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Editorial on the Research Topic

Electronics and Optoelectronics of Graphene and Related 2DMaterials

The development of electronic and optoelectronic devices is often accompanied by the
breakthroughs in semiconductor materials and device design. In recent years, layered atomic
materials represented by graphene and other two-dimensional (2D) materials have received
extensive attention due to their electronic and optical properties that are different from bulk
materials. Based on graphene and 2Dmaterials, the related physical mechanisms in electronics and
optoelectronics can be explored. It is for this purpose that we have edited this Research Topic and
look forward to summarizing the recent developments in this field. The four articles in this Research
Topic involve the preparation of graphene nanosheets by liquid-phase exfoliation, the chemical
vapor deposition (CVD) growth of graphene, the recent research progress of waveguide-integrated
graphene photonic devices, and the mode-locked fiber laser modulated by PtSe2. In the next step,
we highlight the important progress and related discussions involved in this Research Topic.

The preparation of 2D materials by liquid-phase exfoliation is a process of converting bulk
materials into nanosheets by overcoming the van der Waals forces between the nanosheet
layers (Ciesielski and Samorì, 2014). Owing to the relatively easy process, low cost, short
preparation time, and large-scale manufacturing, liquid-phase exfoliation is currently considered
one of the most promising production techniques that can promote the industrial applications
of graphene and 2D materials, such as printed electronics, composite fillers and conductive
coatings (Phiri et al., 2017; Pang et al., 2019; Di Bartolomeo et al., 2020). In this Research
Topic, (Li et al.) summarize the mechanisms and methods for graphene liquid-phase exfoliation
and stable dispersion. The liquid exfoliation mechanism, in which a dispersant–solvent system
interacts with the graphene surface suppressing the van der Waals forces between graphene
layers, is discussed using the Hamaker constant theory (Coleman, 2013). The main liquid-phase
exfoliation methods, such as ultrasonic degradation, mechanical exfoliation, and electrochemical
exfoliation are analyzed in detail. On the other hand, the ultimate aim of liquid phase exfoliation
is a stable dispersion in various liquid media, suitable for practical applications. As graphene
sheets tend to stick to each other, a stable dispersion requires an appropriate dispersant–solvent
system that interacts with the graphene surface preventing graphene agglomeration. It has been
experimentally shown that the best liquid-phase dispersion is accomplished when the surface
tension of the dispersant–solvent system is equal to the surface tension of graphene (Vallés
et al., 2008). Hence, the potential energy of different dispersant–solvent systems and their
relationship with the energy of the graphene surface have been studied and several experimental
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approaches are discussed to show how the Hansen solubility
coefficient theory (Lim et al., 2014) has been the basis for
selecting the dispersant–solvent system best suited to interact
with graphene. Meanwhile, it has been shown that when
the π-π interaction of graphene with aromatic molecules
becomes stronger, the liquid-phase dispersion properties of
graphene improve (Georgakilas et al., 2016). Pyrene derivatives,
biomolecules, carbon nanotubes, graphene oxide, and polymers
have been introduced in liquid phase as the dispersant to
enable π-π interaction and attain graphene dispersion stability
of several months. The formation of intermolecular hydrogen
bonds is also profitable to the dispersion and dissolution of
graphene. Oxygen-containing groups can remain on the surface
of graphene prepared by oxidation–reduction methods and
can be exploited to produce strong hydrogen bond with the
dispersant–solvent system to achieve a stable dispersion of
graphene. Hydrogen bond interaction has also been widely used
as an alternative dispersion approach.

