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Heteroatom-doped carbon based catalysts have been demonstrated as one of the most

promising electrocatalysts to replace traditional noble metal catalysts, such as Pt, for

oxygen reduction reaction (ORR) in proton-exchange membrane fuel cells (PEMFCs).

However, experimental results have shown that the carbon based catalysts exhibit inferior

catalytic activities in acidic than in alkaline mediums. As the catalytic mechanism is

unclear, there is no effective strategy to design and synthesize highly efficient carbon

based catalysts working in acidic medium. In this work, the density functional theory

(DFT) methods were applied to understand the inferior performance of doped graphene in

acid. Our results show that the excellent performance of doped graphene is downgraded

by protonation of dopants and the adsorption of acidic anions. The calculated ORR

overpotentials were increased due to the protonation and the aggregation of acid anions

on the graphene surface. To enhance the catalytic activities, the adverse effects of

protonation and acid anions should be minimized as much as possible. These insights

provide a direction to boost the catalytic efficiency and stability of metal-free carbon

based catalysts for clean energy conversions and storages.

Keywords: doping graphene nanoribbons, oxygen reduction reaction, catalytic activity, acidic medium, DFT

simulation

INTRODUCTION

Proton-ExchangeMembrane Fuel cells (PEMFCs), as sustainable and promising energy conversion
devices, have attracted widely attention in energy applications owning to their high efficiency and
no pollution (Stephens et al., 2016). In PEMFCs, the key reaction, oxygen reduction reaction
(ORR) is sluggish and requires highly efficient catalysts (Debe, 2012; Zhang G. et al., 2019).
Generally, noble metals such as Pt, have been used to boost the ORR (Shao et al., 2016). However,
the high cost and the scarcity of noble metals hinder the large-scale commercial application
of PEMFCs. Recently, great advances in metal-free carbon catalysts for ORR endowed new
possibilities for the development of PEMFCs (Dai et al., 2015; Liu and Dai, 2016; Hu and Dai,
2019; Zhao et al., 2019). It has been demonstrated that the catalytic efficiency of heteroatom
doped graphene for ORR are comparable to that of Pt in alkaline medium, and these dopants
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include N (Gong et al., 2009; Wang et al., 2018a) B (Yang
et al., 2011), P (Zhang et al., 2013; Wu et al., 2015) and so
on. However, in acidic medium, the performance of doping
carbon cannot meet the commercial demand in PEMFCs
(Yang et al., 2019). For example, N doped ultrathin carbon
nanosheets showed an onset potential of 0.95 and 0.78V
in 0.1M KOH and 0.5M H2SO4, respectively (Jiang et al.,
2019). Similarly, the change of pH from 12–14 to 0–2 leaded
to a significant degradation of the catalytic activity during
electrochemical testing (Wan et al., 2015). It was unclear why
the same catalysts showed different catalytic activities in different
electrolyte environments (Zeradjanin, 2018). These experimental
observations have not been completely understood in terms of
their catalytic mechanisms on the surface of catalysts.

Density functional theory (DFT) simulation is an effective
theoretical approach to study the ORR mechanisms (Kulkarni
et al., 2018; Wang et al., 2018b; Zhang L. et al., 2019). The direct
interactions between the surface of catalysts and the intermediate
radicals of ORR in vacuum have been broadly studied by the
simulation methods (Li et al., 2017; Xue et al., 2018; Yang et al.,
2018). For instance, Zhao et al. (2015) discovered that the most
desirable active sites on X-doped (X denotes to the elements in
the p block of the periodic table) graphene originate from the
optimal adsorption energies of intermediates of OOH∗, O∗, and
OH∗. However, due to the neglect of electrolyte environment in
simulation, the issue of pH-dependence of the catalytic activity
has not yet to be well-addressed in these limited models. As we
know, the surface of catalysts contacts with electrolyte containing
various anions and cations. In the process of evaluating the
activity of the catalysts, the effects of these ions cannot be
completely ignored (Yang et al., 2019).

