the magnetic, temperature
and flow fields together. Zhou and Bai (2014) conducted a
3D numerical FEM flow analysis for MRF seal technology
in a circular cooler. Both of the three-dimensional numerical
simulation and experimental results demonstrated that the air
leakage of a circular cooler was solvable effectively with the
magnetorheological fluid seal method. Gołdasz and Sapinski
(2015) studied a squeeze mode MR damper with a CFD model,

and the well-known fact was confirmed that the compressive
loads increase with the decreasing gap height.

More recently, using finite volume method on a two

dimensional moving grid, Syrakos et al. (2016) successfully
captured the hysteretic behavior of a damper caused by the

inertia of fluid under high frequency loadings. In a later
theoretical study of a fluid damper, they (Syrakos et al., 2018)
extended the numerical model by including the effects of shear-
thinning and viscoelasticity. Guo and Xie (2019) developed a 2D

incompressible viscoelastic fluid CFDmodel which was validated
by the experimental data in a literature.

So far, the previous studies on multidimensional flow
analysis in MR dampers were restricted to incompressible
flows. However, as indicated by lumped parameter models,
the weak compressibility of MR fluids is responsible for the
hysteretic behavior of MR dampers. Thus, a compressible fluid
multidimensional flow analysis (which has not been reported in
previous studies to our best knowledge) will be conducted in
this study.

PROBLEM DEFINITION AND GOVERNING
EQUATIONS

Problem Definition
The layout of a typical single-coil double-ended
magnetorheological (MR) fluid damper is shown in
Figures 1A,B. The main structural parameters of an MR
damper include the radius of piston (Rp), the radius of piston
shaft (Rr), the working gap width (g), the effective length of the
piston (L), and the stroke of the damper (s0).

The piston reciprocates inside the house cylinder filled with
MR fluid. Then the MR fluid is forced to flow from one chamber
to the other, through the annular gap between the cylinder
and the piston. Since the structure is axisymmetric, the fluid
flow in an MR damper can often be reasonably assumed to be
axisymmetric too. A small electromagnet coil wound around the
piston generates a magnetic field in the working gap (in the
r direction) which is perpendicular to the fluid flow (mainly
in the z direction). The magnetic field causes iron particles in
the MR fluid to form linear chains parallel to the field. This
phenomenon solidifies the suspended iron particles and restricts
the fluid movement. Consequently, the yield strength which can
be adjusted by controlling input currents is developed within the
fluid. The aim of a mechanical model is to predict the damping
force under various input currents and piston movements.

Governing Equations for Viscous Fluid in
ALE Form
The governing equations for viscous fluids can be expressed
in either total ALE form (both time derivatives and spatial
derivatives are in the referential configuration) or updated ALE
form (only time derivatives are kept in the referential form). The
latter is more convenient for the finite element implementation.

The mass and momentum conservations in the updated ALE
form can be derived as (Bazilevs et al., 2013; Belytschko et al.,
2013)

∂ρ

∂t

∣

∣

∣

∣

χ

+ c · ∇ρ + ρ∇ · v = 0 (1)

ρ
∂v

∂t

∣

∣

∣

∣

χ

+ ρc · ∇v = ∇ · σ + ρg (2)

where ρ is the fluid density, the total stress tensor is σ = −pI +
ηD− 2

3η (∇ · v) I, p is the pressure,D=∇v+ (∇v)T is the strain
rate tensor, η is the viscosity of fluids, the convective velocity is
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FIGURE 1 | Layout of the MR damper. (A) Main components. (B) Main design parameters.

defined by c = v− v̂. ∂
∂t

∣

∣

χ
is the ALE time derivative, that is, the

partial derivative with respect to time (t) when holding the ALE
coordinate (χ) fixed. As mentioned above, an axisymmetric flow
is assumed in an MR damper, and the spatial coordinates (x) are
denoted by (r, θ , z ), and the ALE coordinate (χ) by (r̂, θ̂ , ẑ )
throughout this study.

Since the structure is, the fluid flow in an MR damper can
often be reasonably assumed to be axisymmetric too.

Constitutive Equation: Weakly
Compressible Bingham Fluid
Viscoplasticity
The ability of MR fluids to reversibly change from free-flowing
linear viscous fluids to semi-solid can be described by the
Bingham constitutive equation in which the stress tensor is
related to the velocity field by

{

D = 0 |τ | ≤ τ y, pre− yield zone
τ = τ y + ηpD |τ | > τ y, post− yield zone

(3)

where, |D| =
(

1
2D:D

)1/2
is the magnitude of the strain rate

tensor. |τ | is the magnitude of deviatoric stress tensor τ . The
post-yield viscosity ηp is assumed to be a constant, and τ y is
the shear yield strength dependent on magnetic field intensity.
However, it is difficult to identify, in advance, the pre- and
post- yield zones in order to apply Equation (3) to the different
zones. A popular approach to overcoming this difficulty is to
approximate Equation (3) by a regularized equation which is
applicable throughout the material without branches. Several
such regularized equations were proposed (Frigaard and Nouar,
2005), and here we adopt the one proposed by Papanastasiou
(1987), as in previous studies (Syrakos et al., 2016). It is
formulated as follows:

τ =

[

τ y

|D|

(

1− e−m|D|
)

+ ηp

]

D= ηMRD (4)

where m is a parameter controlling the quality of the
approximation. Increasing this parameter makes Equation (4)
better approximate (3), but also makes the equations stiffer and

harder to solve, so a compromise has to be made. ηMR is the
effective viscosity of MR fluid.

