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Embankment subgrade soils classifying as A-4 to A-7-6 according to the AASHTO Soil
Classification System can exhibit low bearing strength, high volumetric instability, and
freeze-thaw susceptibility. These characteristics of soil are frequently identified as main
factors leading to accelerated damage of pavement systems. Cement stabilization has
been widely used to improve these soils conditions. The present study aims to help
designers and practitioners better understand how cement stabilizations can influence
soil index properties and mechanical properties before and after saturation. In this study,
a total of 28 cohesive and granular soil materials obtained from nine construction sites
were tested using 4–12% type I/II Portland cement contents. Specimens were prepared
using a 2 inch by 2 inch compaction apparatus and tested for 28-day unconfined
compressive strength (UCS) with and without vacuum saturation. Results indicated
that statistically significant relationships exist between soil index properties, UCS, and
cement content. Based on the laboratory test results, a laboratory evaluation procedure
for cement stabilization mix design for both granular and cohesive soils is proposed.

Keywords: soil stabilization, cement stabilization, unconfined compressive strength, fines content, Atterberg
limits, AASHTO group index

INTRODUCTION

Embankment subgrade soils classifying as A-4 to A-7-6 according to the AASHTO Soil
Classification System can exhibit low bearing strength, high volumetric instability, and freeze-thaw
susceptibility, which are frequently identified as main factors leading to accelerated damage of
pavement systems (White and Bergeson, 2001; White et al., 2004, 2008, 2018; Zhang et al., 2016,
2019; Li et al., 2020). Soil stabilization with cement has been studied during the past six decades
over a variety of soil types (Balmer, 1958; Mitchell, 1976; Uddin et al., 1997; Lo and Wardani,
2002; Lorenzo and Bergado, 2004; Sariosseiri, 2008; Sariosseiri et al., 2011; Sarkar et al., 2012;
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Rashid et al., 2014; Riaz et al., 2014; Yang et al., 2018; Li
et al., 2020). Previous research indicated that Portland cement
stabilized materials generally show superior performance than
any other chemical stabilizer (Parsons and Milburn, 2003;
Henry et al., 2005; Zhang et al., 2016, 2019; Li et al.,
2017, 2018, Li C. et al., 2019). Multiple regression analysis
is a valuable tool applied in geotechnical engineering (Li S.
et al., 2019). Horpibulsuk (2012) reported the effectiveness of
various percentages cement mixture on the specimen’s strength
development. Three strength development zones were presented:
active, inert, and deterioration zone. In the active zone, the
pores smaller than 0.1 micron significantly decreased due to
cement hydration process, so the strength increased significantly.
However, as content of cement additives increased, the desired
water was not adequate for hydration, so the strength and
quantity of cementitious materials decreased. Various studies
have previously developed similar relationships between cement
dosage and modified soil strength and other engineering
properties, such as liquid limit, plasticity index, etc (Qubain
et al., 2006; Sariosseiri et al., 2011; Du et al., 2013; Rashid et al.,
2014). Spangler and Patel (1950) showed that the plastic limit
was increased as cement content increased, and plasticity index
was decreased as cement admixture content increased because
the liquid limit was decreased.

To understand how the cement content can influence
the strength and soil index properties of both cohesive and
granular materials, the present study conducted a comprehensive
laboratory evaluation. A total of 28 granular and cohesive
materials were tested using 4–12% type I/II Portland cement
contents. The laboratory results were analyzed using multi-
variate statistical analysis to assess influence of the cement
content and soil index properties on post-stabilization material
properties. Based on the laboratory test and statistical analysis
results, a laboratory testing and evaluation procedure for
cement stabilization mix design for both granular and cohesive
soils is proposed.

MATERIALS AND METHODS

In this study, a total of 28 granular and cohesive materials
obtained from nine construction sites were tested using 4–12%
type I/II Portland cement contents. Table 1 summarizes the
parent materials, particle size analyses, Atterberg limits, and soil
classifications test results of the materials. The cohesive soils were
collected from 25 test beds of eight project sites, and the parent
materials of the cohesive soils were either glacial till or loess. The
cohesionless granular soils were collected from three test beds of
one project site, and their parent material was alluvium material.

