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In this research, three-dimensional (3D) hierarchical networks of magnetic carbon
nanotubes/graphene oxide (CNTs/GO) nanocomposites (NCs) were synthesized by a
one-step hydrothermal method with the idea of constructing more interface contacts,
a double loss mechanism and synergy effect. The obtained results showed that the
content of NCs gradually transitioned from CoCO3 to CoxFe3−xO4. Further, CoCO3-
CoxFe3−xO4/CNTs/GO quaternary NCs and CoxFe3−xO4/CNTs/GO ternary NCs could
be selectively synthesized when the Co:Fe molar ratio decreased from 1:1 to 1:3.
The as-prepared samples displayed excellent microwave absorption properties (MAPs)
in terms of the minimum reflection loss (RLmin) and the corresponding absorption
bandwidth (FBcor) with reflection loss values lower than −10 dB. The RLmin and
large FBcor values for the as-prepared samples were −54.69 dB and 2.36 GHz,
−63.99 dB and 2.48 GHz, −63.36 dB and 2.68 GHz, respectively. The designed
3D hierarchical networked structure of magnetic GO/CNTs NCs displayed outstanding
comprehensive MAPs, which could deliver a practical and effective strategy to develop
high-performance microwave absorbers (MAs), considering their low cost, lightweight,
and high stability.

Keywords: magnetic GO/CNTs, 3D hierarchical networks structure, interfacial polarizations, dielectric and
magnetic loss mechanisms, microwave absorption properties

INTRODUCTION

In the past decades, microwave absorbers (MAs) have drawn significant attention owing to the
expanded electromagnetic (EM) radiation and interference problems (Novoselov et al., 2004; Zhang
et al., 2014; Cao et al., 2019). It is well acknowledged that MAs with characteristics such as strong
absorption ability, large absorption bandwidth, lightweight, low cost, and remarkable chemical
stability are highly desirable because of their promising military and civil application prospects
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(Zhang et al., 2015; Fang et al., 2016). According to the EM
energy conversion principle, the incident EM wave can be
attenuated by dielectric and magnetic losses (Wei et al., 2017).
Therefore, nanocomposites (NCs) consisting of dielectric loss
materials and magnetic nanoparticles (NPs) are considered an
effective way to achieve high-performance MAs (Liu et al.,
2015, 2018; Quan et al., 2017). For example, CoNi@Air@TiO2
(Liu et al., 2016), Co0.6Fe2.4O4@MoS2 (Long et al., 2019),
Ni@SnO2 (Zhao et al., 2016), Co7Fe3@SiO2 (Chen et al., 2017)
have been demonstrated to display outstanding microwave
absorption properties (MAPs). Generally, owing to their excellent
synergistic effect, the development of high-performance MAs
mainly focused on core@shell structure magnetic NCs, in which
dielectric substances are utilized as a shell and magnetic NPs as a
core. Among them, different dielectric substances such as ZnO,
TiO2, and BaTiO3 were often used as a shell (Liu et al., 2008;
Jiang et al., 2014; Xu et al., 2018). However, the biggest drawback
of these NCs is the high density, which hugely restricts their
practical application.

In recent years, owing to the lightweight, unique tube structure
and excellent dielectric loss, carbon nanotubes (CNTs) were
used as substrate to construct the CNTs-based for designing
the ideal MAs (Chen et al., 2015; Wang et al., 2018). Examples
include Fe/CNTs (Che et al., 2004), ZnFe2O4/CNTs (Khabouri
et al., 2015), and Fe/Co/Ni/CNTs (Wen et al., 2011), which were
demonstrated to display very outstanding MAPs. Generally, the
previously designed core@shell structure CNTs-based NCs were
mainly composed of CNTs as a shell and different categories of
magnetic NPs as a core (Lv et al., 2008; Weissker et al., 2010).
However, the magnetic properties and magnetic loss abilities for
these kinds of CNTs-based NCs are hugely limited and cannot
be well modulated due to the magnetic NPs acting as the core,
and the low encapsulation of magnetic NPs (Pawar et al., 2019;
Long et al., 2020). Therefore, constructing the reverse core@shell
structure magnetic CNTs-based NCs, in which magnetic NPs
serve as the shell and CNTs as the core, is an effective way to
overcome these problems (Wang et al., 2012; Li et al., 2017).

