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Theoretical Design for the Non-Toxic
and Earth-Abundant Perovskite Solar
Cell Absorber Materials
Chunbao Feng*, Guanghui Feng, Qing Zhao, Shichang Li and Dengfeng Li*

School of Science, Chongqing University of Posts and Telecommunications, Chongqing, China

Though perovskite solar cells have good prospects, they also have some disadvantages,
especially the impact of Pb on the environment and the use of expensive elements, which
makes their production difficult to industrialize. Using first-principle density functional
theory, we have investigated the geometric structures, electronic structures, and optical
absorption coefficients of non-toxic and earth-abundant 1B-based perovskite solar cell
absorbers. Our results show that Cs2AgAuI6, a toxin-free and inexpensive AgAu-based
perovskite solar cell absorber, is suitable for use. It has a suitable HSE bandgap (1.289 eV)
and a sharp absorption coefficient (∼105 cm−1). Meanwhile, it is beneficial to the average
electron and hole effective masses are 0.346 and 0.316 m0 respectively. The phonon
spectra show that it is stable. Because the d-orbital energy of Cu is higher than those
of Ag and Au, CuAu-based perovskite is not stable. This can be seen from the phonon
spectra. Therefore, our calculations could provide strong evidence for the experimental
synthesis of lead-free and low-cost perovskite solar cell absorber materials.

Keywords: perovskite solar cell, lead-free, earth-abundant, first-principles calculation, high absorption coefficient

INTRODUCTION

In the space of<10 years, Perovskite solar cell (PSCs) material has gradually become a star material
in the field of solar photovoltaic conversion. It has excellent photoelectric conversion efficiency
(PCE), which has grown from 3.8 to 25.2% (Kojima et al., 2009; NREL Efficiency Chart Vol, 2019).
The structural formula of a perovskite solar cell is AMIVXVII

3. Nowadays, A can be not only a
small organic molecule [A1 = CH3NH

+
3 , CH(NH2)

+
2 ] but also a low-valent group-IA metal cation

(A2 = Cs+, Na+, and Rb+), MIV represents a divalent group-IVA metal cation (MIV = Pb2+,
Sn2+), and X is a halogen (X = Cl, Br, and I). This tremendous progress is because of its superior
optoelectronic properties: suitable band gaps, a high tolerance factor (Gao et al., 2019), long carrier
diffusion length (Stranks et al., 2013), low exciton binding energy (Lee et al., 2012; Burschka et al.,
2013), and balanced electron and hole mobility (Stoumpos et al., 2013; Ponseca et al., 2014). These
advantages make us more confident in researching and exploring perovskite solar cell materials.

Although the current perovskite solar cells have seen great success in theoretical research, there
are still some great challenges in their practical application and large-scale commercial production.
The first urgent problem to be solved is the stability of devices using perovskite material, especially
devices that are under high temperature or a humid environment. This may be due to the loose
chemical bonds between the organic cations and their inherent instability (Kulbak et al., 2015; Niu
et al., 2015; Sutton et al., 2016). Recently, studies have shown that partial replacement of MA by FA
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can significantly improve the thermal stability of hybrid
perovskite (Hu et al., 2014; Pellet et al., 2014; Binek et al., 2015).
Therefore, in this paper, we will use the element Cs to replace the
organic cation and research the various properties of the resulting
perovskite solar cell materials. The second is the use of Pb in
the perovskite materials, because it is a toxic element and is very
harmful to our living environment. Therefore, we need to replace
it but without affecting the photovoltaic conversion efficiency.
Many researchers have used Sn to replace Pb, but Sn2+ is easily
oxidized in air to Sn4+, and compared with lead-containing
perovskite solar cells, devices with Sn-based perovskite materials
have lower PCEs, e.g., that of MASnI3 is only about 6% and that
of CsSnI3 is only about 3.5% (Hao et al., 2014; Noel et al., 2014).
Therefore, researchers have considered converting two Pb2+ into
IB group (Ag+, Au +, and Cu+) and IIIA group (In3+, Bi3+, and
Ga3+) elements to keep the same valence number at MIV sites
(Du et al., 2017; Meng et al., 2017; Slavney et al., 2017; Volonakis
et al., 2017;Wei et al., 2017; Zhao et al., 2017) and design lead-free
halide double-perovskite A2M+M3+XVII

6 . This work provides us
with an idea to guide our exploration of inorganic non-toxic
halide double-perovskite solar cells.