TESTING AND ANALYSIS METHODS

To classify the materials tested in this study, particle size
analysis was conducted in accordance with ASTM D422-63
(2007) (ASTM, 2007). The distribution of particle sizes larger
than 75 µm (opening size of the No. 200 sieve) was determined

by sieving, and the distribution of particle sizes smaller than
75 µm was determined by the hydrometer method. Atterberg
limit testing was conducted in accordance with ASTM D4318-
10 (2000) (ASTM, 2000) using the wet preparation method.
Liquid limit tests were performed using the multipoint method.
Based on these results, each sample was classified according
to the AASHTO Soil Classification System and Unified Soil
Classification System (USCS).

Soil Compaction Test
The relationship between the moisture and dry unit weight
of embankment materials was determined in accordance with
ASTM D698 (2013) (ASTM, 2013) and ASTM D1557 (2009)
(ASTM, 2009). Appropriate methods were chosen based on the
grain size distributions for each sample. The tests were performed
at five moisture contents, and the optimum moisture-density
characteristics were obtained by fitting the data to the Li and Sego
Fit model as described in Eq. 1

γd(w) =
Gs γw(

1+ w Gs

Sm−Sm

(
wm−w

wm

)n+1 ( wn
m+pn

(wm−w)+pn

)
) (1)

where γd = dry density of the soil, Gs = specific gravity of the
soil, γw = density of water, w = moisture content of the soil,
Sm = maximum degree of saturation, wm = moisture content at
Sm, and n and p are shape factors.

ISU 2 Inch by 2 Inch Test
ISU 2 inch by 2 inch compaction apparatus is described in
O’Flaherty et al. (1963). The test procedure was used to prepare
50.8 mm (2 inch) diameter by 50.8 mm (2 inch) height
samples for unconfined compressive strength (UCS) testing.
Standard Proctor optimum moisture content for each sample was
determined based on the Li and Sego Fit model, and each sample
was compacted at that moisture content. For cement treated
materials, the optimum moisture content was determined using
Eq. 2 with a water to cement (w/c) ratio of 0.25:

wopt soil+cement =
[(

% cement added by weight
)
× (w/c ratio)

]
+ wopt soil (2)

The test procedure involved placing loose material in the
compaction apparatus and dropping a 2.27 kg hammer from a
drop height of about 0.31 m in a 50.8 mm diameter steel mold.
O’Flaherty et al. (1963) provided guidance on the number of
blows required to obtain standard Proctor densities for different
soil types, 6, 7, 14 drop-hammer blows for AASHTO soil types
A-7/A-6, A-4, and A-3/A-2/A-1, respectively. The number of
blows were selected based on the soil type and equal number of
blows were applied on both sides of the sample, to compact the
sample uniformly.

After compaction, the 2 inch by 2 inch specimens were
sealed using plastic wrap and aluminum foil, and were placed in
sealed plastic bag. According to Winterkorn and Pamukcu (1990),
cement stabilized specimens cured for 7 days at 43◦C can be used
to simulate 28 day curing strength. Unstabilized specimens were
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TABLE 1 | Soil index properties of the granular and cohesive subgrade materials tested in this study.

Construction site Parent material Gravel content
(>4.75 mm) (%)

Sand content
(4.75 mm—75 µm)

(%)

Silt content
(75 µm—2 µm)

(%)

Clay content
(< 2 µm) (%)

Liquid limit,
LL (%)

Plastic limit,
PL (%)

Plastic Index,
PI (%)

