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Compared with that of proton exchange membrane fuel cells (PEMFCs), alkaline anion

exchange membrane fuel cells (AEMFCs) with alkaline anion exchange membranes

(AEMs) as electrolytes are attracting increased attention due to their potential use as

non-precious catalysts. As one of the key components of AEMFCs, an ideal AEM must

possess high hydroxide conductivity, good thermal stability, sufficient mechanical stability,

and excellent long-term durability at elevated temperatures in an alkaline environment.

Until now, a large number of AEMs with various chemical structures and properties

have been prepared, and studied in detail, and it has been found that the microphase

separation structure greatly affected the performance of AEMs. This minireview provides

recent progress made of AEMs with hydrophilic/hydrophobic microphase separation

structure. The hydroxide conductivity, alkaline stability, and mechanical properties of

AEMs could be improved due to the formation of hydrophilic/hydrophobic microphase

separation in the membranes. The relationship among the microphase separation, the

chemical structure of the polymers, and the performance of membranes has been

discussed in detail. This article attempts to give an overview of some key factors for

the future design of novel AEMs with excellent performance such as high conductivity

and improved chemical stability.

Keywords: anion exchange membrane, microphase separation, hydroxide conductivity, alkaline stability, fuel cell

INTRODUCTION

With the increasing exhaustion of fossil energy and the ever-growing demand for power,
environment-friendly power generation technology with high efficiency is urgently needed (Wu
et al., 2016; Zhang et al., 2016). Fuel cells are electrochemical devices that directly convert the
chemical energy of a fuel (such as hydrogen or methanol) into electrical energy (Noonan et al.,
2012; Chu et al., 2015; Feng et al., 2016; Wang et al., 2019). Compared to that of the fuel cells with
liquid electrolytes, polymer electrolyte membrane fuel cells, which use solid polymer electrolyte
membranes, possess higher power densities, simplified operations, and easier maintenance and
have attracted much attention during the last decades (Olsson et al., 2018; Pham et al., 2019).
Based on the polymer electrolyte membrane, the polymer electrolyte membrane fuel cells could
be classified as proton exchange membrane fuel cells (PEMFCs), and alkaline anion exchange
membrane fuel cells (AEMFCs).
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Compared with that of PEMFCs with Nafion R© membranes
(electrolyte), AEMFCs that operated under high pH conditions
enable the use of non-precious metal catalysts (such as
cobalt, nickel, or silver) instead of Pt-based catalysts (Pan
et al., 2010a; Palaniselvam et al., 2016; Sun et al., 2017).
Furthermore, AEMFCs with solid anion exchange membranes
(AEMs) solved the electrolyte leakage problem (KOH solution)
of the traditional alkaline fuel cells. As a key component
of AEMFCs, an ideal AEM should possess high hydroxide
conductivity, excellent mechanical property, good thermal
stability, and robust alkaline stability to play the important
role in separating fuels and transporting OH− from anode
to cathode of AEMFCs (Lin et al., 2018; Xu et al., 2019).
Typically, AEMs are composed of polymer backbone and
cationic groups, and are connected by covalent bond (Han
et al., 2017; Mayadevi et al., 2019). In an early research,
it is thought that the backbone of polymers affects the
mechanical strength of AEMs, and the cationic groups influence
their hydroxide conductivity, and chemical stability (especial
alkaline stability of membranes). However, the intrinsically
low mobility of OH− and the degradation of cations in
high pH condition severely limited the application of AEMs
(Jheng et al., 2014; Wang et al., 2017; Sun et al., 2018).