Furthermore, the recent results indicated that the outstanding
properties of graphene (G) and the designed G-based could
provide many more interfaces, which were conducive to
improve MAPs (Qu et al., 2016; Wang et al., 2019). Considering
these aspects, in this article, we designed and synthesized
magnetic CNTs/graphene oxide (GO) NCs by a one-step
hydrothermal method. By changing the Co:Fe molar ratio,
different compositions of magnetic NPs/CNTs/GO NCs
could be selectively produced. The obtained results showed
that the as-prepared magnetic CNTs/GO NCs displayed
very excellent MAPs.

EXPERIMENTAL

Synthesis of Magnetic CNTs/GO NCs
Similarly to the previously reported experimental method shown
in Figure 1 (Wu et al., 2020), 80 mg of GO was prepared by
a modified Hummers method (Hummers and Offeman, 1958).
The prepared GO was added in 40 mL deionized water and

ultrasonicated for 30 min at room temperature (RT). Next,
40 mg of hydroxylated CNTs were ultrasonically dispersed into
the GO solution for another 30 min to obtain the GO/CNTs
substrate solution. Then, the solution of Co2+ and Fe3+ was
obtained by ultrasonic dissolving C4H6CoO4•4H2O (1 mmol)
and FeCl3•6H2O (1 mmol) into a 30 mL ethylene glycol
solution. Subsequently, the resulting Co2+ and Fe3+ solution
was dissolved into GO/CNTs substrate solution by stirred for
ca. 60 min. Finally, urea (0.9 g) were thoroughly dispersed into
the mixed solution for another 5 min. The final solution was
transferred into a 100 mL Teflon-lined stainless steel autoclave
and heated at 200◦C for 24 h and left to cool to RT. The
synthesized magnetic CNTs/GO NCs were washed several times
and magnetically centrifuged. The obtained sample was left to
dry. The experimental conditions were kept the same, with the
exception of 2 and 3 mmol of FeCl3•6H2O, which were used as
the Fe source in the synthesis of magnetic NPs/CNTs/GO NCs to
control compositions of the sample. The samples were denoted as
S1, S2, and S3 for easy description, respectively.

Characterization and Measurement
The phases and microstructures of the as-prepared magnetic
CNTs/GO NCs were characterized by an X-ray powder
diffractometer (XRD) (model Smart Lab, Rigaku), Raman
spectroscopy (Jobin-Yvon Labram HR800), Thermal
gravity analysis (TGA) (Netzsch Sta 449F3), transmission
electron microscope (TEM) (model Tecnai-G20), and X-ray
photoelectron spectroscopy (XPS) (model Escalab 250Xi,
Thermo Fisher Scientific). 30 wt% of the obtained samples
were mixed with wax and pressed into toroidal shaped samples
(Rout : 7.0 mm, Rin: 3.0 mm), respectively, to investigate the
EM properties and MAPs. The as-prepared composites were
measured by a vector network analyzer (Agilent E8363B) in the
frequency region of 2–18 GHz.