For better controllability, we construct the following flexible
viscoplastic model in this study. Compared to the modified
Bingham model (4), details such as the “stiction” phenomenon
and the shear thinning/thickening effect are added.

τ =
tanh

(

kpre |D|
) (

τ pre + τ pos

)

|D|
D = ηMRD (5)

where τ pre =
1−tanh

[

kpos(|D|2−w2)
]

2 (τ ys − τ yd), τpos = τ yd +

kHB |D|
1/mHB , kpre, kpos and w are the dimensionless parameters

controlling the pre-yield viscosity, post-yield viscosity and the
“stiction” strain range width. τ ys (Pa) and τ yd (Pa) are the static
(or critical) and dynamic yield stress strengths ofMR fluids which
are analogous to static and dynamic frictions in tribology. kHB

(Pa· s) and m are fluid parameters of the well-known Herschel-
Bulkley model. A typical curve of the above model in one
dimension is presented in Figure S1.

Weak Compressibility
A closure condition in the form of equation of state (EOS) has
to be provided to complete the problem we want to solve. For
compressible liquids, the Tait equation of state is widely used in
many applications and hence employed in this study. It relates
the pressure to the fluid density by (Koukouvinis et al., 2017)

p = B

[(

ρ

ρ0

)n

− 1

]

+ p0 (6)

where B is the bulk modulus, ρ0 is the reference density, p0 is the
reference pressure, and n is an exponent adjusting the stiffness of
the fluid. Alternatively, the density can be expressed in terms of
the pressure as

ρ =

(

1+
p− p0

B

)1/n

ρ0 (7)

Spatial Domains and Boundary Conditions
As shown in Figure 2, the whole spatial domain (�) is
composed of the chamber domain (�C1,�C2) and the working
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FIGURE 2 | Fluid domains and boundary condition.

gap domain (�g) so that � = �C1
⋃

�g
⋃

�C2, and
�C1

⋂

�g
⋂

�C2 = ∅.
The gap domain is further divided into the subdomain right

above the electromagnetic coil where no magnetic flux passes
through (�NF) and the subdomains themselves being parts
of the magnetic circuit (�MR1 and �MR2). That is �g =

�MR1
⋃

�NF
⋃

�MR2 and �MR1
⋂

�NF
⋂

�MR2 = ∅.
The fluids in domains �C1, �C2, and �NF are not exposed

to the magnetic field, so they freely flow like the Newtonian
fluid with constant viscosity ηp, while the fluids domains �MR1

and �MR2 behave like the Bingham fluid with a magnetic
field dependent viscosity. Thus, these two types of fluids are
distinguished from each other by their viscosities (η):

η =

{

ηp (r, z) (r, z) ∈ �C1 or �C2 or �NF

ηMR (r, z) (r, z) ∈ �MR1 or �MR2
(8)

The fluid velocities at the inner wall of the house cylinder are set
to zeros, and the fluid velocities at the surface of the piston are set
to the piston velocity, as shown in Figure 2. Initially, the piston is
located midway along the cylinder and the MR fluid is at rest.

Mesh Updating Equation
The fluid domain varies with time due to the piston movement.
Mesh updating is necessary to track the moving boundaries as
well as to avoid the severe distortions of elements. For simplicity,
the mesh points are allowed to move only in the axial direction
when taking account of the physical domain changes. The mesh
motion on the gap domain is simply a rigid translation along the

axial direction, i.e.,

z
(

ẑ, t
)

= ẑ + zp, ẑ ∈ �g (9)

where zp = z0 sin
(

2πft
)

is the piston displacement, z0 is the
amplitude, f is the excitation frequency.

A linear interpolation strategy is used to describe the motions
of mesh nodes in the chambers, such that the displacements at
the left and right piston ends (ẑL1 = − (L+ Lc) /2 and ẑR1 =

(L+ Lc) /2 in Figure 2) is equal to the piston velocity and the
displacements at the left and right fixed cylinder ends (ẑL0 =

− (L+ Lc + 2s) /2, ẑR0 = (L+ Lc + 2s) /2 in Figure 2) are
zeros. The mesh motions for the left (�C1) and right chambers
(�C2) are

z
(

ẑ , t
)

=

{

(

ẑ + z0 sin
(

2πft
)) ẑ−ẑL0

ẑL1−ẑL0
ẑ ∈ �C1

(

ẑ + z0 sin
(

2πft
)) ẑ−ẑR0

ẑR1−ẑR0
ẑ ∈ �C2

(10.a)

The mesh nodes are fixed in the radial direction, that is, their
spatial positions of are kept unchanged

r
(

r̂, t
)

= r̂, r̂ ∈ �C1 ∪ �C2 (11)

FINITE ELEMENT FORMULATIONS

Weak Forms
In order to apply the finite element method (FEM) to the
problem, all of the above differential equations should be
transformed into equivalent weak forms. This transformation
can be formulated in different manners. Here, the Galerkin
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method is applied to the continuity equation, while the consistent
streamline upwind Petrov-Galerkin (SUPG) formulation is used
for the momentum equation (Huerta and Liu, 1988). Triangular
elements of continuous linear velocity and pressure are used for
the spatial discretization of the integral equations.