In recent years, various AEMs based on aliphatic or
aromatic polymers [such as poly(sulfone)s, poly(arylene ether)s,
poly(phenylene)s, poly(styrene)s, polypropylene, poly(phenylene
oxide)s, poly(olefin)s, poly(arylene piperidinium), and
poly(biphenyl alkylene)s] with different cationic groups (such as
quaternary ammonium, guanidinium, imidazolium, pyridinium,
tertiary sulfonium, spirocyclic quaternary ammonium,
phosphonium, phosphatranium, phosphazenium, metal-cation,
benzimidazolium, and pyrrolidinium) have been synthesized
to prepare AEMs with high conductivity and excellent alkaline
stability (Choi et al., 2005; Gu et al., 2009; Kong et al., 2009; Pan
et al., 2010b; Zhang et al., 2010, 2012; Kim et al., 2011; Lin et al.,
2011, 2013a; Döbbelin et al., 2012; Zha et al., 2012; Arges et al.,
2014; Pham and Jannasch, 2015; Xue et al., 2017; Chen et al., 2018;
Peng et al., 2018; Zhu et al., 2018; Ren et al., 2019; Wang et al.,
2019). Although the performance of AEMs was greatly enhanced
during the past few years, the foundational properties of AEMs
are not comparable to those of PEMs (such as Nafion) due to the
intrinsic low mobility of OH− and the well-known base-induced
decomposition of organic cations as well as polymer backbones
(Tanaka et al., 2011; Noonan et al., 2012; Qiu et al., 2012;
Kim et al., 2017; Hao et al., 2018). The state-of-the-art Nafion
membranes possess high conductivity due to their well-defined
hydrophilic/hydrophobic phase separation structure caused by
its hydrophobic backbone and hydrophilic long side sulfonic
groups (Li and Guiver, 2014). Inspired from this, various AEMs
with hydrophilic/hydrophobic microphase separation structure
were developed and showed improved conductivity and alkaline
stability. In this minireview, we briefly introduce the methods
for enhancing the performance of AEMs and provide recent
progresses of AEMs with hydrophilic/hydrophobic microphase
separation structure, and the relationship between microphase
separation structure and the performance of membranes has
been discussed in detail.

FIGURE 1 | Illustrations of several polymer architectures of AEMs with

well-defined microphase separation morphology: block (A), graft (B), clustered

(C), and comb-shaped polymers (D) and the possible degradation

mechanisms of QA cations in alkaline solutions: Hofmann elimination (E2),

nucleophilic substitution (SN2), and ylide formation (Y) (E).

FORMATION OF MICROPHASE
SEPARATION

In fact, developing an appropriate hydrophilic/hydrophobic
microphase separation structure is an effective way to solve
the conductivity and stability limitation of AEMs. During the
past few years, a series of AEMs with microphase separation
structure have been reported, and most of them possess
high conductivity, relatively low swelling ratio, and good
alkaline stability. However, not each of the AEMs could
develop their microphase separation structure; it is necessary
to design the chemical structure of polymer backbone, and
its side cationic groups. In recent years, several approaches,
including synthesis of block (Tanaka et al., 2011; Liu et al.,
2018; Lin et al., 2019a), graft (Varcoe et al., 2007), clustered
(Zhu et al., 2016), and comb-shaped (Li et al., 2013) polymers
with tethered organic cations, have been pursued to obtain
AEMs with microphase separation structure (Figures 1A–D).
Among various polymers, comb-shaped polymers are the
most popular ones that are used to prepare AEMs with
microphase separation due to their good designability,
and can be obtained both from pre- and postmodification
method. Although the AEMs with microphase separation
were obtained by different methods, most of them showed

Frontiers in Materials | www.frontiersin.org 2 February 2020 | Volume 7 | Article 4

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Xu et al. Anion Exchange Membranes

TABLE 1 | Comparison of representative AEMs with microphase separation.

Membrane Type IEC

(meq g−1)

Conductivity

(mS cm−1)

Alkaline stability References

Base

concentration

(M)

Test time (h) Temperature

(◦C)

Remained

conductivity

(%)