RESULTS AND DISCUSSION

Figure 2 presents the XRD patterns and Raman spectra of the
as-prepared magnetic CNTs/GO NCs. Figure 2A shows that all
the as-prepared samples display similar XRD patterns, pointing
to the same category of sample. The characteristic peaks at
30.08◦, 35.44◦, 43.06◦, 53.44◦, 56.97◦ and 62.59◦ corresponding
to (220), (311), (400), (422), (511), and (440) crystal planes are
consistent with the standard XRD patterns of spinel CoFe2O4
(JCPDS: 22-1086). In comparison, one peak at 32.6◦ can be
observed clearly over S1 and S2, assigned to (104) crystal planes
of CoCO3 (JCPDS: 78-0209). However, this peak cannot be
seen over sample S3. The comparison results reveal that the
obtained samples evolve from CoCO3 to CoxFe3−xO4 when the
amount of Fe source increases from 1 mmol to 3 mmol. In
confirmation of the results, the experimental conditions were
kept the same, with the exception of 5 mmol FeCl3•6H2O,
which was used as the Fe source to produce the sample, S4
for easy description. As shown in Figure 2A, the XRD pattern
indicates that the phase of CoCO3 cannot be observed over the as-
prepared S4, which is consistent with our previous reported result
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FIGURE 1 | Schematic illustration for the synthesis process of the as-prepared magnetic CNTs/GO NCs.

FIGURE 2 | (A) XRD patterns, and (B) Raman spectra of the as-prepared samples.

(Wu et al., 2020). Moreover, consistent with the GO/CNT-Fe3O4
NCs reported elsewhere (Wang et al., 2014), the characteristic
diffraction peaks for GO and CNTs cannot be seen, which should
be attributed to the uniform dispersion of CoxFe3−xO4 NPs
on the surface of CNTs/GO. The existence of carbon materials
can be confirmed by Raman spectra. As shown in Figure 2B,
the obtained magnetic CNTs/GO NCs show three evident peaks
located at 1347 cm−1, 1586 cm−1, and 2694 cm−1, respectively.
These peaks can correspond to the D band, G band and 2D
band of carbon material, respectively. It is well-known that the
D band originates from the sp3 defect/disorder in the graphitic
structure, the G band is indicative of a high crystallinity graphitic
layer, and the 2D band is excited by a double-resonant Raman
process (Ritter et al., 2006; Popov and Lambin, 2013). Based on
the obtained results, we can confirm the existence of GO and
CNTs in the obtained NCs.

Figure 3 shows the typical TGA curves and XPS spectra of as-
prepared samples. As shown in Figure 3A, it can be seen that
the obtained S2 and S4 samples present the evident weight loss
under air atmosphere in the temperature range of 240–620◦C.
Based on the XRD results, the mass loss can mainly be ascribed
to the thermal decomposition of GO and CNTs, and the residual
substances should be assigned to CoxFe3−xO4 NPs. The TGA
results indicate that the CoxFe3−xO4 content in the obtained S2
and S4 samples is 18.4% and 30.4%, respectively. To confirm the
composition of the obtained samples, Figure 3B provides their
XPS spectra. It can be deduced that all the obtained NCs have four
peaks located at 284, 530, 712, and 781 eV, respectively. Further,
these peaks can be assigned to C 1s, O 1s, Fe 2p, and Co 2p.

To obtain the chemical valence states of Fe and Co, Figure 4A
provides the high-resolution XPS spectra of Fe 2p. Four peaks,
which are at ca. 711.2, 719.3, 724.6, and 731.4 eV, respectively,
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FIGURE 3 | (A) TGA curves, and (B) XPS spectra of the obtained samples.

FIGURE 4 | High resolution XPS spectra of (A) Fe 2p, and (B) Co 2p peaks for the as-prepared samples.

can be observed. Among these peaks, 711.2 and 724.6 eV can
be assigned to the Fe 2p3/2 and Fe 2p1/2, while the other peaks
correspond to the satellite peaks of Fe 2p3/2 and Fe 2p1/2.
Similarly to the previous result (Yamashita and Hayes, 2008), the
obtained result suggests the presence of Fe3+ in the obtained

samples. As indicated in Figure 4B, the Co 2p high-resolution
spectra also display four evident peaks. The peaks located at
780.9 and 796.6 eV originate from Co 2p3/2 and Co 2p1/2, and
the peaks at 786.8 and 803.3 eV are the satellite peaks of Co
2p3/2 and Co 2p1/2, which indicate the existence of Co2+ ions
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FIGURE 5 | TEM images of (a,b) S1, and (c,d) S2, respectively.

(Bennet et al., 2016). In general, the obtained XPS results are
consistent with their XRD patterns.

