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Ce2(Zr0.94Sn0.06)3(MoO4)9 (CZSM) ceramics were synthesized via a traditional

solid-state method. The effects of Sn-substitution on phase composition, microstructure,

and microwave dielectric properties as a function of sintering temperature were

discussed. The XRD results indicated that all the samples exhibited a single phase.

The chemical bonds of CZSM ceramics were calculated based on P-V-L theory, which

could be used to evaluate the relationship between structure and microwave dielectric

properties. The tendency of dielectric constant was depended on the theoretical

dielectric polarizability and bond ionicity. Moreover, the improvement of Q·f value was

ascribed to the increase of packing fraction. The reduced τf value could be explained

by decrease of the bond energy, enhanced the co-efficient of thermal expansion and

increase of bond valence (VZr(Sn)). The complex permittivity values were obtained from

infrared reflectivity spectra. The dielectric permittivity and loss were 10.92 and 3.08 ×
10−4, respectively, which agreed well with the measured value. Typically, the optimal

microwave dielectric properties of εr = 10.35, Q·f = 59,660 GHz (at 9.70 GHz), and τf

= −7.52 ppm/◦C were achieved in CZSM ceramics sintered at 800◦C for 6 h.

Keywords: Ce2(Zr0.94Sn0.06)3(MoO4)9, low-temperature sintering, microwave dielectric properties, chemical bonds
theory of complex crystals, infrared spectra

INTRODUCTION

Owing to the characteristics of light weight, low cost, and high performance, the microwave
dielectric ceramics have been widely used as filters, waveguides, resonators, substrates, and
waveguides (Cava, 2001; Reaney and Iddles, 2006; Li et al., 2018; Chen et al., 2019; Cheng et al., 2019;
Wu et al., 2019). Currently, 5th generationmobile communication systems have received increasing
attention (Zhou et al., 2017; Pang and Zhou, 2019; Bafrooei et al., 2020; Lin et al., 2020). To meet
the microwave devices applied at millimeter wave, new materials and technologies are required. As
a new ceramic fabrication technology, the low temperature co-firing ceramics (LTCC) technology
have been intensively studied, it provide the platform for fabrication of three-dimensional ceramic
modules (Yu et al., 2015; Sebastian et al., 2016; Guo et al., 2019; Hsiang et al., 2019; Song et al., 2020).
Materials in this discipline require a low sintering temperature to co-fire with electrode material
and suitable properties: a low dielectric constant (εr) to avoid the signal delay, a high quality factor
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(Q·f ) for better selectivity at higher frequencies and a near-
zero temperature coefficient of resonant frequency (τf ) for the
frequency stability (Song et al., 2018; Lin et al., 2020). Therefore,
it is essential to develop the microwave materials with low
permittivity and high Q·f value.

Recently, Mo-based dielectric ceramics have been widely
reported owing to low sintering temperature (<960◦C) and good
microwave dielectric properties (Choi et al., 2007; Pang et al.,
2011; Surjith and Ratheesh, 2013; Zhang et al., 2015, 2019; Liu
and Zuo, 2017, 2018; Tao et al., 2019; Xing et al., 2019; Zhang and
Wu, 2019; Zheng et al., 2020). Among these excellent materials,
the Ce2Zr3(MoO4)9 ceramic was regarded as candidate for LTCC
materials applications due to low sintering temperature and near-
zero τf value (Tao et al., 2019). However, the Ce2Zr3(MoO4)9
ceramics exhibited a higher dielectric losses, some strategies
should be adopted in this paper. A large of studies for improving
microwave dielectric properties have been carried out via Sn4+

ions substitution (Yang et al., 2009; Ma et al., 2013; Li et al., 2019).
For instance, when x value increased from 0.0 to 0.6, the quality
factor of Ca(Sn1−xSix)O3 (x = 0.5–1.0) ceramics increased
from 16,000 to 63,000 GHz (Ma et al., 2013). The optimal
microwave dielectric properties of Mg2(Ti0.8Sn0.2)O4 ceramics
with εr = 12.18, Q·f = 170,130 GHz, and τf = −53.1 ppm/◦C
(Li et al., 2019). Thus, Sn4+ ions substitution was taken to
improve Q·f value of Ce2Zr3(MoO4)9 ceramics in this work. The
Ce2(Zr0.94Sn0.06)3(MoO4)9 (CZSM) ceramics were successfully
prepared. The phase composition, sintering characteristics,
microstructure, and dielectric properties of CZSM ceramics were
investigated scientifically. Infrared reflectivity spectra (IR) and
chemical bonds theory of complex crystals were adopted as
useful tools to analyze the effect of intrinsic factor on microwave
dielectric properties of CZSM ceramics.