In this work, we evaluated the effect of various solution
composition of electrolytes to explicitly clarify the distinction
of catalytic behaviors in acid and base conditions. We found
there were two factors, protonation and adsorption of acid radical
ions, which resulted in the inferior catalytic performance of the

FIGURE 1 | (A) The zigzag heteroatom doped graphene nanoribbons utilized in the calculations. (B) The schematic of possible elementary reaction pathways for the

ORR within associative and dissociative mechanisms.

doped graphene in acidic environments. The insights provide
a direction and hints to rationally design and optimize high
performance carbon-based catalysts for PEMFCs.

COMPUTATIONAL METHODS AND
MODELS

In this work, all the first-principles calculations were
implemented in the plane wave Vienna Ab-initio Simulation
Package (VASP) code with the framework of DFT (Kresse and
Furthmüller, 1996a,b). The projector augmented wave (PAW)
pseudo-potentials method (Kresse and Joubert, 1999) was used
to describe the core-electron interactions. The parameterization
of the electronic exchange and correlation effects were realized by
the Perdew-Burke-Ernzerh (PBE) method (Perdew et al., 1996)
within the Generalized Gradient Approximation (GGA). The
core-valence electrons configurations corresponding to elements
in this paper are as follows: H-1s1, C-[He]2s22p2, O-[He]2s22p4,
B-[He]2s22p1, N-[He]2s22p3, P-[Ne]3s23p3, S-[Ne]3s23p4,
Cl-[Ne]3s23p5 (Zhu et al., 2019). The cutoff energy was selected
to be 500 eV and a 4 × 4 × 1 grid of K-point sampling was
generated by Monkhorst-Pack Scheme. The structures were
relaxed until the energy and the force converging to 1× 10−4 eV
and 0.01 eV/Å, respectively.

All built models in this work are based on doped graphene
nanoribbons (GR) with zigzag edges. The doped heteroatoms
(X= N, B, P) locating at the zigzag edges are favorable to boost
the ORR catalytic activity (Jiang et al., 2007; Li et al., 2014; He
et al., 2016). We mainly focus on nitrogen-doped graphene with
pyridinic-N, which is considered to be the origin of catalytic
activity (Li et al., 2014; Guo et al., 2016; Zhang L. et al., 2019).
The GRs were constructed with periodic boundary condition in
x-direction. The width (W) of the nanoribbons is 5 rings (∼ 12
Å) due to the adsorption energy of the intermediates at the GR
edge no longer change as the width further increased, as shown
in Figure 1A. To avoid the interaction between slabs, a vacuum

Frontiers in Materials | www.frontiersin.org 2 November 2019 | Volume 6 | Article 294

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Ma et al. Catalytic Activity in Acidic Medium

spacing was added with the value of 11 and 15 Å in the y- and
z-directions, respectively. In addition, Deng et al. (2016) claimed
that the C atoms near N-dopant exhibited catalytic activity for
ORR. In our work, the potential catalytic active sites near the
doped N were numbered as shown in the inset of Figure 2. The
GR models are referred with the following format:

X− GR/mY/nZ,

where X, mY, and nZ represent doping element (N, B,
P), absorption of m protons or hydroxides and absorption
of n anions (ClO−

4
∗, HSO−

4
∗ and SO2−

4
∗), respectively. For

example, N-GR/2H/2ClO−

4 denotes nitrogen-doped graphene
nanoribbons adsorbed with 2 protons and 2 ClO−

4 groups.
In principle ORR occurs via two pathways: two-electron

and four-electron transfer; the latter one is recognized to
be more efficient than the former one (Lu et al., 2019).
Consequently, we calculated all possibly four-electron transfer
pathways (Figure 1B), including associative and dissociative
mechanisms with different configurations of capturing O2 (Yang
et al., 2017; Ji et al., 2018). The asterisk stands for the adsorption
of intermediates at active sites of doped GR. We employed the
following method proposed by Nørskov to describe the reaction
Gibbs free energy (G) of the sub-reactions. The change of G
between the initial and final states for each elementary step is
expressed by the following equation (Man et al., 2011):

1G = 1EDFT + 1EZPET1S+ 1GU + 1GpH (1)

where 1EDFT, 1EZPE, T, 1S, 1GU, and 1GpH are the electronic
energy difference obtained from DFT calculations, the change
of zero-point energy, the temperature (298K), the change of
entropy, the change of free energy due to applied potential on

FIGURE 2 | The adsorption energy of Ead−H and Ead−OH at different sites,

which is shown as the inset on the upper-left.

electrode, and the corrected change of free energy effected by the
acidity and alkalinity of the solution.