Recently, research has focused on the non-toxic inorganic
mixed-valence double-perovskite solar cell absorption layer
material Cs2Au2I6 (Matsushita et al., 2005; Castro-Castro and
Guloy, 2010; Debbichi et al., 2018; Giorgi et al., 2018), where the
Au element has a mixed valency of +1 and +3 (Liu et al., 1999).
This material has a direct bandgap (∼1.3 eV) and good stability
and photoelectric conversion efficiency. However, a disadvantage
is that Au is an expensive metal element, so this material is
difficult to commercialize and industrialize.

In this paper, our results show that Cs2AgAuI6, a non-toxic
and inexpensive AgAu-based perovskite solar cell absorber, is
a suitable alternative. It has a suitable HSE bandgap (1.289 eV)
and a sharp absorption coefficient (∼105 cm−1). Meanwhile,
it is beneficial to the average effective masses of electron and
hole carriers, 0.346 and 0.316 m0, respectively. This is almost
the same as that of MAPbI3. The phonon spectra show that
it is stable. Because the d-orbital energy of Cu is higher than
those of Ag and Au, CuAu-based perovskite is not stable.
This can be seen from the phonon spectra. Therefore, our
calculations could provide strong evidence for the experimental
synthesis of lead-free and low-cost perovskite solar cell
absorber materials.

COMPUTATIONAL METHODS

Our first-principles calculations were performed on the basis of
density-functional theory (DFT)methods by using the ViennaAb
Initio Simulation Package (VASP) code (Kresse and Furthmüller,
1996) and the standard frozen-core projector augmented-wave
(PAW) methods (Kresse and Joubert, 1999). In the calculation,
we used the generalized gradient approximation of Perdew,
Burke, and Ernzerhof (PBE) (Perdew et al., 1996) as the
exchange-correlation functional to optimize the structures and
calculate band gaps. In order to reduce the self-interaction error

of DFT in bandgap calculation, we used the Heyd-Scuseria-
Ernzerhof (HSE) of the standard hybrid density functional with
25% exact Fock exchange (Krukau et al., 2006). The cutoff
energy for the plane wave function was 400 eV. The structures
are relaxed until total energies are converged to 10−8 eV, and
the k-point meshes have a grid spacing of 2π × 0.02 Å−1.
The force on all atoms was <3 × 10−3 eV·Å−1. The 6 × 6
× 6 k-grid was used for density of states (DOS) and optical
absorption coefficient calculation of halide perovskite. For the
calculation of the phonon spectrum, the finite difference method
was implemented in Phonopy code (Togo and Tanaka, 2015), and
we constructed a 2 × 2 × 2 supercell of perovskite structures.
The force constant was obtained by considering phonon-phonon
interaction with the calculation of VASP. The phonon spectrum
was acquired by processing the data in Phonopy. MD simulations
of a 3 × 3 × 3 supercell with 270 atoms were implemented at
room temperature (300K) with VASP code using the canonical
ensemble with a Nose–Hoover thermostat (Hoover, 1985) under
an energy cutoff of 300 eV with 1,000 steps under a time step of
1.0 fs. The properties of the electronic structure and optics were
obtained using the VASPKIT program (Wang et al., 2019).

RESULTS AND DISCUSSION

Firstly, we established the most stable crystal structure. Here,
we choose ABX3 of four different crystal structures belonging
to the space groups Pm-3m, I4/mmm, P63/mmc, and Pnma,
respectively. The different total energies referring to the most
stable configuration (I4/mmm) are 0.376, 0, 0.671, and 0.110 eV.
In our DFT calculation, we thus use the structure with the
I4/mmm space group, shown in Figure 1a. The most stable one,
with the cell parameter 8.647 Å, is consistent with the previous
experimental result (Debbichi et al., 2018).

Then, we established a suitable double perovskite crystal
structure. We see that Cs2M+M3+XVII

6 has four different crystal
structures because there are four different cation sites in Au-
based perovskite. In our calculation, the most stable ones can
be seen in Figures 1b,c. Both of them have the same perovskite
structure symmetry and it should be easier to form for junctions
with low non-radiative recombination.