The weak form of the continuity equation is obtained by
multiplying the strong form (1) by the pressure test function δp
and integrating over the current spatial domain (�):

∫

�

δp

(

∂ρ

∂t

∣

∣

∣

∣

χ

+ c · ∇ρ + ρ∇ · v

)

d� = 0 (12)

Another equivalent weak form of continuity, which is expressed
in terms of pressure, can be obtained by using Equation (7).
Firstly, a straightforward differentiation gives the relationship
between the material time derivatives of fluid density and
pressure as

ρ̇ =
ρ0

β
ṗ (13)

where β = Bn
(

1+
p−p0
B

)1−1/n
.

Then making use of Equations (7, 13), the mass Equation (1)
is rewritten as

ṗ+ β

(

1+
p− p0

B

)1/n

∇ · v = 0 (14)

If n = 1, the above equation is reduced to the simpler form

ṗ+
(

B+ p− p0
)

∇ · v = 0 (15)

Furthermore, if only a perturbation of the incompressible state is
of interest (i.e., the cases for which

∣

∣p− p0
∣

∣ /B ≪ 1), the above
equation is simplified to the more familiar form (Phelan et al.,
1989)

ṗ+ B∇ · v = 0 (16)

Finally, an alternative weak form of the continuity equation is
obtained as

∫

�

δp

[

∂p

∂t

∣

∣

∣

∣

χ

+ c · ∇p+ β

(

1+
p− p0

B

)1/n

∇ · v

]

d�= 0 (17)

This equation will be used in the following development of finite
element implementation.

In the SUPG method, the velocity test function, δṽ, is the
sum of two terms, i.e., δṽ = δv+δvpg. The first term, δv,
is continuous within the elements and across their boundaries
and the second term, δvpg, is the discontinuous streamline
contribution. Moreover, δvpg is given by (Belytschko et al., 2013)

δvpg= τmc · ∇δv (18)

where the stabilization parameter τm is chosen to be (Tezduyar
et al., 1992)

τm=







(

2

1t

)2

+





2
∣

∣

∣
vh
∣

∣

∣

h





2

+

(

4υ

h2

)2







−1/2

(19)

where t is the time-step size,
∣

∣

∣
vh
∣

∣

∣
=

√

(

vhr
)2

+
(

vhz
)2

is the

velocity norm, h is the element length and υ =
η
ρ

is the

kinematic viscosity.
Multiplying Equation (2) by the velocity test function δṽ and

then integrating over the current spatial domain yields the weak
form of the momentum equation:

∫

�

δv·

(

ρ
∂v

∂t

∣

∣

∣

∣

χ

+ ρc·∇v− ∇·σ

)

d�

+

∫

�

δvpg·

(

ρ
∂v

∂t

∣

∣

∣

∣

χ

+ ρc·∇v− ∇·σ

)

d� = 0 (20)

where δv vanishes on essential boundaries (where the flow
velocity is imposed). The first term of the above equation is
the standard Galerkin terms while the last term serves as a
stabilization term.

Matrix Equations
The continuous element shape functions for the velocity and
pressure at node “I” are, respectively, NI , N

p
I .

Continuity Equation
The pressure and its test function are, respectively,
approximated by

p = pJ (t)N
p
J (21)

δp = δpI (t)N
p
I (22)

Then the spatial discretization of the weak form of the continuity
equation, Equation (13), gives

Mp ∂p

∂t

∣

∣

∣

∣

χ

+ Lpp+ Gv = 0 (23)

where the nodal pressure vector is

p =
[

pJ
]

(24)

and its ALE time derivative is

∂p

∂t

∣

∣

∣

∣

χ

=

[

∂pJ

∂t

∣

∣

∣

∣

χ

]

(25)

the flow velocity vector is

v =
[

viJ
]

(26)
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the mass matrix is

Mp =
∑

e

[∫

�e
N

p
I N

p
J d�

]

(27)

the matrix Lp is

Lp =
∑

e

[∫

�e
N

p
I ciN

p
J,id�

]

(28)

the matrix G is

G=
∑

e

[

∫

�e
N

p
I β

(

1+
p− p0

B

)
1
n

NJ,id�

]

(29)

In the above notations used in the formulations of matrix
equations, lowercase subscripts are used for components, and
uppercase subscripts for nodal values. Square brackets denote
matrix notation of tensors. The sum over elements is interpreted
as the assembling of the element contributions.