SBS-c-QA Block 1.10 5.6 (20◦C) 1 216 80 70 Liu et al., 2018

QPEX16Y11 Block 1.57 93 (60◦C) – – – – Tanaka et al., 2011

SBS-QA25 Block 1.72 18.0 (20◦C) 2 240 80 87.52 Lin et al., 2019a

M-BDABCO-OH-1:3 Graft 2.87 29.3 (20◦C) 1 550 60 88.3 Hao et al., 2018

ETFE-g-poly-(VBC) Graft 1.03 35 (50◦C) 4 230 60 77.2 Varcoe et al., 2007

ETFE-AEM Graft 1.26 23.8 (25◦C) 1 500 80 93.8 Wang et al., 2017

D30NC6NC6 Cluster 3.18 53 (20◦C) 1 500 80 82.2 Zhu et al., 2016

x(QH)3QPPO-40 Cluster 3.47 58.5 (30◦C) 1 720 80 85 Han et al., 2017

msQPBI-X Comb-shaped 1.49 5.54 (30◦C) 1 96 30 80 Jheng et al., 2014

PSQNOH-5011d Comb-shaped 1.85 23.5 (30◦C) 1 400 60 93.87 Lin et al., 2011

BImPPO-2.1 Comb-shaped 2.10 34 (30 oC) 1 168 60 60 Zhu et al., 2018

OBImPPO-2.1 Comb-shaped 2.10 44 (30◦C) 1 168 60 75 Zhu et al., 2018

high conductivity and robust alkaline stability (Table 1),
and they showed obviously higher conductivity than those
membranes with similar ion exchange capacity (IEC),
and chemical structure but with no microphase separation
(Tanaka et al., 2011).

To investigate the micromorphology of AEMs, transmission
electron microscope (TEM), atomic force microscope (AFM),
and small-angle X-ray scattering (SAXS) are usually used. Among
these testing instruments, TEM is an effective method that
can directly exhibit the microphase separation of membranes.
However, the complex sample preparation process is a big
challenge when collecting the TEM images (You et al., 2019).
The microphase separation can be proved by the minimal
correlations between the AFM phase images and height images
(Lin et al., 2017). Unfortunately, the surface of membrane
samples for AFM testing should be smooth, and the water
uptake of membranes could greatly affect the AFM phase
images. SAXS pattern is also a simple and efficient method
to investigate the micromorphology of AEMs. Compared with
that of AFM and TEM, there is much lower demand on the
sample preparation for the SAXS testing. The appearance and
the location of an ionomer peak are important parameters of
SAXS patterns. The characteristic separation size of ionic clusters
(microphase separation) can be calculated from the equation
d = 2π/q, and the larger the value of d, the more obvious
the microphase separation can be found in the membrane
(Niu et al., 2019).

In the pursuit of high-performance AEMs, anion-
conductive block copolymers display promising properties
for electrochemical devices application, where the unique
block architecture induces the phase separation leading to the
dramatic improvement of ionic conductivities. As a commercial
block copolymer, polystyrene-b-polybutadiene-b-polystyrene
(SBS) has been wildly investigated, and its block structure
renders it a promising material for the preparation of AEMs

with microphase separation structure. Recently, a series of
side-chain-type AEMs based on quaternized SBS have been
reported by Liu et al. (2018); these AEMs showed exciting
alkaline stability and high conductivity. It is no surprise that
hydrophilic/hydrophobic microphase separation was observed
for the quaternized SBS-based membrane by TEM due to the
original triblock structure of SBS. Zhu et al. (2019) prepared
a series of side-chain poly(olefin)-based AEMs by Ziegler-
Natta polymerization of 4-(4-methylphenyl)-1-butene with
11-bromo-1-undecene. The ionic peak was observed at 0.97
nm−1 for the M20C9NC6NC5N membrane in SAXS profiles,
indicating the interdomain spacing of ∼6.5 nm. These results
proved the obvious microphase separation structure formed
in the side-chain poly(olefin)-based membrane. Besides these,
AEMs with comb-shaped side chains possess the structure
of microphase separation. Ponce-Gonzalez et al. (2016) used
SAXS to compare the microstructure of poly (olefin)-based
AEMs with different cationic groups prepared by radiation
grafting. The location of the ionic peak for the AEMs with
pyridinium and pyrrolidinium was 0.22 nm−1, while that for
the membrane with benzyltrimethyl quaternary ammonium
was 0.16 nm−1 under dry conditions. Under 100% RH, the
location of the ionic peak for the AEMs with pyridinium
and pyrrolidinium changed to 0.11 nm−1, and there was no
obvious change of the location of the ionic peak with these three
cationic groups after the treatment of soaking in boiling water.
Recently, a novel strategy to improve the performance of AEMs
is adopted to build a cross-linked structure by tethering the
rigid poly(2, 6-dimethyl-1, 4-phenylene oxide) (PPO) backbone
and the flexible poly(4-vinylphenol) (PVP) backbone using an
oscillational chain. The incompatibility between the PPO and
PVP backbones makes them self-aggregated resulting in the
occurrence of distinct microphase separation. The microphase
separation of the as-prepared AEMs has been revealed by TEM
and AFM (Yang et al., 2019).
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PERFORMANCE OF AEMs WITH
MICROPHASE SEPARATION