1GU = eU (2)

1GpH = kBTIn[H
+] (3)

where e, U, and kB stand for the transferred charge, the potential
at the electrode and Boltzmann constant.

Besides, at standard hydrogen electrode (U = 0, pH = 0,
pressure = 1 bar and temperature = 298K), the potential of
an electron-proton pair (H+

+ e−) was substituted by the
half of the free energy of the hydrogen (1/2 H2) according to
the Computational Hydrogen Electrode (CHE) model (Nørskov
et al., 2004).

Overpotential (η) is regarded as a parameter to measure the
intrinsic activities of a catalyst, which is determined by:

η = 1.23V+MAX(1G1,1G2,1G3,1G4)/e (4)

where 1G1, 1G2, 1G3, and 1G4 stand for the reaction free
energy of four elementary reaction steps of ORR.

The adsorption energy of absorbed specie x on the surface,
Ead−x, was calculated by:

Ead−x = Et − E0 − Ex (5)

where Et, E0, and Ex are the total energy of the adsorbed structure,
the energy of the isolated GR structure, and the energy of
absorbed species, respectively.

RESULTS

Protonation in Acid Medium
In acidic medium, there are a large number of protons and
acid anions, which may affect the ORR and result in adverse
effect to the catalytic activity of heteroatom doped graphene. To
address the effect of protons on the catalytic activity of N-GR,
the adsorption energy of protons and the ORR overpotential for
the protonated N-GR were calculated. The proton adsorption
energy was calculated at four different sites, shown as Figure 2,
according to the previous work (Liu et al., 2010; Li et al., 2014;
Guo et al., 2016). In order to make a comparison with the
alkaline medium, adsorption energy of the hydroxyl was also
calculated. As shown in Figure 2, both the proton and hydroxyl
prefer to adsorb on site 1, the nitrogen atom, with the adsorption
energies of −1.23 and −2.51 eV, respectively. Thus, whether
in acidic medium or alkaline medium, the nitrogen dopant at
the edge of the graphene is easily protonated or terminated
with hydroxyl.

In ORR, adsorption of O2 on the catalyst surface is a pivotal
step. In the following calculations, the N-GR/H or N-GR/OH
stands for one proton or hydroxyl adsorbed on the site 1, nitrogen
atom (Figure 2). We explored the adsorption of O2 on the
surface of N-GR, N-GR/H, andN-GR/OH. There are two types of
adsorption for the O2 on N-GR, end-on adsorption (Figure 3A),
and side-on adsorption (Figures 3B,C), which are crucial to the
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FIGURE 3 | The most stable structures for (A) N-GR, (B) N-GR/H, and (C) N-GR/OH when adsorbing O2. The left panels are top view and the right ones are side view.

FIGURE 4 | The reaction Gibbs free energy diagrams of four elementary reaction steps of ORR on (A) N-GR and (B) N-GR/H and N-GR/OH. The shadow box

highlights the rate-determining step.

subsequent reaction path for the ORR. The adsorption energies
of O2 on N-GR, N-GR/H, and N-GR/OH are listed in Table 1

and S-Table 1. According to the calculated adsorption energy, O2

prefers to adsorb on N-GR with end-on mode, but with side-
on mode on N-GR/H or N-GR/OH. The end-on adsorption on
N-GR is ∼0.11 eV higher than that of the side-on adsorption
on N-GR/H and N-GR/OH. These results indicate that the
acidic medium not only changes the adsorption mode of the
O2 on N-GR, but also makes the adsorption harder than in
alkaline medium. The relatively larger adsorption energy of O2

is unfavorable to the ORR. Therefore, the acidic medium is
unfavorable to the adsorption of O2, and suppress the catalytic
activity of N-GR.