Momentum Equation
The velocity is approximated by

vi = viJNJ (30)

The velocity test function is discretized as

δṽi = δvi + δvPGi (31)

where δvi = δviINI and δvPGi = τ cjδviINI,j, and it is equivalent to

δṽi = δviIÑI (32)

where ÑI = NI + τ cjNI,j.
Substituting discretizations of velocity and its test function

(Equations 30–32) into the weak form of momentum equation
(Equation 20) yields

(M+Mstab)
∂v

∂t

∣

∣

∣

∣

χ

+ (L+Lstab) v+
(

fint+fintstab

)

=
(

fext+fextstab

)

(33)

where the material velocity vector is v and its ALE time
derivative is

∂v

∂t

∣

∣

∣

∣

χ

=

[

∂viJ

∂t

∣

∣

∣

∣

χ

]

(34)

the mass matrices are

M =
∑

e

[∫

�e
ρNI,jNJd�

]

(35)

Mstab =
∑

e

[∫

�e
ρτ cjNI,jNJd�

]

(36)

the viscosity matrices are

L =
∑

e

[∫

�e
NIρcjNJ,jd�

]

(37)

Lstab =
∑

e

[∫

�e
ρτ cjNI,jckNJ,kd�

]

(38)

the internal force matrices are

fint = −
∑

e

[∫

�e
NIσ ji,jd�

]

(39)

fintstab = −
∑

e

[∫

�e
τ cjNI,jσ ki,kd�

]

(40)

the external force matrices are

fext =
∑

e

[∫

�e
NIρbid�

]

(41)

fextstab =
∑

e

[∫

�e
τ cjNI,jρbid�

]

(42)

Finally, the velocity and pressure fields are obtained by
numerically solving these non-linear ordinary differential
equations. Then the damping force of the MR damper, FL, can be
calculated by integrating the total stress along the moving piston
boundary in Figure 2

FL =

∫ Rp

Rr

σ · n̂zdŴ̂ (43)

where dŴ̂ is the differential line element of the piston surface with
the outward unit normal vector n̂z in the z-direction. In addition
to the force that fluid acts on the piston, the measured forces
include the inertial force of the piston, so the final damping force
should be calculated as

F = FL + Fm (44)

where the inertial force is Fm = mpap,mp is the total mass of the
piston and connectors, ap is the acceleration of the piston.

Implementations of Weak Form PDEs in a
General FEM Program
The above SUPG based FEM model was implemented in the
general-purpose FEM program software Comsol Multiphysics
(Version, 5.0a) which provides an efficient computational
platform to solve various types of PDEs (COMSOL Inc.,
2014). Three weak-form PDE modules were used, respectively,
for the continuity equation (variable: pressure), momentum
equation (variables: flow velocities), and the constitutive equation
(variables: viscous stress). Heavy use was made of Comsol’s
scalar expressions (for example, expressions for the total stress
components) in order to keep the whole model organized. The
built-in for element length allows the stabilization terms to be
implemented easily.
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TABLE 1 | Main design parameters of MR damper and material properties of

MR fluid.

Structural parameter Value

Gap width (g) 1.5 mm

Piston radius (Rp) 38.5 mm

Effective length (L) 54 mm

Stroke (s0) 58 mm

Number of coils 1

Piston (& connector) mass (mp ) 6 kg

Shaft radius (Rr ) 15 mm

Winding length (Lc) 50 mm

Density of MR fluid (ρ0) 1,500 kg/m3

Yield strength of MR fluid (input current, 0.5 A) (τ ys) 6,500 Pa

Viscosity of magnetically activated MR fluid (kHB) 12 Pa·s

Viscosity of inactivated MR fluid (ηp) 0.22 Pa·s

Modulus of MR fluid (B) 3 × 108 Pa

Shear thinning/thickening index (mHB) 1.7

Pre-yield viscosity controlling parameter (kpre) 5 × 10−2

Post-yield viscosity controlling parameter (kpos) 5 × 10−6

Stiction strain range (w) 10

Owing to the strong nonlinearity of the problem, small
time steps and tight absolute solver tolerances (10−5 for the
flow velocities, 10−3 for the pressure and viscous stresses)
were adopted. The implicit the backward differentiation formula
(BDF) solver with the second order of accuracy was used to
discretize model PDEs in time. The resulted system of non-
linear algebraic equations was solved using the Newton-Raphson
algorithm. We then took advantage of the efficient built-in
direct solver “MUMPS” solver (MUltifrontal Massively Parallel
Sparse direct Solver) to solve the system of linear equations.
The calculation of the damping force in Equation (43) was
implemented in Comsol as a boundary coupling operator.

PARAMETRIC STUDY ON INERTIAL-
VISCOUS-FRICTIONAL-ELASTIC
TRANSIENTS

In this section, we take an overall picture of the coupled inertial-
viscous-frictional-elastic transients, by conducting a parametric
analysis for an MR damper which will be experimentally
study later. The structural parameters of this damper and
the material properties of the MR fluid are shown in
Table 1. The damper will be excited by a medium-frequency
sinusoidal displacement (8mm, 10Hz), and the low- and
high- frequency loading cases will be included in later
sections. For each parametric analysis, only one dominant
parameter is changed by three levels while keeping the other
parameters fixed.

The inertial effect becomes more significant with
larger fluid densities. When increasing the fluid density,
larger fluctuations in the damping force appear when the
damper enters the post-yield zone, as shown in Figure 3.