It is a huge challenge for developing AEMs that possess high
conductivity, low swelling ratio, robust alkaline stability, and
excellent mechanical properties at the same time. On the other
hand, the formation of hydrophilic/hydrophobic microphase
separation structure in the AEMs is probably a promise approach
to solve this contradiction.

Hydroxide Conductivity
Hydroxide conductivity is one of the most important parameters
of AEMs, which plays a key role in the performance of AEMFCs
(Shin et al., 2017). However, the conductivity of the membrane
was deeply affected by lots of factors, such as IEC, water uptake,
microphase separation, and cationic groups. Compare with that
of PEMs, the AEMs show lower conductivity due to the intrinsic
lower mobility of OH− than that of H+. Raising their IEC is an
efficient and simple way to improve the conductivity of AEMs.
Unfortunately, membrane swelling is generally accompanied
with high IEC and thus results in poor mechanical strength of
AEMs (Pan et al., 2012; Lu et al., 2013; Hou et al., 2016; Shukala
and Shahi, 2018; Gao et al., 2019a). The swelling ratio of AEMs
could be greatly reduced by introducing cross-linked structures,
while the tight structure of membranes hinder the mobility of
OH−, which reduces their conductivity (Liang et al., 2019; Lin
et al., 2019b).

Recently, it has been found that the formation of microphase
separation structure in membranes could improve the
conductivity of AEMs (Mohanty et al., 2016; Yang et al.,
2017; Han et al., 2019; Liu et al., 2019). The microphase
separation and the aggregation of ionic channels were driven
by the hydrophilic/hydrophobic segment of the polymer, which
constructs the ionic highway for OH− conduction, shortens
the pathway, and enhances the OH− conducting efficiency in
membranes (Pan et al., 2014; Han et al., 2019). In addition,
hydrophobic segments control dimensional swelling in water
and enhance the mechanical properties that make it possible
for AEMs to possess high conductivity and good mechanical
strength with relatively low IEC and dimensional swelling.
Recently, Gao et al. (2019b) prepared AEMs with rigid-side-
chain symmetric piperazinium structures possessing high
conductivity, which can be up to 61mS cm−1 at 20◦C due to the
formation of microphase separation. By carefully designing and
controlling the size of the hydrophobic segment, the swelling
ratio of the AEM (Q-PAPip) is lower than 30% at 30◦C. Jin
et al. (2019) reported poly(arylene piperidine)-based AEMs
with microphase separation that resulted by introducing long
side heterocyclic ammonium cations onto the backbone, which
showed a much higher conductivity (25mS cm−1 at 20◦C) than
that of AEMs with similar IEC but without long side cations
(9.6mS cm−1 at 21◦C) (Thomas et al., 2012).

Alkaline Stability
The alkaline stability of AEMs also limited the application
of AEMFCs. Generally, the chemical structure of cationic
groups determined the alkaline stability of AEMs. The most

commonly used cationic groups for AEMs are quaternary
ammonium (QA) cations. However, as is shown in Figure 1E,
QA cations are unstable under high pH conditions especially
at elevated temperatures, due to the degradation via Hofmann
elimination (E2), nucleophilic substitution (SN2), and (or)
ylide formation (Y) (Lin et al., 2010). Though a series of AEMs
based on various organic cations that are different from QA
cations, such as guanidinium, imidazolium, pyridinium,
tertiary sulfonium, spirocyclic quaternary ammonium,
phosphonium, phosphatranium, phosphazenium, metal-
cation, benzimidazolium, and pyrrolidinium, were developed
during the last few years, the alkaline stability of cations could
be enhanced by introducing proper groups due to their steric
hindrance effect and electron donor effect. However, all organic
groups, more or less, will be degraded under alkaline condition at
high temperature because of the nucleophilic attack form OH−

to organic cations (Lin et al., 2013b; Marino and Kreuer, 2015),
and the alkaline stability of AEMs should be further enhanced.
More recently, some papers reported that the chemical structure
of the backbone also influences the alkaline stability of AEMs,
and the polymer backbones with ether bonds degrade quickly
under alkaline conditions (Mohanty et al., 2016; Pham et al.,
2017; Sun et al., 2018).