Figure 5 provides the morphologies of the as-prepared S1
and S2. As shown in Figure 5a,b it can be observed that larger
quantities of CoxFe3−xO4 and CoCO3 NPs attached on the
surface of GO and CNTs, similarly to the reported GO/CNT-
Fe3O4 NCs (Wang et al., 2014). A closer TEM observation
indicates that the NPs, CNTs, and GO nanosheets are well
connected with each other to form a good three dimensional
(3D) hierarchical networks structure. In the same manner as S1,
as displayed in Figures 5c,d, the obtained S2 consists of large
numbers of NPs, CNTs and paper-like GO, which presents a
typical structure of 3D hierarchical networks. Combined with
the XRD and XPS results, the conclusion suggests that the
as-prepared S1 and S2 are 3D hierarchical networks structure
of CoCO3-CoxFe3−xO4/CNTs/GO quaternary NCs. Equally,
the TEM investigation of S3 and S4 (as presented in Figure 6)
shows that they are composed of CoxFe3−xO4 NPs with a
relatively uniform size, CNTs and GO nanosheets, which bind
together to establish the structure of 3D hierarchical networks.
Unlike S1 and S2, the XRD, XPS and TEM results demonstrate
that the as-prepared S3 and S4 are 3D hierarchical networks
structure of CoxFe3−xO4/CNTs/GO ternary NCs. Generally,
with the Co:Fe increasing from 1:1 to 1:5, it is discovered
that the prepared samples gradually undergo the transition
from CoCO3-CoxFe3−xO4/CNTs/GO quaternary NCs to
CoxFe3−xO4/CNTs/GO ternary NCs, which is in agreement with
our reported results (Wu et al., 2020). Compared to the binary
NCs such as CoxFe3−xO4/CNTs and CoxFe3−xO4/GO, it is well

recognized that the formed CoCO3-CoxFe3−xO4/CNTs/GO
quaternary NCs and CoxFe3−xO4/CNTs/GO ternary NCs can
provide many more interface contacts. Further, the generated
3D hierarchical networks structure of our designed magnetic
CNTs/GO NCs can provide a double loss mechanism and synergy
effect among them, which is conducive to the attenuation of the
EM wave. Generally, based on the previously reported papers
and our obtained results (Lu et al., 2018; Shi et al., 2018), one
can find that CoCO3 will easily form under the condition of
the existence of urea and a small quantity of Fe source. With
the increasing amounts of Fe source, much more Co2+ will
couple with Fe3+ to generate the CoxFe3−xO4. Therefore, the
obtained S2 should display a much higher content of CNTs/GO
compared to S1. Moreover, with the formation of CoxFe3−xO4
with large quantities, the obtained S3 has a larger CoxFe3−xO4
content compared to S2.

It is well known that the value of minimum reflection loss
(RLmin) and its corresponding frequency bandwidth (FBcor), with
the reflection loss (RL) values lower than −10 dB (90% EM
wave absorption) are the important characteristic for measuring
high performance MAs (Ye et al., 2018). Further, it is very
desirable that MAs can simultaneously have a low RLmin and
large FBcor values. To investigate their MAPs, the values of
RL were calculated based on the measured EM parameters and
transmission line theory (Yusoff et al., 2002):

Zin = Z0

√
µ

ε
tanh

(
j
2πfd
√

µε

c

)
(1)
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FIGURE 6 | TEM images of (a,b) S3, and (c,d) S4, respectively.