Meanwhile, the displacement-force loop in Figure 3A

rotates clockwise. It is reasonable to expect that under
a frequency excitation frequency these inertia related
effects will be further enhanced, and this will be seen in
later sections.

When increasing the viscosity (kHB), the damping force
increases apparently and the shape of the displacement-force
loop becomes more elliptic, as shown in Figure 4.

Figure 5 shows the “frictional” effect which is perhaps the
most salient feature of MR dampers. The damping force is
strongly in proportion to the shear yield strength of MR
fluids which can be continuously adjusted by controlling the
input currents.

The elastic effect due to the compressibility of MR fluids,
which has been neglected in most previous computational fluid
studies on MR dampers, however, has a great impact on the
performance of an MR damper.

Because of the compressibility of MR fluid, the damping force
cannot change instantly but gradually varies when the piston
reversing its direction as shown in Figure 6A, and this leads to
an obvious velocity-force hysteresis loop in the pre-yield region
as shown in Figure 6B.

EXPERIMENT

After having a basic overview of coupled inertial-viscous-
frictional-elastic transients in MR dampers, an experimental
study will be performed to validate the FEM model. The
performance of an MR damper (Zhixing S & T Ltd., Jiangsu,
China) was tested on a hydraulic universal testing machine, with
the experimental test setup shown in Figure 7. The main design
parameters of the damper were listed in Table 1, and the material
properties of MR fluids are also shown in Table 1.

A DC current source was used to apply electric currents
to the damper. The damping forces were tested under the
low-, medium and high- frequency sinusoidal displacement
excitations: 40 mm/2Hz, 8 mm/10Hz, 5 mm/20Hz. To ensure
that the dissipation heating is not too high, the temperatures at
typical positions was measured by thermocouples connected to a
data acquisition system.

For confirming the applied input currents, a digital
multimeter was used to monitor in real time the input currents.
It was found that the temperature nearly remained unchanged
due to the short testing time, and that the DC current source
output was accurate. Supplied by the manufacture (Zhixing S &
T Ltd., Jiangsu, China), the shear yield strength at typical input
currents of 0.5 and 1A are, respectively, 6,500 and 13,000 Pa.
According to previous work by Guo et al. (2014), the equivalent
shear yield strength without input current can be calculated from
the frictional force (483N) as 17,000 Pa.

MESH SENSITIVITY EXAMINATION

Before validating the FEM model by using the experimental
data, it is necessary to study the effect of mesh dependency
of the model results. Three refinement levels, i.e., coarse,
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FIGURE 3 | The inertial effect in MR dampers. (A) Displacement-force loop. (B) Velocity-force loop.

FIGURE 4 | The viscous effect in MR dampers. (A) Displacement-force loop. (B) Velocity-force loop.

FIGURE 5 | The “frictional” effect in MR dampers. (A) Displacement-force loop. (B) Velocity-force loop.

normal, and fine meshes with 5,473, 13,075, and 26,734
degrees of freedom (DOFs), respectively (Figure S2), were
used to simulate the performance of the MR damper under
the medium-frequency sinusoidal displacement excitation. As
shown in Figure S3, the difference between the model results

is negligible (in terms of either displacement-force or velocity-
force loop), and we will choose the normal mesh in the
following validation of the model. It is worth pointing out
that about 2 days were used to solve the model with the
fine mesh on a personal computer (i7 CPU, 8G RAM), while
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FIGURE 6 | Elastic effect in MR dampers. (A) Displacement-force loop. (B) Velocity-force loop.

the models with the coarse and normal meshes only took
several hours.

VALIDATION OF THE FEM MODEL

The performance of the tested MR damper in previous section
is simulated in this section. As shown in Figures 8–10, the
overall agreement is good between the model predictions and the
experimental data.

The hysteretic behavior of MR dampers, either in terms
of the force-displacement or the force-velocity, is frequency
dependent. With increasing excitation frequency, the force-
displacement loop rotates because of the larger inertial effect.
The damping force oscillates more violently under the high
frequency excitation. With increasing excitation frequency, the
force-velocity loop in the pre-yield grows fatter and the loop in
the post-yield is no longer ignorable. It is interesting to note
that force oscillation is observed when the MR damper switches
from the pre-yield region to the post-yield region, and it is very
similar to the classical step response for a mas-spring-damper
second order system. Although similar results were achieved
in the previous studies on lumped parameter modeling of MR
dampers (Nguyen and Choi, 2009; Gołdasz and Sapinski, 2013),
few attempts have been made to explain such step-response-like
force variation. Detailed explanation well be made later in this
study in terms of mass the flow rates.

The discrepancy between the experimental and calculated
results, which becomes more apparent under high frequency-
excitations, is still not clear and worth further studying in future
works. However, we believe that a more realistic modeling the
compressibility of MR fluid should enhance the accuracy of the
FEMmodel.

DISCUSSION AND FUTURE WORKS

Flow Field Within Damper
The FEM model makes it possible to have a clear picture
of the flow of MR fluid in an MR damper. As shown in
Figure 11, the flow velocity magnitude during one complete

high-frequency excitation cycle is presented at typical
time instants (0, T/4, 2T/4, 3T/4, T; T = 0.05s is the
excitation period).