EXPERIMENTAL

The reagent grade CeO2 (99.9%, Macklin, China), ZrO2 (99.99%,
Macklin, China), SnO2 (99.95%, Aladdin, China), and MoO3

(99.95%, Aladdin, China) powders were used to fabricate CZSM
ceramics by the traditional solid-state method. Based on the
chemical formula, the raw materials were mixed by zirconia
balls for 24 h with absolute ethanol as media. After drying at a
temperature 80◦C, the slurries were calcined at 700◦C for 2 h.
Then, the pre-sintered powders were crushed and re-milled for
24 h. Subsequently, 12 wt.% PVA added to the mixture, and the
powders were pressed into pellets (10mm in diameter and 6mm
in height). Finally, all the samples were sintered at 650–850◦C for
6 h in air.

XRD was applied to examine the phase compositions of the
sintered samples with Cu Kα radiation (D8 Advance, Bruker
Co., Germany). The structure parameters and cell volume were
obtained from refinement of XRD data using FullProf program.
The microstructures of sintered samples were observed using
SEM (FEI Co., United States) coupled with EDS. The εr value
at microwave frequencies (13–15 GHz) and the Q·f value at
microwave frequencies (9–11 GHz) were measured using the
network analyzer (N5234A, Agilent Co., USA) (Hakki and

Coleman, 1960; Courtney, 1970). The τf value was calculated
using Equation (1):

τ f =
f2 − f1

f1(T2 − T1)
× 106(ppm/◦C) (1)

where f1 and f2 are the resonant frequencies at the measuring
temperatures T1 (25◦C) and T2 (85◦C), respectively. The
apparent density was measured via the Archimedes method, and
the theoretical density can be obtained through Equation (2).

ρtheory=
ZA

VcNA
(2)

where A, Z, and NA are the atomic weight, number of atom in
unit cell and volume of unit cell, respectively. The relative density
was calculated by Equation (3):

ρrelative=
ρapparent

ρtheory
× 100% (3)

RESULTS AND DISCUSSION

Figure 1 presented the XRD patterns of CZSM ceramics sintered
between 650–850◦C. It was observed that all of diffraction
patterns match well with the Pr2Zr3(MoO4)9 (PDF#51-1851)
phase, with no secondary phase detected. It indicated that all
of sintered samples formed single phase solid solution, which
belongs to trigonal system with R-3c (167) space group. To
determinate its structure, refinement of the XRD data were
conducted using FullProf program with Rietveld’s method. The
Nd2Zr3(MoO4)9 (ICSD File No. 92600) was used as starting

FIGURE 1 | XRD patterns of Ce2(Zr0.94Sn0.06)3(MoO4)9 ceramics sintered

at 650–850◦C.
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FIGURE 2 | Rietveld refinement of Ce2(Zr0.94Sn0.06)3(MoO4)9 ceramics sintered at 650–850◦C.

structural model. The refinement pattern of samples sintered
at range of 650–850◦C, as shown in Figure 2. The main
crystallographic parameters and reliability factors of Rwp, Rp,
and χ2 for samples are summarized in Table 1. The Rwp, Rp,
and χ2 values were found to be in the range of 9.5–10.9, 7.2–
8.6%, and 1.8–2.5, respectively. The value χ2 were smaller to
ensure the reliability of refinement. With the increasing sintering
temperature, the a and b gradually increased from 9.8251 to
9.8269 Å, and c increased from 58.8278 to 58.8434 Å, which
resulted in Vm increased from 4918.02 Å3 at 650◦C to 4921.14
Å3 at 800◦C. Figure 3 presented crystal structure of CZSM

ceramics. It can be seen that the Ce, Zr(1), Zr(2), Mo(1), and
Mo(2) atoms are nearest neighbors to 9, 6, 6, 4, and 4 oxygen
atoms, respectively. The [CeO9] occupying the large cavities of
the structure, the [CeO9] and [ZrO6] were connected by [MoO4]
at the structure.