RL = 20 log
∣∣∣∣Zin − Z0

Zin + Z0

∣∣∣∣ (2)

Where f is the frequency of the EM wave, d is the thickness
of absorber, c is the velocity of light, Z0 is the impedance of air,
and Zin is the input impedance of absorber. Figure 7 provides
the RL curves of S1, S2, and S3. As shown in Figures 7A,B, the
RLmin and large FBcor values for S1 are −54.69 dB at 11.08 GHz
with the matching thickness (dm) value of 8.57 mm and 2.36 GHz.
The as-prepared S2 presents the RLmin value of −63.99 dB at
14.96 GHz with the dm value of 6.60 mm (Figure 7C), and the
FBcor value of 2.48 GHz (Figure 7D), respectively. Equally, as
shown in Figures 7E,F, one can find that the RLmin value for S3
is ca. −63.36 dB at 13.12 GHz with the dm value of 7.95 mm,
and its FBcor value is 2.68 GHz. Moreover, the corresponding
maximum absorption bandwidths (ABmax) with RL < −10 dB
for S1, S2, and S3 (as provided in Figure 8) are 2.60 GHz with the
dm value of 7.69 mm, 2.72 GHz with the dm value of 6.00 mm,
and 3.08 GHz with the dm value of 6.33 mm, respectively.
In general, the designed magnetic CNTs/GO NCs display very
outstanding MAPs. The as-prepared S3 exhibits the superior
comprehensive MAPs compared to S1 and S2. As summarized in
Figure 9, the proposed magnetic CNTs/GO NCs present excellent
comprehensive MAPs compared to the representative related
NCs reported previously (Li et al., 2015; Yang et al., 2016; Zhang
et al., 2016; Zhang K.C. et al., 2017; Zhang S. et al., 2017; Ren
et al., 2018; Shu et al., 2018a,b; Hu et al., 2019; Lu et al., 2019;
Xu et al., 2019).

To effectively understand their MAPs, Figure 10 gives their
complex permittivity

(
ε = ε′ − jε′′

)
and complex permeability

(
µ = µ′ − jµ′′

)
. As shown in Figures 10A,B, besides the shift

of peak at ca. 13 GHz, the as-prepared samples present
the similar ε′ and ε′′ variation tendency in the frequency
region owing to the same categories of samples. The complex
permittivity exhibits several resonant peaks in the whole
frequency range, indicating the multiple relaxation processes
(Huang et al., 2019). Furthermore, the ε′ and ε′′ values of
samples present the decreased tendency with the frequency
increasing from 2 to 18 GHz, which can be explained by
the Debye theory (Wang et al., 2015). Overall, the obtained
S2 has larger values of ε′ and ε′′ compared to S1 and S3,
which can be ascribed to the highest content of CNTs/GO
in the as-prepared S2. According to the previous result
(Li et al., 2017), the ε′ and ε′′ values could be effectively
enhanced by increasing the content of CNTs. The obtained
S3 presents the lowest values of ε′ and ε′′, which should
be ascribed to the gradual formation of CoxFe3−xO4 with
large quantities in NCs resulting in the decreasing content of
CNTs/GO. Figures 10C,D present the µ′ and µ′′ values of
the obtained samples. Generally, it can be observed that the
obtained samples exhibit the gradually growing µ′ and µ′′

values with increased addition of Fe sources, which can be
related to the enhanced content of CoxFe3−xO4 NPs in the
NCs. Figure 11 provides the dielectric loss (tan δE=ε′′

/
ε′) and

magnetic capabilities (tan δm=µ′′
/
µ′). Overall, the as-prepared

magnetic CNTs/GO NCs display much higher tan δEvalues than
those of tan δm, which indicates that the attenuation of wave
EM mainly originates from dielectric loss (Feng et al., 2020;
Li et al., 2020). Moreover, the obtained S2 displays larger
values of tan δE compared to S1 and S3. Further, the large
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FIGURE 7 | 3D color RL curves and their corresponding RLmin plots of (A,B) S1, (C,D) S2, and (E,F) S3.

tan δm values of S3 are higher than those of S1 and S2.
The difference in dielectric loss and magnetic loss abilities
should be related to the different CNTs/GO and magnetic
CoxFe3−xO4 NPs contents.