The Goldschmidt tolerance factor (t) can be used as an
empirical index to evaluate the structural stability of the
perovskite (Kieslich et al., 2015; Shi et al., 2016; Travis et al.,
2016), and for AMIVXVII

3 perovskite, t is defined as:

t =
RA + RX√
2 (RM + RX)

where RA, RM , and RX represent the effective ion radii of the
A, M site cation and X site anion, respectively. For double
perovskite A2M+M3+XVII

6, the Goldschmidt tolerance factor t

for the M site RM = R+M+R3+M
2 . Generally speaking, the lower

the symmetry index of the structure, the lower the Goldschmidt
tolerance factor t. When t = 1, it is an ideal cubic perovskite
structure; the range 0.9 ≤ t ≤ 1 is generally considered to be
very suitable of perovskite, indicating the possibility of a cubic
structure; in the range of 0.71 ≤ t ≤ 0.9, it indicates that
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FIGURE 1 | 1B-based perovskite solar cell absorber crystal structures:
(a) Cs2Au(I)Au(III)I6, (b) Cs2Ag(I)Au(III)I6, (c) Cs2Cu(I)Au(III)I6: side view;
(d) Cs2Au(I)Au(III)I6, (e) Cs2Ag(I)Au(III)I6, (f) Cs2Cu(I)Au(III)I6: top view. Yellow,
gray, and blue shapes represent Au, Ag, and Cu atoms, respectively.
Visualization was performed with VESTA (Momma and Izumi, 2008).

due to the inclination of the MX6 octahedron, a rhombohedral
or orthorhombic structure may be formed; when t < 0.71, it
will change the unstable perovskite structure. In our results,
the tolerance factor is 0.827, 0.906, and 0.932 for Cs2Au2I6,
Cs2AgAuI6, and Cs2CuAuI6, respectively. This means that it is
possible to form the cubic perovskite structure for all of them.
This is consistent with our calculation, as shown in Figure 1. In
addition, we performed ab initio molecular dynamics (AIMD)
simulations to evaluate the thermal stability of Cs2AgAuI6.
As shown in Figure S1, the structures during 1.0ps AIMD
simulation maintain the perovskite structure, indicating that
Cs2AgAuI6 is thermally stable.

As we know, the thermodynamic stability of photovoltaic
materials should be stable under all possible decomposition
pathways. The decomposition pathways of Cs2Au2I6,
Cs2AgAuI6, and Cs2CuAuI6 can be seen in Table S1. The
enthalpy of decomposition (1Hd) is the amount of energy
that a substance gains during a reaction, which is the difference
between the sum of the energies of each substance that is obtained
after the reaction and the energies of the reactants themselves.
A positive 1H means that the reaction is endothermic; it
means that the reactant itself is very stable and needs to absorb
energy from the outside to react, which results in suppressed
decomposition of Cs2Au2I6, Cs2AgAuI6, and Cs2CuAuI6 and
shows that the structure is stable.

As can be seen in Table S1, we would be able to
synthesize Cs2Au2I6 much more easily than MAPbI3 because
the dissociation energy of the former is larger than that of the
latter (Yin et al., 2014a; Debbichi et al., 2018). We also find
that we should avoid forming the secondary phase AuI3 by
carefully controlling the growth conditions. Although some of
the decomposition enthalpies of Cs2CuAuI6 are larger than that

of Cs2AgAuI6, it would be difficult to form the former if we
found the secondary phases (for example CuI2, CsCuI3) in the
experiment. Meanwhile, we should also be much more careful
to control the experimental conditions to form Cs2CuAuI6 and
Cs2AgAuI6 so as to avoid any of the secondary phases (for
example, CuI, AgI, CsCu2I3, CsAg2I3, CsCuI3, and CsAuI3)
forming. Also, it is more important to avoid the secondary
phase Cs2Au2I6 forming in the experiment if we would want to
synthesize Cs2CuAuI6 and Cs2AgAuI6.

In solar cell devices, the photo-generated carriers can be
effectively collected along the electrodes. The effective mass
of carriers is one of the important factors that determine the
carrier mobility. Therefore, we choose the ideal semiconductor
materials, which should have light effective masses of the electron
(m∗

e ) and hole (m∗
h). The effective mass of the photo-generated

carrier can be approximately fitted around the band edge by:

m* = h̄2

[

∂2ε
(

k
)