Besides the effect of protonation on the first reaction step
of ORR and O2 adsorption, we also explored the effects of
protonation on the overall ORR on N-GR. The reaction free

TABLE 1 | The adsorption energy of O2 on different doped GRs by end-on mode

and side-on mode. (Unit/eV).

Catalysts End-on mode Side-on mode

N-GR 0.27 0.82

N-GR/H 0.83 0.40

N-GR/OH 0.43 0.29

energy of the sub-reaction and the overpotential of the whole
ORR on N-GR, N-GR/H, and N-GR/OH were calculated. We
chose the most active site in each structure by testing all the
potential active sites near the doped heteroatom. The reaction
free energy of the sub-reaction on N-GR is shown in Figure 4A.
The ORR proceeds with the associate mechanism, and the rate-
limiting step is the desorption of ∗OH to form H2O. The
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FIGURE 5 | The overpotential of ORR at different local coverage rate. The

models in the blue dotted frame are the best adsorption configuration under

this local coverage.

FIGURE 6 | The reaction Gibbs free energy of four elementary steps of ORR

on N-GR/ClO−

4 , N-GR/H/ClO
−

4 , and N-GR/H/2ClO−

4 . The corresponding

structural models are in the dotted frame.

overpotential for the ORR is 0.49V. On the contrary, as shown
in the reaction free energy diagram of ORR on N-GR/H and N-
GR/OH (Figure 4B), the ORR follows dissociative pathway. The
reaction rate-limiting step is changed to the desorption of the
first ∗OH to form H2O, and the overpotentials for ORR on N-
GR/H and N-GR/OH are 0.55V and 0.39V, respectively. Thus,
the acidic medium would change the ORR mechanism on N-GR
and the reaction rate-limiting step. As a result, the overpotential
of ORR in acidic environments significantly increases compared
with that in alkaline medium.

In acidic medium, the protons are adsorbed not only at
N atoms but also at other sites in N-GR. We therefore

studied the effect of the hydrogen coverage rate over N-GR
on the ORR catalytic activities. The local coverage rate is
defined as n/6 monolayer (ML), where n is the number of
adsorbed hydrogen, and 6 represents the possible active sites
near the dopant N. The overpotentials were calculated for
the most stable adsorbed structures of N-GR with different
local coverage rate values 0, 1/6ML, 1/3ML, and 1/2ML,
and the results are shown in Figure 5. With increasing the
local coverage rate, the overpotential increases. Therefore, in
acidic medium, with the development of the protonation, the
ORR catalytic activity becomes worse. It should be noted
that in Figure 5, the overpotential at the local coverage of
1/3ML is lower than that of 1/6ML, but the hydrogen
adsorption energy on the N-GR with the local coverage rate
of 1/3ML (Ead−H = −1.11 eV) is higher than that on the N-
GR with the local coverage rate of 1/6ML and 1/2ML (with
the value of Ead−H = −1.26 eV and −1.40 eV, respectively).
Evidently, with increasing the protonation, the local coverage
rate would change from 1/6ML to 1/2ML quickly. Therefore,
the ORR catalytic activity of N-GR decreases with increasing
the protonation.

Adsorption of Anions in Acid Medium
As mentioned above, the acid anion is one of the main factors
that affect the catalytic activity of N-GR in acidic medium. The
perchloric acid and sulfuric acid are the two most common acids
used as acidic electrolytes in fuel cells (Mamtani et al., 2018; Sun
et al., 2018; Mun et al., 2019; Zhang L. et al., 2019). In order to
study the effects of acid anions on the catalytic activity of N-GR,
we introduced acid anions (including ClO−

4 , SO
2−
4 , and HSO−

4 )
near the N-GR structures, and calculated the overpotential and
reaction pathways. When the acid anions adsorb on the N-GR,
it could be located at different positions near the N-GR. It was
found that the acid anions preferred to aggregate near the edge
of the N-GR not the basal plane of the N-GR, the adsorption
structures are shown as S-Figures 1G–L.