Figure 4 illustrated the curves of the apparent and relative
density of CZSM samples sintered at 650–850◦C. The apparent
densities increased from 3.50 g/cm3 to the maximum value of
3.90 g/cm3 with increasing sintering temperature. The relative
density have same tendency as apparent density, a high relative
density (>94%) was achieved at 750–850◦C. Typical SEM images
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TABLE 1 | The refinement parameters, theoretical densities and relative densities of Ce2(Zr0.94Sn0.06)3(MoO4)9 ceramics fired at 650–800◦C.

S.T. a = b (Å) c (Å) α = β (◦) γ (◦) Vm (Å3) Rp (%) Rwp (%) χ2

650 9.825 (1) 58.827 (8) 90 120 4918.0 (2) 8.60 10.90 2.51

700 9.826 (6) 58.844 (3) 90 120 4920.8 (4) 7.24 9.55 1.85

750 9.826 (9) 58.840 (3) 90 120 4920.7 (4) 8.31 10.40 2.18

800 9.827 (7) 58.840 (3) 90 120 4921.7 (3) 8.35 10.90 2.36

850 9.827 (0) 58.843 (4) 90 120 4921.1 (4) 7.64 9.91 2.04

S.T., Sintering Temperature.

Rp, reliability factor of patterns.

Rwp, the reliability factor of weighted patterns.

χ2, goodness of fit indicator = (Rwp/Rexp)
2.

FIGURE 3 | The schematic of the crystal structure for Ce2(Zr0.94Sn0.06)3(MoO4 )9 ceramics.

FIGURE 4 | Apparent and relative density of Ce2(Zr0.94Sn0.06)3(MoO4 )9
ceramics as a function of sintering temperature.

of CZSM ceramics sintered at different temperature were shown
in Figures 5A–E. Grain boundaries were evident in all the

samples, indicating that crystalline grains grew well in these
samples. Moreover, the grain size increased from 1.93 to 3.19µm
and the pores gradually decreased with the increase of sintering
temperature. The result of EDS about grain from samples
sintered at 800◦C was presented in Figure 5F. The ratio of Ce,
Zr, Sn, Mo, and O atom were 3.93, 6.56, 0.34, 18.50, and 70.67%,
respectively, which was corresponded to theoretical composition
of CZSM ceramic.

The curves of microwave dielectric properties for CZSM
samples were shown in Figure 6. The dielectric constant
(εr) increased and reached maximum value of 10.47 as the
temperature shifted from 650 to 750◦C, and then kept stable
with further increasing sintering temperature. In addition, the
tendency of the εr value was corresponded to the density when
sintering temperature at 650–800◦C, suggesting that dielectric
constant was closely related to the density in lower temperature.
As we all know, apart from the extrinsic factors like density
and phase composition, the εr also affected by the intrinsic
factors such as polarizability and bond ionicity (Bi et al.,
2018; Manan et al., 2018; Zhang et al., 2019). The XRD
result suggesting the single phase ceramics was formed. Thus,
the εr value of CZSM ceramics were mainly determined by
polarizability and bond ionicity when the sample was compact.
The theoretical dielectric polarizability (αtheo.) and observed
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FIGURE 5 | Typical SEM micrographs of Ce2(Zr0.94Sn0.06)3(MoO4)9 ceramics fired at (A) 650◦C, (B) 700◦C, (C) 750◦C, (D) 800◦C, (E) 850◦C, and (F) EDS analysis

about grain selected randomly from the sample sintered at 800◦C.

FIGURE 6 | Curves of microwave dielectric properties as a function of

sintering temperature for Ce2(Zr0.94Sn0.06)3(MoO4)9 ceramics in the

temperature range from 650 to 850◦C.

dielectric polarizability (αobs.) were calculated through Equations
(4) and (5), respectively.

αtheo.=α(Ce2(Zr0.94Sn0.06)3(MoO4)9) (4)

= 2α(Ce3+)+ 2.82α(Zr4+)+ 0.18α(Sn4+)+ 9α(Mo6+)+36α(O2+)

αobs. =
1

b
Vm

ε − 1

ε + 2
(5)

where α(Ce3+)= 6.15 Å3, α(Zr4+)= 3.25 Å3, α(Sn4+)= 2.83 Å3,
α(O2+) = 2.01 Å3 was reported by Shannon et al. and α(Mo6+)
= 3.28 Å3 is calculated by Choi et al. (Shannon, 1993; Choi et al.,
2007). Moreover, Vm is the molar volume and b is a constant
value (4π/3), respectively. The results were listed in Table S1.
The αtheo. value (123.85 Å3) lower than the Ce2Zr3(MoO4)9
ceramics (123.93 Å3), which could be attributed to the smaller
polarizability of Sn4+:α(Sn4+) = 2.83 Å3 < α(Zr4+) = 3.25 Å3

(Tao et al., 2019). Besides, the tendency of εr value was similar
to the αtheo. value and αobs. value, indicating that the reduced εr
value was strongly dependent on the decrease of polarizability.