∂k2

]-1

,

where k represents the wave vector along different directions and
ε
(

k
)

represents the eigenvalue of energy on the band.
From our results, the effective masses of the electron (m∗

e ) and
hole (m∗

h) are clearly comparable among various semiconductor
materials. Cs2Au2I6 is more suitable as a perovskite solar cell
material, as it has heavy effective masses of the electron (m∗

e )
and hole (m∗

h) at point N in Figure 2 of 0.362m0 and 0.371m0.
In previous research, MAPbI3 perovskite solar cells have been
shown to have good electronic and optical properties. It was
found that the effective mass of its electron (m∗

e ) is 0.32 m0

and of the hole (m∗
h) is 0.36 m0 (Giorgi et al., 2013; Yin et al.,

2014b). This further indicates that when perovskite solar cells
have lower effective masses of electrons and holes, their photo-
generated carriers will be better collected by the electrodes and
have higher photoelectric conversion efficiency. For Cs2AgAuI6,
the heavy effective masses of the electron (m∗

e ) and hole (m∗
h) are

0.548 and 0.494 m0, while for Cs2CuAuI6, the effective masses
of the electron (m∗

e ) and hole (m∗
h) are heavier, 0.754 and 0.572

m0. It is clear that the effective masses of the electron and hole
in Cs2AgAuI6 and Cs2CuAuI6 are much larger than those in
CsAuI3. This is because the d orbital of Ag and Cu is higher than
that of Au, so the VBM is much more localized in Cs2AgAuI6
and Cs2CuAuI6 than in Cs2Au2I6, and the VBM is much more
dispersive in Cs2Au2I6 than in Cs2AgAuI6 and Cs2CuAuI6. This
can be seen in Figure 2.

Although PBE or HSE+SOC calculations sometimes give
a bandgap result that approaches experimental values (Yin
et al., 2014a; Du, 2015), the most recent calculation shows that
the HSE calculation of the Cs2Au2I6 system approaches the
experiment results. As shown in Figure S2, the relative band gap
between PBE and PBE+SOC calculations is only around 0.1 eV.
From Figure 2, the bandgap of Cs2Au2I6 obtained with HSE
calculation is 1.167 eV; this is consistent with recent theoretical
reports (∼1.3 eV) (Giorgi et al., 2018) and is close to a previous
experimental result, which gave a value of 1.31 eV (Debbichi
et al., 2018). This indicates that Cs2Au2I6 lacks strong exciton
binding energy, so it is easier to produce a free election and
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FIGURE 2 | The HSE band structures of 1B-based perovskite solar cell absorbers. Blue and red shapes indicate the dz2 and dx2-y2 orbitals of 1B atoms,
respectively. Circles, triangles, and inverted triangles represent Au, Ag, and Cu atoms contributions, respectively.

FIGURE 3 | The HSE optical absorption coefficients of 1B-based perovskite solar cell absorbers.

hole after photoexcitation; at the same time, the G→M band
gap is relatively flat, which indicates that Cs2Au2I6 has two-
dimensional or one-dimensional properties (Saparov et al., 2016;
Xiao et al., 2016). At the same time, Figure 2 shows that the
HSE band gaps of Cs2AgAuI6 and Cs2CuAuI6 are 1.289 and
1.344 eV, respectively. It is clearly seen that the band edge of
Cs2Au2I6 is the d-orbital of the Au atom, while the band edge
of Cs2AgAuI6 and Cs2CuAuI6 is the d-orbital of the Ag and
Cu atoms, respectively. This is because the d electron energy of
Ag and Cu atoms is higher than the d electron energy of an
Au atom (Kojima and Kitagawa, 1994). This was also confirmed
by the PDOS in Figure S3. In Figure 2, it can be seen at band
edges along the G→Mdirection have flat conduction and valance
bands, and the possibility of carrier mobility has huge anisotropy
along out-of-plane and in-plane direction; this is due to Cs2Au2I6
having different 5d-orbital splitting of elongated Au3+(d8)I6
octahedra and compressed Au+(d10)I6 octahedra (Liu et al.,
1999; Tang et al., 2019), and Cs2AgAuI6 at the band edge also

has two different d metal cations, indicating that Cs2Au2I6 and
Cs2AgAuI6 have 2D electronic properties in 3D materials (Tang
et al., 2019).Meanwhile, the bandgap edges of the N→P direction
shows an obvious dispersion band edge. We calculated that
Cs2Au2I6 has light effective masses of the electron (m∗

e ) and hole
(m∗

h) of 0.145 and 0.137m0 and that those of Cs2AgAuI6 are 0.310
and 0.218 m0, indicating that the carriers are easier to move. This
is due to the Au and I orbitals forming an anti-bonding overlap
so that there is larger dispersion. We found that the band gap of
Cs2Au2I6 is almost the same as that of Cs2AgAuI6 is the ideal
material that we were looking for.