The high-speed flow of MR fluid mainly happens in the
working gap as expected. The mean velocities throughout the gap
[including both unenergized zone (�NF) and the energized zones
(�MR1 and �MR2)] should be roughly equal, in order to satisfy
continuity. However, in the energized section, due to the yield
stress, the velocity profile is more plug-like, i.e., flatter and this
can be seen clearly in Figure S4.

The velocity profile in the unenergized sections is more
pointed. Therefore, in the unenergized section, the maximum
velocity is higher, but in the energized sections the velocity is
closer to the piston velocity. The overall flow rates should be
roughly equal in both energized and unenergized sections. When
the piston reversing its direction (t =T/4, 3T/4), a large vortex is
observed near the gap end, and the fluid elsewhere moves slowly
in the chamber.

Mass Flow Rate
The mass flow rate in the working gap directly determines
the damping force of an MR damper. In the following,
let’s examine the mass flow rates under different frequency
loadings. The normalized flow rates at three key locations
as shown in Figure 12, i.e., the left piston end (QP), the
left (QL) and right (QR) working gap ends, are computed
using boundary integral operators and then compared
in Figure 13A.

Near the maximum displacement, the flow rates at the left and
right piston ends (QL and right QR) are negligibly different (as
shown in Figures 13B,C), but they are apparently distinguishable
from the flow rate at the piston end (QP). This implies that the
compression of MR fluid mainly happens in the chambers rather
than in the working gap.

As in the history of damping force (Figures 11–13), the
similar step-response like oscillations are also observed in
the mass flow rate as shown in Figure 13A. To reveal such
oscillations, let’s take a close view on the process when the piston
changing its direction (yellow highlight zone in Figure 13A). For
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FIGURE 7 | Experimental setup. (A) Picture of the experimental setup. (B) Schematic diagram of experiment.

simplicity, we will focus the fluids in the pressurized chamber and
the working gap. Several key points (P1∼P4) in Figure 13B) split
this process into different periods as below.

(1) P1∼P2 period: In this period, the MR damper works in the
pre-yield zone. After changing its direction (at P1 moment),
the piston moves slowly and the fluid in the working gap
is almost locked due to the large pre-yield viscosity (or
the friction effect). Meanwhile, the fluid in the pressurized
chamber is constantly being compressed and the pressure
inside increases with the piston movement. This process
continues up to P2 moment when the accumulated pressure
in the chamber become large enough to balance the friction

force in the working gap. The nonzero flow rate in this
(pre-yield) period is because we have used in our FEM
model a very large but finite pre-yield viscosity instead

of an infinitely large one as in the ideal Herschel-Bulkley

model, and the fluid can flow very slowly even in the

pre-yield zone.

(2) P2-P3 period: After P2 moment, the damper enters the post-

yield zone. Because the post-yield viscosity is several orders

lower than the pre-yield viscosity, the fluid in the working

gap finally can move much more freely from now on. Under

the thrust of the large chamber pressure accumulated in
the P1∼P2 period, the fluid in the working gap suddenly
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FIGURE 8 | Performance of MR damper under low-frequency excitations (40 mm/2 Hz, symbols: experimental data; lines: FEM predictions). (A) Displacement-force

loop. (B) Velocity-force loop.

FIGURE 9 | Performance of MR damper under medium-frequency excitations (8 mm/10Hz, symbols: experimental data; lines: FEM predictions).

(A) Displacement-force loop. (B) Velocity-force loop.

FIGURE 10 | Performance of MR damper under high-frequency excitations (4 mm/20Hz, symbols: experimental data; lines: FEM predictions). (A) Displacement-force

loop. (B) Velocity-force loop.

flows “freely” at a large acceleration. At this time instant, the
inertial effect becomes dominant, as evidenced by the peak in
the flow rate (Point P3 in Figure 13B) or the overshoot in the
damping force.

(3) P3-P4 period: Much like the case of a small extending
instantly applied to a pre-compressed spring, when
the fluid in the chamber suddenly starts to flow
outward, the pressure inside drops slightly, and the
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FIGURE 11 | Snapshots of the flow field (Sinusoidal displacement excitation: 8 mm/10Hz, 0.5 A).

FIGURE 12 | Key locations [left piston end (QP ), left (QL), and right (QR) gap ends] where mass flow rates will be calculated and compared. (A) Left piston end and left

gap end. (B) Right gap end.

flow rate in the working gap as well as the damping
force decreases accordingly. Consequently, a small
undershoot (P4 in figure) appears for the first time in the
post-yield zone.

(4) From P4 to the next piston reversing moment: After the
damper enters the post-yield zone, it becomes hard for
the piston to squeeze the chamber fluid as it does in
the pre-yield zone. Conceptually, just like it is difficult
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FIGURE 13 | Normalized mass flow rate against normalized piston displacement (0.5 A). (A) Normalized displacement-mass flow rate loop. (B) Details on yellow

highlight zone in (A,C). Details on yellow highlight zone in (B).

to compress a spring at an end when the other end
can move. The increase in the damping force mainly is
contributed by the increase in the piston velocity which
leads to an increasing viscous damping force (due to the
viscous effect).