In addition to the liquid-phase exfoliation method, chemical
vapor deposition (CVD) technology is another common method
for achieving large-area graphene films. To fully unleash the
potential of graphene, it is critical to advance the understanding
of defect formation during CVD synthesis and find a way
to effectively minimize the nucleation density. Introducing
oxygen is able to increase the growth rate of graphene domains
as an effective copper surface passivator, and transform the
synthesis kinetics from edge-attachment-limited to diffusion-
limited. Various techniques have been explored to introduce
oxygen during graphene CVD growth, including injecting pure
O2 gas into the reaction chamber (Hao et al., 2013), injecting a
trace amount of H2O gas (Guo et al., 2018), annealing copper
in an Ar environment for minimum oxidization (Li et al., 2015)
and baking copper on a hot plate in the air (Ding et al., 2017).
In this research article, Zhang et al. investigated the formation
mechanism of graphene domain growth on pre-oxidized copper
substrates via an atmospheric pressure chemical vapor deposition
(APCVD) method. The authors did a systematic study on the
evolution of the substrate surface during the annealing process
in an Ar/H2 reducing atmosphere. A lower nucleation density
is desirable as it allows more space for the extended growth of
a single domain. This paper shows that the domain size and
nucleation density can be controlled by varying the annealing
time. Transmission electron microscopy (TEM) was also used to
investigate the crystalline nature of graphene domains. Besides,
the gas ratio and temperature were also found to play an
important role in the graphene domain growth. By optimizing
reaction temperature and extending the growth time to 60
minutes can lead to a domain size with a lateral dimension of
∼ 720µm (Zhang et al.). This work advances the understanding
of CVD growth kinetics of the graphene domain on the copper
substrate, which is important for further optimization of high-
quality and large-area graphene films synthesis.

On the other hand, graphene and 2D materials based
optoelectronic and photonic devices have attracted great interest
in imaging, sensing and communication applications (Phare
et al., 2015; Cheng and Goda, 2016; Chen et al., 2017; Tong
et al., 2020). Due to its linear band structure and vanishing
density of states at the Dirac point, graphene has a broad spectral

band and tunable light absorption from visible to mid-infrared
wavelengths.Meanwhile, the local carrier density of graphene can
be easily changed to adjust its electrical and optical properties
(Bonaccorso et al., 2010). However, due to the weak light
absorption of single-layer graphene, the light-matter interaction
is insufficient. In recent studies, the integration technology of
graphene and photonic structures has been widely reported to
enhance the light-matter interaction in graphene-based photonic
devices (Fang et al., 2012; Li et al., 2012). In this Research
Topic, Wang et al. summarized the principle and technical
development of a graphene photonic device based on optical
waveguide technology. In this device, the light-matter interaction
in waveguide-integrated graphene photonic devices can be
enhanced via the evanescent field coupling. Due to the adjustable
conductivity of graphene, this waveguide-integrated graphene
photonic devices can be used in the field of molecular detection
sensors. Through the doping effect of adsorbed molecules on
graphene, the functionality of waveguide-integrated graphene
photonic devices will change, which can be used for themolecular
sensors (Cheng and Goda, 2016). Besides, optically tunable
graphene can be used for light modulation and detection. The
waveguide-integrated graphene modulators can be divided into
electro-absorption modulators and electro-refractive modulators
(Phare et al., 2015; Sorianello et al., 2018). And waveguide-
integrated graphene photodetectors can be achieved, in which the
light absorption of graphene can be enhanced by the evanescent
field interaction (Gan et al., 2013; Pospischil et al., 2013; Wang
et al., 2013). Based on this mechanism, important device designs
and methods are introduced in-depth in this Review article. In
addition to the progress in the field of graphene-based optical
waveguides, another article focuses on the progress of PtSe2 as
saturable absorbers in mode-locked fiber lasers. Wu and Jiang
studied the soliton formation, and observed the different soliton
patterns by increasing the pump power (Wu and Jiang). This
study determines the nonlinear optical response of PtSe2 and
provides a reference for the study of soliton dynamics in fiber
laser systems.

The Research Topic on Electronics and Optoelectronics of
Graphene and Related 2D Materials contains two Reviews and
two original papers. Of course, this is far from covering the scope
of this topic, but these developments can help readers understand
and think about the development in this field. Finally, as the guest
editors, we would like to thank the authors for their contributions
and the reviewers for their efforts, as well as the editors and
publishers for their support.
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