AASHTO
classification

USCS
classification

1# TB1 Glacial till 0.4 11.6 66.4 21.6 49 28 21 A-7-6 (21) CL

1# TB2 Glacial till 3.9 25.8 34.7 35.6 45 34 11 A-7-5 (8) CL

1# TB3 Glacial till 2.6 28.7 45.8 22.9 36 20 16 A-6 (9) CL

1# TB4 Glacial till 1.8 24.6 50.9 22.7 34 17 17 A-6 (11) CL

2# TB1 Glacial till 2.0 27.5 37.3 33.2 44 31 13 A-7-5 (9) CL

2# TB2 Glacial till 5.0 31.6 31.9 31.5 40 19 21 A-6 (11) CL

2# TB3 (Gray) Glacial till 0.7 18.7 39.1 41.5 54 20 34 A-7-6 (28) CH

2# TB3 (Brown) Glacial till 0.6 29.2 33.7 36.5 40 20 20 A-6 (13) CL

3# TB1 Weathered loess 0.7 46.0 26.4 26.9 31 25 6 A-4 (1) CL-ML

4# TB1 Glacial till 1.8 37.6 32.9 27.7 31 12 19 A-6 (8) CL

4# TB2 Glacial till 1.3 42.6 30.9 25.2 34 16 18 A-6 (7) CL

4# TB3 Glacial till 11.3 36.1 31.2 21.4 33 11 22 A-6 (7) CL

4# TB4 Glacial till 1.1 39.9 35.6 23.4 32 16 16 A-6 (6) CL

4# TB5 Glacial till 2.0 40.3 34.8 22.9 30 16 14 A-6 (5) CL

5# TB1 Manufactured materials 7.3 10.1 56.2 26.4 43 18 25 A-7-6 (20) CL

5# TB2 Manufactured materials 5.3 25.5 48.0 21.2 42 19 23 A-7-6 (14) CL

6# TB1 Alluvium 0.2 78.4 15.5 5.9 NP NP NP A-2-4 SM

6# TB2 Alluvium 0.0 83.2 12.6 4.2 NP NP NP A-2-4 SM

6# TB3 Alluvium 1.7 81.1 11.6 5.6 NP NP NP A-2-4 SM

7# TB1 Loess 0.1 1.0 72.9 26.0 39 32 7 A-4 (10) CL-ML

7# TB2 Loess 1.0 24.3 45.5 29.2 35 24 11 A-6 (8) CL

7# TB3 Loess 2.0 29.2 45.9 22.9 28 17 11 A-6 (5) CL

8# TB1 Loess 0.1 3.1 70.6 26.2 38 34 4 A-4 (7) CL-ML

8# TB2 Loess 3.9 6.4 34.9 54.8 36 31 5 A-4 (6) CL-ML

9# TB1 very deep loess 0.0 8.8 68.8 22.4 32 25 7 A-4 (7) CL-ML

9# TB2 Very deep loess 0.0 1.3 73.3 25.4 35 27 8 A-4 (9) CL

9# TB3 Very deep loess 0.1 4.2 69.6 26.1 35 23 12 A-6 (12) CL

9# TB4 Very deep loess 0.0 6.4 72.0 21.6 31 24 7 A-4 (7) CL-ML
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FIGURE 1 | Vacuum saturation of cement stabilized specimens.

tested shortly after compaction (no curing). Three samples were
prepared at each cement content.

UCS Test
The cured specimens were tested for UCS accordance with ASTM
D 1633 (2014) (ASTM, 2014b). The standard requires use of
either 101.6 mm diameter by 116.4 mm height Proctor samples
with a height to diameter ratio (h/d) of 1.15 or 71.1 mm diameter
by 142.2 mm height samples with a h/d ratio of 2.0. Instead, 2
inch by 2 inch. specimens were used in this study which have
a h/d ratio of 1.0. Based on laboratory evaluations, White et al.
(2005) concluded that the UCS determined from 2 inch by 2
inch specimens can be multiplied by 0.86 to correlate with UCS
of Proctor sized samples (h/d = 1.15) or 0.90 to correlate with
samples that have h/d = 2. The ASTM D1633 (2014) (ASTM,
2014b) also provides a similar guidance in relating UCS on
samples with h/d = 2 multiplying a factor of 1.10 to samples with
h/d = 1.15 for conversion.