It should be noted that the optimal solar cell absorbers
should have a direct bandgap and high optical absorption
with p-p optical transition (Yin et al., 2014b). Although 1B-
based perovskites have d-d optical transition, they also have
comparatively high optical absorption (∼105 cm−1) (Figure 3).
This is consistent with previous research on semiconductors with
d-d transitions (Heo et al., 2017). From our results, we found that
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FIGURE 4 | Calculated phonon spectra of Cs2Au2 I6, Cs2AgAuI6, and
Cs2CuAuI6, respectively.

the optical absorption of the 1B-based perovskites has strongly
anisotropic properties. There is different optical absorption for
the directions parallel and perpendicular to the z-axis. This is
in good agreement with previous experimental and theoretical
results (Debbichi et al., 2018; Giorgi et al., 2018). Our results
show that the optical absorptions of Cs2Au2I6 and Cs2AgAuI6
are very similar. This is because both of them have a similar
band structure. Meanwhile, we found that the optical absorption
along the zz direction of Cs2AgAuI6 is stronger than that of
Cs2Au2I6. This is because the bond length between the cation and
I became longer when we use Ag atom substitution of an Au atom
in Cs2Au2I6. As can be seen from Table 1, the lattice constant
of Cs2AgAuI6 is a little larger than that of Cs2Au2I6. Then,
the d-d transition became weaker in Cs2AgAuI6, so the optical
absorption coefficient will become stronger in Cs2AgAuI6.

Through Figure 4, we can clearly see that Cs2Au2I6 and
Cs2AgAuI6 are stable, even if the system of Cs2Au2I6 and
Cs2AgAuI6 has a lower virtual frequency; this may be due to
the strong Coulomb interaction between metal elements, and
the virtual frequency is within reasonable limits. In this study,
we tried to dope with other elements the reduce the amount of
Au needed. The phonon spectra calculation from our research
indicates that Cs2AgAuI6 is very stable, contrary to Cs2CuAuI6,
and so a Cu-based perovskite solar cell absorber would be difficult
to synthesize. This is clearly shown in Figure 2 the d band
energy of the Cu atom is higher than that of the Ag and Au
atoms. This result is consistent with the previous calculation
(Xiao et al., 2017).

The calculated bandgaps and the geometric parameters are
summarized in Table 1. The picture painted by our results
could provide practical guidance for choosing the appropriate
compositions to harvest good solar-to-solar cell absorbers. For
example, for a two-junction tandem solar cell configuration that
obtains the best conversion efficiency, the top and bottom cell
should be made of semiconductors with bandgaps of 1.9 and
1.0 eV. Table 1 suggests that Cs2CuAuCl6 could be chosen for

TABLE 1 | The structural parameters (Å), PBE band gap (eV), and HSE band gap
(eV) of 1B-based perovskite solar cell absorbers.

1B-based PVSK PBE lattice
parameters (Å)

PBE band
gap (eV)

HSE band
gap (eV)

Au-based PVSK Cl 7.808 0.931 1.591

Br 8.139 0.748 1.264

I 8.647 0.770 1.167

AgAu-based PVSK Cl 7.804 0.812 1.566

Br 8.152 0.740 1.369

I 8.687 0.763 1.289

CuAu-based PVSK Cl 7.657 0.647 1.982

Br 8.021 0.688 1.487

I 8.561 0.838 1.344

the top cell and Cs2Au2I6 could be chosen for the bottom
cell. For a three-junction configuration, the semiconductors for
the top, middle, and bottom cells should have bandgaps of
2.3, 1.4, and 0.8 eV, respectively. Accordingly, Table 1 suggests
Cs2Au2(Br1−xClx)6 and Cs2AgAu(Br1−xClx)6 for the middle
cell and Cs2Au2I6 for the bottom cell, though there is no
optimal composition for the top cell. Our results show that
all of the compositions in Table 1 with the same perovskite
structure should be easier to form for junctions with low non-
radiative recombination.

CONCLUSIONS

In the paper, we researched the crystal structures, electronic
structures, and optical properties of 1B-based perovskite solar
cell absorbers by using the density-functional theory. Our results
show that Cs2AgAuI6, a non-toxic and inexpensive AgAu-based
perovskite solar cell absorber, may be a good choice. It has
a suitable HSE band gap (1.289 eV) and a sharp absorption
coefficient (∼105 cm−1). Meanwhile, it is beneficial to the average
effective masses of the electron and hole carrier, 0.346 and 0.316
m0, respectively. The phonon spectra show that it is stable.
Because the d-orbital energy of Cu is higher than those of Ag and
Au, CuAu-based perovskite is not stable. This can be seen from
the phonon spectra. Therefore, our calculations could provide
strong evidence for experimental synthesis of lead-free and low-
cost perovskite solar cell absorber materials.
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