Moreover, the quality factor(Q·f ) increased from 24,410 to
59,660 GHz, and then declined slightly with further increasing
sintering temperature, the maximum of the Q·f was 59,660
GHz at 800◦C. In general, the dielectric losses are composed of
intrinsic losses (lattice vibration) and extrinsic losses (grain size
and impure phase). The grain size showed upward tendency with
increasing sintering temperature, it was similar to the variation of
Q·f value. Therefore, the increased grain size was important for
improvement of the Q·f value (Yang et al., 2002, 2019; Ichinose
and Shimada, 2006). In order to investigate the effect of the
intrinsic factors, the packing fraction has been calculated by
Equation (6).

packing fraction(%) =
volume of the atoms in the cell

volume of unit cell
× Z (6)

where Z is the number of molecules per cell. Kim et al.
reported the effective ionic size (Kim et al., 2010). The
results indicated that the smaller ions size of Sn4+

(0.69 Å) substitution to Zr4+ (0.72 Å) lead to the
higher packing fraction (47.84 > 47.74%). Thus, the
improvement of Q·f value was ascribed to the increase
of packing fraction. Furthermore, it suggested that the
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Sn4+ ions substitution could improve the quality factor of
Ce2Zr3(MoO4)9 ceramics.

The temperature co-efficient of resonant frequency (τf ) of
CZSM ceramics sintered at different temperatures from 650 to
850◦C was shown in Figure 6. It can be seen that the saturation
value of τf =−7.52 ppm/◦Cwas obtained when sintered at 800◦C
and kept stable at 700–850◦C. The temperature coefficient of
resonant frequency was associated with bond valence (Yoon et al.,
2003; Cai et al., 2015). Therefore, the bond valence of [Zr(Sn)O6]
octahedra can be obtained by Equations (7) and (8).

Vi =
∑

j

vij (7)

vij = exp

[

(Rij − dij)

b

]

(8)

where Vij represent the sum of all the bond valences, Rij is the
bond valence parameter, dij is the length of the bond between
atoms i and j, and b is an constant equal to 0.37. The results of
bond valence were listed in Table S1. The bond valence (VZr(Sn))
increased from 8.92 to 9.17 with the Sn4+ substitution, and the
τf value correlated to the change of bond valence (VZr(Sn)) (Tao
et al., 2019). It indicated that the decline of τf value was related to
the increase of bond valence (VZr(Sn)).

Figure 7 showed the microwave dielectric properties of Mo-
based dielectric ceramics with low dielectric constant, and the
parameters were summarized in Table S2 (Choi et al., 2007;
Pang et al., 2011; Surjith and Ratheesh, 2013; Zhang et al., 2015,
2019; Liu and Zuo, 2017, 2018; Tao et al., 2019; Xing et al.,
2019; Zhang and Wu, 2019; Zheng et al., 2020). The CZSM
ceramics possessed excellent microwave dielectric properties and
low sintering temperature in this system. It suggests that they
have potential for exploitation in LTCC technology. Certainly,
it is necessary to study the relationship between structure and
microwave dielectric properties. Thus, the bond ionicity, lattice
energy, bond energy, and coefficients of thermal expansion were
calculated to investigate the relationships between chemical bond
and dielectric properties of the CZSM ceramic. Based on P-V-
L theory, the complex crystals CZSM were decomposed into the
sum of binary crystals as Equation (9) (Xue and Zhang, 1996; Wu
et al., 1998; Yang et al., 2019):

Ce2(Zr0.94Sn0.06)3(MoO4)9=Ce2Zr/Sn(1)Zr/Sn(2)2Mo(1)6Mo(2)3
(9)

O(1)6O(2)6O(3)6O(4)6O(5)6O(6)6
=Ce2/3 O(1)3 + Ce2/3 O(2)3 + Ce2/3 O(6)3
+ Zr/Sn(1)O(4)3 + Zr/Sn(2)O(3)3 + Zr/Sn(2)O(5)3
+Mo(1)3/2 O(1)3 +Mo(1)3/2 O(2)3 +Mo(1)3/2 O(3)3
+Mo(1)3/2 O(4)3 +Mo(2)3/2 O(5)3 +Mo(2)3/2 O(6)3

Equation (10) indicated that the dielectric constant can be
predicted by bond ionicity (Batsanov, 1982).