The cured specimens were tested in unsaturated and saturated
condition. The specimens were saturated using the vacuum
saturated method as described in ASTM C593 (2014) (ASTM,
2014a). The specimens were placed on a perforated Plexiglas plate
in a vacuum vessel as shown in Figure 1, and the chamber was
evacuated to 609 MmHg for 30 minutes. Then the vacuum vessel
was flooded to a depth sufficient to cover the soil specimens.
After 1 h of soaking, the specimens were removed from the
vessel to conduct UCS testing. For samples that become fragile
and cannot be removed from water for UCS testing, the UCS is
reported as 0 kPa.

Multiple Regression Analysis
The multiple regression analysis was performed to evaluate
that how the cement content and pre-treatment soil index
properties can influence the soil index properties and UCS of the
soils. Regression analyses were performed by incorporating the
parameters as independent variables into a general multiple linear
regression model as shown in Eq. 3.

Predicted parameter = b0 + b1X1 + b2X2 · · · bnXn (3)

where

Predicted parameters = UCS, PI, GI, and F200,
b0 = intercept,
bn = regression coefficients, and Xn = various parameters

(cement content, LL, F200, clay content, PI, and sand content).
Statistical significance of each variable was assessed based

on p and t values. A statistical analysis software, JMP 10 was
used to generate the statistical models based on testing data.
The criteria for identifying the significance of a parameter
was: p value < 0.05 = significant, <0.10 = possibly significant,
>0.10 = not significant, and t- value <−2 or >+ 2 = significant.
The p-value indicated the significance of a parameter and the
t-ratio value indicates the relative importance. The best fit
model was determined based on the strength of the regression
relationships assessed by the coefficient of determination
(R2) values.

LABORATORY TEST RESULTS

In the following sections, the results and analysis are separately
for F200, Atterberg limits, GI, and UCS, to present the influence
of cement stabilization on these properties.

Fines Content (F200)
Results of F200 versus cement content are presented in Figure 2.
The results indicated that F200 of both the cohesive and granular
soils greatly decreased with increasing cement content due to the
fine soil particles of the materials were bonded by the cement
hydration and pozzolanic reactions.

Statistical analysis was conducted to predict F200 after
treatment as a function of cement content, F200 before treatment,
and Atterberg limits. Cement content, F200 before treatment, and
LL were found to be statistically significant as shown in Table 2.
PI and PL parameters were not statistically significant. The
measured versus predicted F200 of soils after cement treatment
from the multi-variate model are presented in Figure 3. The
model showed an R2 of about 0.9 and RMSE of about 7%.

Atterberg Limits
The F200 versus PI results of the untreated and cement treated
soils with 4, 8, and 12% cement content are shown in Figure 4.
The test results show that both of the PI and F200 decreased as
the cement content increased. For soils treated with 12% cement,
the PI values are zero, which indicates that the treated soils
become to non-plastic.

Statistical analysis was conducted to predict PI after treatment
as a function of cement content, clay content, silt content, and
LL. Results are summarized in Table 3. Cement content and
clay content were found to be statistically significant, while the
remaining parameters were not statistically significant. Measured
versus predicted PI (after treatment) results from the multi-
variate model are presented in Figure 5. The model showed an
R2 of about 0.5 and RMSE of about 5%.

AASHTO Group Index (GI)
For a majority of the soils, the GI values decreased with
increasing cement content. Statistical analysis was conducted

Frontiers in Materials | www.frontiersin.org 4 July 2020 | Volume 7 | Article 239

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/
https://www.frontiersin.org/journals/materials#articles


fmats-07-00239 July 28, 2020 Time: 17:59 # 5

Yang et al. Stabilized Soil Materials

FIGURE 2 | F200 versus cement content.
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TABLE 2 | Multi-variate analysis results to predict F200 after cement stabilization.

Parameter Value t Ratio Probability > | t| R2 RMSE

Intercept 18.92 3.96 <0.0001 0.90 6.588

Cement content (%) −3.74 −24.88 <0.0001

F200 before treatment (%) 0.607 13.23 <0.0001

LL (%) 0.306 2.79 0.0064

Prediction expression F200 after treatment (%) = 18.92–3.74 × cement
content (%) + 0.607 × F200 (%) + 0.306 × LL (%)

on the laboratory test results to predict GI after treatment as
a function of cement content, clay content, silt content, F200,
LL, and PI. Results are summarized in Table 4. Cement
content, F200, LL, and PI were found to be statistically
significant, while the remaining parameters were not
statistically significant. Measured versus predicted GI (after
treatment) results from the multi-variate model are presented
in Figure 6. The model showed an R2 of about 0.7 and RMSE
of about 3.