If we look very closely at the mass flow rates at the two ends of the
working gap, we can find small difference between them as shown
in Figure 13C). Such difference results from the compressibility
of MR fluid in the working gap, and it is expected to become
larger with the increasing volume of the gap.

Keeping in our mind the above picture of transition of
MR fluid from the pre-yield to the post-yield zone, we can
actually give a reasonable estimation on the amount of the fluid
compression during the pre-yield period. According to the simple
Bingham fluid model, the chamber pressure (py) at the yield
moment (P2 in Figure 13B) can be approximated by

py = 2 τ y
L

g
(45)

Under this pressure, the piston displacement variation (or the
fluid compression along the axial direction of the damper), 1z,
can then be calculated from

py = B
dV

V
= B

1z A

(s0 − 1z) A
= B

1z

s0 − 1z
(46)

Where the distance of the piston away from its maximum

displacement position 1z = z0 sin
(

2πft
)

− z0 sin
(

2πf T4

)

, T4 <

t < T
2 . The meanings and values of other variables in equations

(45) and (46) can be found in Table 1.

The normalized compression
(

1z
z0

)

obtained using the

Equations (45, 46) are presented in Figure 13B, and they can be
used as reasonable approximations of the total fluid compression
accumulated in the pre-yield zone. Moreover, the piston velocity
at the yield point can also be estimated by using Equations (45,
46), and they indeed offer a good estimation on the width of
the pre-yield zone (about twice the piston velocity at the yield
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point), as shown in Figure 14. In other words, the frictional
effect and the elastic effect of MR fluid together dominate the
pre-yield hysteretic behavior of MR dampers. If a small pre-
yield loop is desired, the chamber volume should be as small
as possible and a MR damper should work under a low input
excitation current.

Compared to the previous CFD modeling studies of MR
dampers, the main contribution of this study includes two
aspects: (a) the compressibility of MR fluids, which has been
neglected in previous studies, is proven to be essential for
accurate predictions of hysteretic behavior of MR dampers; (b)
the mechanism behind the step-response-like force oscillation
of an MR damper, which has been rarely reported in previous
researches, is explained in detail in this study.

It is interesting to note that the hysteretic behavior of an MR
damper can be described either by an incompressible viscoelastic
fluid as shown in recent studies or by a compressible viscoplastic
fluid as demonstrated in this work. Thus, the combination of
these two constitutive models, that is, a compressible viscous-
elastic-plastic fluid model, is believed to predict the hysteretic
behavior of MR dampers more accurately, and this will be
investigated in our future works.

CONCLUSION

In this paper, the coupled inertial-viscous-frictional-elastic
transients in MR dampers was investigated using finite element
simulation and experimental validation under low-, medium-,
and high- frequency sinusoidal displacement excitations and
different input electric currents. The main concluding points are
as follows:

(1) Representing the piston movements by the moving
boundaries, the ALE form of the conservation laws offers a
natural way to describe the fluid flow in MR dampers. The
flow problem in MR dampers can be effectively solved by
the SUPG based FEMmethod and the solution exhibits little
mesh-size sensitivity.

(2) The weak compressibility ofMR fluids is crucial to accurately
predict and understand the dynamic performances of MR
dampers. It should not be ignored, as in most previous
studies on modeling of MR devices. The compression of
fluids mainly happens in the pressurized chamber instead
of the working gap, and it can be reasonably estimated on
the basis of the shear yield strength and bulk modulus of
MR fluid.

(3) The mechanical model of MR dampers is essentially a
second order mass-spring-viscous (friction) model. The
widely used Bouc-Wen model is intrinsically deficient for
accurate predictions, because it is only a first order system.
In the second order system of MR dampers, the fluid density
reflects the inertial effect, as indicated by the fatness of
the hysteretic loop in the post-yield zone. The post-yield
viscosity controls the proportion between the damping force
and the piston velocity in the post-yield zone. The shear
yield strength gives rise to the fictional effect and governs

FIGURE 14 | Width of pre-yield zone under different frequency loadings.

the magnitude of damping force in the post-yield zone. The
compressibility of fluids, playing the role of a spring, is
responsible for both the hysteretic loop in the pre-yield zone
and the force fluctuations in the poste yield zone.

(4) The ratio of shear yield strength to the bulk modulus (τ y/B)
determines the boundary between the pre- and post-yield
zones. When a MR damper crosses this boundary, a step
response is observed as in a second order mass-spring-
viscous system model, and it can be explained in terms of
mass flow rate.

(5) The hysteretic behavior of MR dampers shows a strong
dependence on the excitation frequency. With the same
maximum piston velocity, both pre-yield and post-yield
hysteric loops grow apparently fatter with increasing
sinusoidal excitation frequency. Moreover, the damping
force oscillation becomes more violent under higher
frequency excitations and it becomes significant under low
input currents.