Figure 6 shows the reaction free energy diagram of ORR
on the structures with one perchlorate (N-GR/ClO−

4 ), one
perchlorate and one adsorbed H (N-GR/H/ClO−

4 ), and two
perchlorates and one adsorbed H (N-GR/H/2ClO−

4 ) (the inset in
Figure 6), the total energy of the adsorbed intermediate on these
structures are listed in S-Table 2. The overpotentials of ORR
on N-GR/ClO−

4 , N-GR/H/ClO−

4 , and N-GR/H/2ClO−

4 are 0.68,
0.62, and 0.65V, respectively. These values are all higher than
the overpotential of ORR on N-GR/H. Thus, the existing of acid
anions on the N-GR surface is detrimental to the ORR catalytic
activity. In addition, the effect of adsorption of perchlorate
was stronger than protonation because the overpotential of
ORR on N-GR/ClO−

4 is a little bit higher than that on N-
GR/H/ClO−

4 . As the number of perchlorates increases to two,
the overpotential of ORR increases to 0.65V. It indicated
that the more aggregation of the perchlorate near the N-
GR, the more adverse effects on the ORR catalytic activity.
Similar effect was also found for HSO−

4 and SO2−
4 on the ORR

catalytic activity of N-GR. The overpotentials of ORR for N-
GR/HSO−

4 , N-GR/SO
2−
4 were calculated to be 0.50 and 1.42V,

respectively (Figure 7). The effect of SO2−
4 on ORR catalytic
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activity is more adverse than that of HSO−

4 , and much more
adverse than that of ClO−

4 . Therefore, the adsorption of acid
anions on N-GR could be considered as one of the main
factors for the degeneration of the ORR catalytic activity in
acidic medium.

DISCUSSION

The unfavorable effects of protonation and acid anions on ORR
catalytic activity of N-GR can be ascribed to charge redistribution
at the active sites generated by the adsorbed hydrogen or acid
anions. Figure 8 shows differential charge density distribution
of hydrogen or acid anion adsorbed N-GR, which is calculated
by the charge density distribution on the adsorption N-GR
minus that on the un-adsorption structures. The charges on the
active sites C-1 and C-2 are changed due to the adsorption of
hydrogen or acid anions, which could influence the adsorption
of O2, desorption of ∗OH in the sub-reaction of ORR. For
example, on N-GR/H, the positive charges decrease due to
the electron transfer from the adsorbed H (Figure 8B), which
is unfavorable to the adsorption of O2 at C-1 and C-2 sites
with side-on mode, as shown in Figure 3B and S-Figure 2B.
Moreover, after the breakage of O-O bond to form two adsorbed
∗OH at C-1 and C-2, one of the ∗OH is unfavorable to proceed
with desorption of formed H2O, which acts as the reaction
rate-limiting step in ORR (Figure 4B). On N-GR/ClO−

4 , the
C-1 and C-2 possess more positive charges (0.63 and 0.07)
because of the induced polarization between the C atom and
the O atom from the ClO−

4 (Figure 8D). The excessive positive
charges on C-1 and C-2 are favorable to the adsorption of
O2 (S-Figure 2D), but detrimental to the desorption of ∗OH.
On N-GR/H/SO2−

4 , C-1 and C-2 possess charges with the
value of 0.44 and 0.03 (Figure 8F), which is favorable to the
adsorption of O2, but detrimental to the desorption of ∗OH
due to the synergistic effect of high positive charge on adsorbed
site and the electrostatic repulsive force from the oxygen atom

FIGURE 7 | The overpotential of ORR on N-doped graphene nanoribbons

with different adsorbed radicals.

in the SO2−
4 . On N-GR/OH, the C-1 and C-2 possess proper

quantity of positive charges (Figure 8C), which is moderate
for both adsorption of O2 (S-Figure 2C) and desorption of
∗OH. Therefore, the desired active sites should not only be
favorable to the adsorption of O2, but also advantageous to the
desorption of ∗OH conforming to the Sabatier principle (Lin
et al., 2017).