εr =
n2 − 1

1− fi
+ 1 (10)

where n is the refractive index. The bond ionicity were calculated
using the Equations (11)–(13) (Xue and Zhang, 1996; Wu et al.,
1998).

fi
µ =

(Cµ)2

(Eµ
g )

2 =
(Cµ)2

(Eµ

h
)2 + (Cµ)2

(11)

(Eµ

h
)2 =

39.74

(dµ)2.48
(12)

Cµ=14.4bµexp(−kµ
s r

µ
0 )

[

(Zµ
A)

∗

r
µ
0

− (n/m)
(Zµ

B )
∗

r
µ
0

]

(13)

kµ
s = (4kF/παB)

1/2 (14)

r
µ
0 =

1

2
dµ (15)

where E
µ
g is the average energy gap, and it can be separated

into homopolar Eµ

h
and heteropolar cµ parts. The exp(-kµ

s r
µ
0 ) is

Thomas-Fermi prescreening factor, and it was calculated through
Equations (14) and (15) (Levine, 1973). The fi value of CZSM
ceramics were shown in Figure 8, and the results were listed in
Table 2. Decreasing sequence of fi was fi (Ce-O)> fi (Zr/Sn-O)>
fi (Mo-O), the largest fi value of 85.64% was obtained in Ce-
O bond. Besides, the average of fi (Ce-O) value decreased from
85.18 to 85.14% with the Sn4+ doped shifted from 0 to 0.06. The
tendency of the εr value was consisted with the variation of fi
(Ce-O) value. It indicated that the reduced εr value was mainly
dominated by the degressive bond ioniticy of Ce-O bond.

The dielectric loss can be control by the binding ability
between cation and oxygen ion, high binding energy corresponds
to low intrinsic loss. Thus, lattice energy of CZSM ceramics can
be calculated by Equations (16)–(18) (Xue and Zhang, 1996; Wu
et al., 1998).

U =
∑

µ

(Uµ

bi
+ U

µ

bc
) (16)

U
µ

bi
= 1270

(m+ n)Zµ
+Z

µ
−

dµ
(1−

0.4

dµ
)f µi (17)

U
µ

bc
= 2100m

(Zµ
+)

1.64

(dµ)0.75
f µc (18)
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FIGURE 7 | (A) Quality factors (Q·f ) and (B) the temperature coefficient of resonant frequency (τf ) of Mo-based microwave dielectric ceramics with a low dielectric

constant.

TABLE 2 | Band ionicity fi , lattice energy U, bond energy E, and coefficient of

thermal expansion α of each bond for Ce2(Zr0.94Sn0.06)3(MoO4)9 ceramic sintered

at 800◦C.

Bond type Bond length(Å) fi (%) U (KJ/mol) α (10−6/K) E (KJ/mol)