Dang reported a series of AEMs with comb-shaped side chain
in which the cation groups are separated from the polymer
backbone by the long flexible alkyl spacers, and the comb-
shaped AEMs showed much higher alkaline stability than the
traditional AEMs with benzyltrimethylammonium groups due
to the low electro-withdrawing and steric effects on QA groups.
Moreover, the introduction of the flexible spacer between QA
cations and backbones enhanced the mobility of QA cations,
which is favorable for the formation of distinct ionic clusters in
membranes and enhanced the water transport in the membranes,
thereby creating an environment that is less favorable for
ionomer degradation (Hibbs, 2013; Dang and Jannasch, 2015;
Dekel et al., 2019). Improved alkaline stability was observed
for other AEMs with microphase separation structure based on
various polymer backbones and cationic groups (Oh et al., 2018;
Gao et al., 2019c; Han et al., 2019). The AEMs with a well-defined
microphase separation possess a suppressed swelling ratio and
water uptake, and the OH− was located in the hydrophilic
phase of membranes. On the other hand, the hydrophobic
phase of AEMs in the ordered microphase separation could
weaken the nucleophilic attack from OH− in the hydrophilic
phase to the backbone and thereby the alkaline stability of the
backbone could be maintained (Han et al., 2019). To obtain
AEMs possessing high conductivity, low-dimensional swelling,
and excellent alkaline stability at the same time, fabrication
of hydrophobic/hydrophilic microphase separation structure in
AEMs is a promising method.

CONCLUSION AND OUTLOOK

Among various types of fuel cells, AEMFCs have attracted
enormous attention as clean and high-efficient conversion
devices. As the key component of AEMFCs, AEMs act both
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as a barrier to separate the fuel and an electrolyte to
transport OH− from the anode and the cathode. In order
to meet AEMFCs’ practical application and commercialization,
AEMs should possess high conductivity, and excellent alkaline
stability under alkaline conditions. The micromorphology and
chemical structure of backbone and cations have a great impact
on the properties of AEMs. Although various AEMs with
different chemical structures and micromorphology have been
prepared to improve their conductivity, and alkaline stability,
AEMs with excellent performance are highly desirable. In this
minireview, we provided an up-to-date summary of the AEMs
with microphase separation structure and summarized the
chemical structure of the polymers that are favorable to forming
the hydrophilic/hydrophobic microphase separation in AEMs.
Various polymer architectures, including block, graft, clustered,
and comb-shaped polymers with tethered organic cations, have
been synthesized for the preparation of AEMs with microphase
separation structure. The formation of hydrophilic/hydrophobic
microphase separation structure in the AEMs has three benefits.
Firstly, the OH− conductivity could be greatly improved due
to the formation of ion transport channels in the membranes.
Secondly, the hydrophobic segments restrict the membranes’
dimensional swelling in water and make it possible that AEMs
possess good mechanical strength. Thirdly, the alkaline stability
of AEMs could be enhanced because the hydrophobic phase
weakens the nucleophilic attack from OH− to the backbone.
After recent development, the conductivity and alkaline stability
of AEMs have been improved greatly. In fact, the fabrication of

AEMFCs is a complex procedure; besides the properties of AEMs,
there are so many parameters such as gas pressure, catalysts, as
well as work temperature that affect the performance of AEMFCs.
Therefore, in future work, we should focus more of our attention
on the properties of AEMs under the practical working situation
of AEMFCs and optimize the preparation process of AEMFCs.
This minireview may provide new ideas and approaches for the
design and the fabrication of novel AEMs with high performance,
crucial for the development of viable AEMFC technology. We
believe that, although the commercial application of AEMFCs is
multidisciplinary and still faces huge challenges, with the exertion
and cooperation of all researchers, AEMFCs will be applied more
widely from now on.
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