Based on the obtained EM parameters, RL curves and the
previously reported mechanisms for the interpretation of the
good MAPs (Liu et al., 2012, 2020), the excellent MAPs of
the as-prepared magnetic CNTs/GO NCs can be explained by
the geometrical effect. For this model, the values of dm and

peak frequency (fm) should satisfy the 1/4 wavelength equation
(Liu et al., 2020):

dm = nc
/

4fm
√
|µ| |ε| (n = 1, 3, 5 · · · ) (3)

Figure 12 provides their comparison results between the
experimental value of dexp

m (obtaining directly from their RL
curves) and their theoretical curves of dsimm [plotting by the
formula (3)]. One can find that the scattered dots of dexp

m land on
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FIGURE 8 | Typical RL curves versus frequency plots for (A) S1, (B) S2, and (C) S3, respectively.

FIGURE 9 | Comparison results of MAPs with the representative NCs reported in recent papers.

the theoretical curves of dsimm . Consistent with the CoNi@PRM-
NC, ZnFe2O4@C, and CNTs@MoS2 reported elsewhere (Gao
et al., 2019; Yan et al., 2019; Wang et al., 2020), the agreement
between the experimental and theoretical values suggests the
cancelation effect of reflected EM waves and a strong EM
wave attenuation.

Based on the previous models and our obtained results
(Wang et al., 2014; Shu et al., 2018a), as depicted in Figure 13,
as for our designed magnetic CNTs/GO NCs, the possible
paths for the EM wave attenuation are mainly attributed to
the following facts: (i) the 3D hierarchical networks structure
results in the multiple reflections and/or scattering of the EM
wave (Figure 13A), which plays a significant role in the EM

wave attenuation; (ii) many more interface contacts among
magnetic NPs, CNTs, and GO nanosheets (Figure 13B) induce
the formation of interface polarization with large quantities,
which can effectively dissipate the energy of the incident EM
wave; (iii) the designed NCs consisted of dielectric substances and
magnetic NPs (Figure 13C), which can simultaneously provide
the dielectric and magnetic loss mechanism. The excellent
synergistic effect between them further improves the attenuation
of the EM wave; (iv) the high conductivity of GO/CNT and
a large number of defects and functional groups existing on
CNTs (Figure 13B) and GO (Figure 13D) can generate massive
electrons, defect dipoles and interface polarizations, which are
also conducive of the dissipation of the EM wave.
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FIGURE 10 | EM parameters for the as-prepared samples: (A,B) complex permittivity, and (C,D) complex permeability.

FIGURE 11 | Frequency dependence (A) dielectric loss tangent, and (B) magnetic loss tangent of the as-prepared samples.
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FIGURE 12 | Comparison results between the calculated and experimental matching thicknesses for (A) S1, (B) S2, and (C) S3.

FIGURE 13 | Schematic illustration of possible EM wave absorption avenues of magnetic CNTs/GO NCs. (A,B) Multiple reflections, (C) dielectric and magnetic loss,
and (D) defect dipole and interface polarization.

CONCLUSION

In summary, we proposed a one-step hydrothermal method
to selectively synthesize different compositions of magnetic
CNTs/GO NCs such as CoCO3-CoxFe3−xO4/CNTs/GO
quaternary NCs and CoxFe3−xO4/CNTs/GO ternary NCs. The
TEM investigation indicated that the designed NC consisted of

CoCO3-CoxFe3−xO4 NPs, CNTs, and GO nanosheets, which
were well bound together to form the good 3D hierarchical
networks structure. Owing to the construction of many more
interface contacts among magnetic NPs, CNTs, and GO
nanosheets, an excellent synergistic effect between dielectric and
magnetic loss substances, the as-prepared magnetic CNTs/GO
NCs presented very extraordinary MAPs. The RLmin and
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FBcor values for the as-prepared samples were ca. −54.69 dB
and 2.36 GHz, −63.99 dB and 2.48 GHz, −63.36 dB and
2.68 GHz, respectively. Moreover, owing to their low cost,
lightweight and high stability, the proposed 3D hierarchical
networks structures of magnetic GO/CNTs NCs exhibit very
outstanding comprehensive MAPs, which may be used as
promising candidates for high performance MAs and are very
much worth further study.
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