Ce-O(1)1 × 1 2.4084 84.74 3,403 9.7584 426.7504

Ce-O(1)2 × 1 2.4091 84.74 3,402 9.7622 426.6264

Ce-O(1)3 × 1 2.4094 84.74 3,401 9.7660 426.5733

Ce-O(2)1 × 1 2.4595 85.03 3,343 9.9904 417.8840

Ce-O(2)2 × 1 2.4597 85.03 3,343 9.9904 417.8500

Ce-O(2)3 × 1 2.4602 85.03 3,342 9.9943 417.7651

Ce-O(6)1 × 1 2.5766 85.64 3,214 10.5185 398.8922

Ce-O(6)2 × 1 2.5767 85.64 3,214 10.5185 398.8768

Ce-O(6)3 × 1 2.5772 85.64 3,214 10.5185 398.7994

Zr(Sn)1-O(4) × 6 2.0525 79.13 10,892 3.3839 502.1278

Zr(Sn)2-O(3)1 × 1 2.1362 79.79 10,558 3.5912 482.4535

Zr(Sn)2-O(3)2 × 1 2.1366 79.79 10,557 3.5918 482.3632

Zr(Sn)2-O(3)3 × 1 2.1366 79.79 10,557 3.5918 482.3632

Zr(Sn)2-O(5)1 × 1 1.9073 77.82 11,524 3.0245 540.3540

Zr(Sn)2-O(5)2 × 1 1.9076 77.82 11,522 3.0256 540.2691

Zr(Sn)2-O(5)3 × 1 1.9081 77.82 11,520 3.0267 540.1275

Mo(1)-O(1) × 1 1.8771 73.92 41,554 −0.2702 550.2277

Mo(1)-O(2) × 1 1.9894 74.82 39,853 −0.1465 519.1678

Mo(1)-O(3) × 1 1.7323 72.53 43,949 −0.4282 596.2202

Mo(1)-O(4) × 1 1.8027 73.24 42,754 −0.3516 572.9363

Mo(2)-O(5) × 2 1.8211 73.42 42,452 −0.3315 567.1475

Mo(2)-O(6) × 2 1.7552 72.77 43,554 −0.4033 588.4414

Ce-Oavg. 2.4819 85.14 - 10.0908 414.4464

Zr-Oavg. 2.0373 78.97 - 3.3463 506.7248

Mo-Oavg. 1.8193 73.36 - −0.3333 568.7162

where the lattice energy U
µ

b
can be separated into covalent Uµ

bc

and ionic U
µ

bt
parts. According to Figure 9, the sequence of U

(Mo-O)>U (Zr/Sn-O)>U (Ce-O) suggested that Mo-O bond
play a vital role in enhancing the stability of ionic crystals.

What’s more, the τf should be considered for realistic
application of microwave dielectric ceramic. High bond energy

FIGURE 8 | Bond ionicity for Ce2(Zr0.94Sn0.06)3(MoO4)9 ceramics sintered at

800◦C.

could lead to a small absolute τf value. Hence, the bond energy
can be obtained by Equations (19)–(21) (Sanderson, 1968, 1971,
1983):

E
µ

b
= tcE

µ
c + tiE

µ
i (19)

E
µ
i =

33200

dµ
(20)
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FIGURE 9 | Lattice energy for Ce2(Zr0.94Sn0.06)3(MoO4)9 ceramics sintered at

800◦C.

Eµ
c =

rcA + rcB

dµ
(EA−AEB−B)

1/2 (21)

where rcA and rcB are the covalent radii of atom A and atom
B; ti and tc are ionic and covalent proportional coefficient of
an individual bond µ. The bond energy EA−A and EB−B can be
referred to handbook (Luo, 2007).What’s more, SA and SB are the
electronegativities of A and B atoms. Figure 10 illustrated bond
energy of different bond type for Ce2(Zr0.94Sn0.06)3(MoO4)9
ceramics. The bond energy of Mo-O bond was larger than
others, it suggested thatMo-O bond providedmajor contribution
to the structural stability of CZSM ceramics. Compared
with the Ce2Zr3(MoO4)9 ceramic, the bond energy of Mo-O
bond declined from 574.8383 to 568.7162 KJ/mol. Meanwhile,
the τf value was positively correlated with the change
of bond energy (EMo−O). It suggested that the downward
trend τf value could be explained by the decrease of bond
energy (EMo−O).

The τf value was negatively related to the coefficients of
thermal expansion, which can be obtained via Equation (22).
Thus, the coefficients of thermal expansion were calculated based
on P-V-L theory (Hakki and Coleman, 1960; Courtney, 1970;
Xing et al., 2019).

τf=− (
τε

2
+α) (22)

where τε is temperature coefficient of the dielectric constant. The
average values of Ce-O, Mo-O, and Zr/Sn-O bond were 10.0908
× 10−6 K−1, −0.3333 × 10−6 K−1 and 3.3463 × 10−6 K−1,
respectively. In addition, The Mo-O bonds had a positive effect
on τf value due to αMo−O value was negative. The αMo−O value
increased from −0.3575 × 10−6 K−1 to −0.3333 × 10−6 K−1

FIGURE 10 | Bond energy of different bond type for

Ce2(Zr0.94Sn0.06)3(MoO4)9 ceramics sintered at 800◦C.

FIGURE 11 | Measured (black line) and fitted (red circle) infrared reflectivity

spectra of Ce2(Zr0.94Sn0.06)3(MoO4 )9 ceramics sintered at 800◦C.

because of the Sn4+ substitution for Zr4+. The higher αMo−O

value result in large absolute value. Hence, the reduced τf value
was associated with enhanced the thermal expansion coefficient
(αMo−O).