Besides the nitrogen doped graphene nanoribbon (N-GR),
we also studied the influence of protons, hydroxyls and
acid anions on the ORR catalytic performance of other
heteroatom doped graphene nanoribbons, such as B-GR and
P-GR. The ORR overpotentials corresponding to different
doped structures are listed in S-Table 3. Similar to N dopants,
the protonation and acid anions are also detrimental to the
ORR catalytic activity for the B- and P-doped graphene
nanoribbons. Protonation shows an obvious adverse effect on
the catalytic activity of P-GR. However, the adsorption of
hydroxyl radical on the B-GN is favorable to the catalytic
activity. For all the doped structures, sulphuric acid shows
more adverse effect on the ORR catalytic activity than the
perchloric acid. Thus, the adverse effects of protonation
and acid anions are common to the heteroatom doped
graphene nanoribbon.

The effects of proton and acidic anions on the catalytic
activity of doped graphene in our simulation work are highly
consistent with published experimental works (Xue et al., 2018;
Yang et al., 2019). For instance, the nitrogen-doped carbon
catalysts were characterized with the XPS spectra before and
after the potential cycling stability test in acid and alkaline
electrolytes by Li et al., they found there were more pyridinic
nitrogen changed to graphitic nitrogen in acidic electrolyte
than in alkaline electrolyte (Li et al., 2010). The change of
N from pyridinic to graphitic form could be ascribed to the
protonation of pyridinic nitrogen. Yang et al. also mentioned
in their review work that the active sites of the catalysts would
be blocked by the adsorbed anions in acidic electrolyte (Yang
et al., 2019). Besides the detrimental effects of acidic anion on
the work electrode catalysts, the anion would also interact with
the counter electrode, which may be one of the reasons of the
inferior catalytic activities of catalysts in acidic environment
(Zhang et al., 2014).

To reduce, even eliminate the detrimental effects of
protonation and acid anions on the ORR catalytic activity
of doped graphene, an effective way is to prevent the protonation
and the acid anions, such that their influence on the charge
distribution of the active sites can be eliminated. To achieve
this goal, we propose several strategies as follows. (1) The
dopant atom position could be changed to make the protonation
not easily processed. For example, the dopant atom could
be located at the intrinsic defects (such as Stone Wales
defects, Vacancy defects) not at the edge of the graphene.
(2) Particular radical could be added into the electrolyte
solution, which could terminate the protonated sites but
not change the charge distribution of the active sites too
much. (3) The acid anions can be segregated from the active
sites as much as possible. For example, design multi-scale
hierarchical porous structure (Liu et al., 2019; Yang et al.,
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FIGURE 8 | Differential charge density distributions (between absorbed and un-adsorbed structures) and Bader charge of the adsorption sites on (A) N-GR, (B)

N-GR/H, (C) N-GR/OH, (D) N-GR/ClO−

4 , (E) N-GR/H/ClO
−

4 , and (F) N-GR/H/SO2−
4 . The Yellow represents the electron accumulation area, and the blue represents

the electron loss area. The isosurface value is set to 2.5 × 10−3 e/Bohr3.

2019; Zhang L. et al., 2019), which could block the acid anions
approaching to the reactive sites but not influence the transfer
of reactants, products and reaction intermediates. (4) Defective
graphene structure could be designed to make the active
sites locate at the central part, not the edge of the graphene,
because the acid anions prefer to aggregate at the edge of
the graphene.

CONCLUSIONS

We have systematically explored the possible reasons of the
receding catalytic activity of doped graphene structures in
acidic medium with DFT calculations. The results indicate
that the protonation and acid anions show adverse effects on
the catalytic performance of doped graphene. The adsorption
of H on the dopant atom could change the ORR pathways
and increase the ORR overpotential. The adsorption of acid
anions near the edge of the doped graphene redistributes the
charge on the active site, which influences the adsorption
of O2 and desorption of ∗OH in the ORR process and

therefore increases the overpotential, consequently suppresses
the catalytic performance. Reducing or avoiding the protonation
and adverse influence of acid anions could be a promising
design strategy to enhance the ORR catalytic activity of doped
carbon based catalysts in acid environment. Our findings provide
hints and a direction to guide the rational design of highly
efficient heteroatom-doped carbon based catalysts for ORR in
acid medium.
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