To the best of our knowledge, this is the first compressible
fluid based 2D flow simulation and experimental validation
of coupled inertial-viscous-frictional-elastic transients in MR
dampers, and it can be a valuable aid in research on general
MR devices.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

PG fully controls and performs the FEM modeling, and
scientific writings. JX designs experiments and data processing.
YH performs the parameter modeling of MR damper

Frontiers in Materials | www.frontiersin.org 14 November 2019 | Volume 6 | Article 293

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Guo et al. Coupled Transients in Magnetorheological Dampers

under random displacement excitation. XD guides the
whole logic of this study, from modeling to experiments
and to writing.

FUNDING

This research was supported by National Natural Science
Foundation of China (No. 51308450), Research Foundation
of Xi’an University of Architecture and Technology

(No. RC1368), National Key R&D Program of China
(2018YFC0705603), and Jiangxi Province Science Foundation
for Youths (No. 20171BAB216041).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmats.
2019.00293/full#supplementary-material

REFERENCES

Alghamdi, A. A., Lostado, R., and Olabi, A.-G. (2014). “Magneto-rheological

fluid technology,” in Modern Mechanical Engineering, ed D. J. Paulo (Berlin;

Heidelberg: Springer), 43–62. doi: 10.1007/978-3-642-45176-8_3

Bazilevs, Y., Takizawa, K., and Tezduyar, T. E. (2013). Computational Fluid-

Structure Interaction: Methods and Applications. John Wiley & Sons.

doi: 10.1002/9781118483565

Belytschko, T., Liu, W. K., Moran, B., and Elkhodary, K. (2013). Nonlinear Finite

Elements for Continua and Structures. John Wiley & Sons.

Carlson, J. D., Catanzarite, D., and St. Clair, K. (1996). Commercial

magneto-rheological fluid devices. Int. J. Mod. Phys. B 10, 2857–2865.

doi: 10.1142/S0217979296001306

Case, D., Taheri, B., and Richer, E. (2016). Multiphysics modeling of

magnetorheological dampers. Int. J. Multiphys. 7, 61–76. doi: 10.1260/1750-

9548.7.1.61

Chen, P., Bai, X.-X., Qian, L.-J., and Choi, S. B. (2018). An approach for hysteresis

modeling based on shape function and memory mechanism. IEEE/ASME

Trans. Mech. 23, 1270–1278. doi: 10.1109/TMECH.2018.2833459

COMSOL Inc. (2014). Comsol Multiphysics User’s Manual Ver. 5.0a.

Frigaard, I., and Nouar, C. (2005). On the usage of viscosity regularisationmethods

for visco-plastic fluid flow computation. J. Nonnewton. Fluid Mech. 127, 1–26.

doi: 10.1016/j.jnnfm.2005.01.003

Gołdasz, J., and Sapinski, B. (2013). Verification of magnetorheological shock

absorber models with various piston configurations. J. Intell. Mater. Syst. Struct.

24, 1846–1864. doi: 10.1177/1045389X13479684

Gołdasz, J., and Sapinski, B. (2015). Application of CFD to modeling of

squeeze mode magnetorheological dampers. Acta Mech. Autom. 9, 129–134.

doi: 10.1515/ama-2015-0021

Guo, P., Guan, X., and Ou, J. (2014). Physical modeling and design method of the

hysteretic behavior of magnetorheological dampers. J. Intell. Mater. Syst. Struct.

25, 680–696. doi: 10.1177/1045389X13500576

Guo, P., and Xie, J. (2019). Two-dimensional CFD modeling of hysteresis

behavior of MR dampers. Shock Vib. 2019:9383047. doi: 10.1155/2019/

9383047

Huerta, A., and Liu, W. K. (1988). Viscous flow with large free

surface motion. Comput. Methods Appl. Mech. Eng. 69, 277–324.

doi: 10.1016/0045-7825(88)90044-8

Jolly, M. R., Bender, J. W., and Carlson, J. D. (1999). Properties and applications

of commercial magnetorheological fluids. J. Intell. Mater. Syst. Struct. 10, 5–13.

doi: 10.1177/1045389X9901000102

Koukouvinis, P., Mitroglou, N., Gavaises, M., and Lorenzi, M. (2017). Quantitative

predictions of cavitation presence and erosion-prone locations in a high-

pressure cavitation test rig. J. Fluid Mech. 819, 21–57. doi: 10.1017/jfm.

2017.156

Nguyen, Q.-H., and Choi, S.-B. (2009). A new approach for dynamic modeling of

an electrorheological damper using a lumped parameter method. Smart Mater.

Struct. 18:115020. doi: 10.1088/0964-1726/18/11/115020

Papanastasiou, T. C. (1987). Flows of materials with yield. J. Rheol. 31, 385–404.

doi: 10.1122/1.549926

Phelan, F. Jr., Malone, M., and Winter, H. (1989). A purely hyperbolic model

for unsteady viscoelastic flow. J. Nonnewton. Fluid Mech. 32, 197–224.

doi: 10.1016/0377-0257(89)85036-0

Sahin, H., Wang, X., and Gordaninejad, F. (2013). Magneto-rheological fluid

flow through complex valve geometries. Int. J. Vehicle Des. 63, 241–255.

doi: 10.1504/IJVD.2013.056154
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