IR reflectivity spectra of CZSM ceramics was exhibited in
Figure 11. Based on the classical harmonic oscillator model, the
infrared spectra were fitted with 24 internal modes, which were
listed in Table 3 (Petzelt and Kamba, 2003). ε∗ (ω) (the complex
dielectric permittivity) and R (ω) (the complex reflectivity)
were calculated by Equations (23) and (24) (Wakino et al.,
1986; Li et al., 2016; Tang et al., 2019; Guo et al., 2020).
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TABLE 3 | Phonon parameters obtained from the fitting of the infrared spectra of

Ce2(Zr0.94Sn0.06)3(MoO4)9 ceramic sintered at 800◦C.

Mode ε∞ = 2.74

ωoj ωpj γj 1εj

1 56.63 31.15 4.545 0.3030

2 73.45 53.33 29.307 0.5270

3 117.86 137.00 39.089 1.3500

4 156.39 260.30 22.011 2.7700

5 193.49 56.51 6.926 0.0853

6 214.31 111.57 25.332 0.2710

7 273.66 261.46 24.191 0.9130

8 291.63 86.48 11.651 0.0879

9 306.77 82.12 10.579 0.0717

10 316.51 38.61 4.485 0.0149

11 334.32 96.06 7.964 0.0826

12 350.69 64.43 8.166 0.0338

13 397.64 211.24 32.055 0.2820

14 424.12 161.49 24.722 0.1450

15 589.11 376.94 175.040 0.4090

16 678.33 280.36 51.634 0.1710

17 697.73 203.30 12.768 0.0849

18 734.27 377.97 21.214 0.2650

19 774.94 168.59 21.378 0.0473

20 809.94 197.95 19.772 0.0597

21 884.55 333.41 10.980 0.1420

22 896.15 184.03 18.700 0.0422

23 914.91 81.92 21.151 0.0080

24 954.88 142.99 10.245 0.0224

Furthermore, the tan δ (dielectric loss tangent) can be obtained
through Equation (25).

ε*(ω) = ε∞+
n

∑

j=1

ωpj
2

ωoj
2 − ω2 − jγjω

(23)

R(ω) =

∣

∣

∣

∣

∣

1−
√

ε∗(ω)

1+
√

ε∗(ω)

∣

∣

∣

∣

∣

2

(24)

tanδ =
ε′′

ε′
=

n
∑

j=1
1εj(γjω)/ω2

oj

ε∞ +
n
∑

j=1
1εj

(25)

where ε∞ is dielectric constant by electronic polarization, n is the
number of transverse phonon modes, ωpj, ωoj, and γj are plasma
frequency, transverse frequency and damping factors of the j-th
Lorentz oscillator, respectively.

FIGURE 12 | The real and imaginary parts of the complex permittivity for

Ce2(Zr0.94Sn0.06)3(MoO4)9 ceramics sintered at 800◦C (black points are

measured value at microwave region).

Figure 12 presented the complex permittivity of CZSM
ceramics sintered at 800◦C. The extrapolated dielectric
permittivity and loss were 10.92 and 3.08 × 10−4, respectively.
It can be seen that the calculated permittivity was slightly
higher than the measured permittivity, the measured
and calculated dielectric losses of CZSM ceramic were
comparable with the same order of magnitudes. Therefore,
the major dielectric contribution of the CZSM ceramics
was in microwave region, and related to the absorptions of
phonon oscillation.

CONCLUSION

Ce2(Zr0.94Sn0.06)3(MoO4)9 (CZSM) microwave dielectric
ceramics were successfully prepared. The XRD patterns
demonstrated that all samples displayed a single phase. The
SEM results indicated that nearly compact structure can be
obtained sintered at 750–850◦C. Subsequently, the dependence
of microwave dielectric properties on intrinsic factors was
evaluated based on P-V-L theory. The decrease of dielectric
constant was mainly dominated by the decline of polarizability
and bond ioniticy of Ce-O bond. The improvement of quality
factor was dependent on enhanced packing fraction. In
addition, the reduced temperature coefficient of resonant
frequency was related to the increase of thermal expansion
coefficient and decrease of bond energy (EMo−O). The complex
permittivity values were obtained by infrared spectra, which
agreed well with the measured value. The CZSM ceramic
sintered at 800◦C exhibited an optimum microwave dielectric
properties of εr = 10.35, Q·f = 59,660 GHz (at 9.70 GHz) and
τf =−7.52 ppm/◦C.
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