Unconfined Compressive Strength
The results of unsaturated and vacuum saturated UCS of the
materials at different cement contents are used for determining
relationships between the cement content and pre- and post-
saturation strength of the materials.

Results indicated that increasing UCS with increasing
cement content, as expected. For a majority of the
unstabilized materials, the soil specimens became fragile
after vacuum saturation and could not be retrieved from
the vessel. For those soils, UCS of 0 kPa is reported herein.
Vacuum saturated stabilized specimens resulted in UCS

FIGURE 3 | Comparison of measured F200 and predicted F200 of the cement
treated soils.

measurements that were on average about 1.5 times lower
than the unsaturated specimens. The ratio of unsaturated and
vacuum saturated UCS of stabilized specimens ranged from
about 1.1 to 2.5.

Statistical analysis was also conducted to predict unsaturated
and vacuum saturated UCS as a function of cement content, sand

FIGURE 4 | PI versus F200 for the untreated and cement treated soils.
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TABLE 3 | Multi-variate analysis results to predict PI after cement stabilization.

Parameter Value t Ratio Probability > | t| R2 RMSE

Intercept 8.664 5.85 <0.0001 0.509 5.101

Cement Content (%) −1.102 −10.04 <0.0001

Clay content (%) 0.172 3.49 0.0007

Prediction expression PI after treatment (%) = 8.664–1.102 × cement content
(%) + 0.172 × Clay content (%)

Silt content, sand content, and LL were not statistically significant.

FIGURE 5 | Comparison of measured PI and predicted PI of the cement
treated soils.

content, clay content, silt content, F200, LL, and PI. Results are
summarized in Tables 5, 6. The cement content, sand content,
F200, and LL were found to be statistically significant, while the
remaining parameters were not statistically significant. Measured
versus predicted UCS results from the multi-variate model are
presented in Figure 7. The models showed an R2 of about 0.855
and RMSE of about 515 kPa for vacuum saturated UCS and
672 kPa for unsaturated UCS.

TABLE 4 | Multi-variate analysis results to predict GI after cement stabilization.

Parameter Value t Ratio Probability >| t| R2 RMSE

Intercept −4.540 −2.23 0.0281 0.708 2.774

Cement Content (%) −0.844 −13.33 <0.0001

F200 (%) 0.069 2.85 0.0055

LL (%) 0.157 2.98 0.0164

PI (%) 0.172 2.45 0.0037

Prediction expression GI = −4.540 – 0.844 cement content (%) + 0.069 × F200

(%) + 0.157 × LL (%) + 0.172 × PI (%)

Silt content and clay content were not statistically significant.

FIGURE 6 | Comparison of measured group index and predicted group index.

PROPOSED TESTING AND EVALUATION
PROCEDURE

Based on the test results and experience obtain from this
laboratory evaluation, a mix design procedure is proposed for
sampling and testing, and requirements of cement stabilized soils.

TABLE 5 | Multi-variate analysis results to predict unsaturated UCS.

Parameter Value t Ratio Probability >| t| R2 RMSE

Intercept 1465.38 3.61 0.0005 0.855 671.675

Cement content (%) 48.69 21.90 <0.0001

Sand (%) −13.26 −3.13 0.0023

F200 (%) −9.24 −2.35 0.0209

LL (%) −11.28 −6.77 <0.0001

Prediction expression UCS (kPa) = 10103.4 + 335.7 × cement content
(%)–91.4 × Sand (%)–77.8 × LL (%)−63.7 × F200 (%)

Note: Silt content and clay content were not statistically significant.

TABLE 6 | Multi-variate analysis results to predict vacuum saturated UCS.

Parameter Value t Ratio Probability >| t| R2 RMSE

Intercept 1151.32 3.7 0.0004 0.856 515.071

Cement content (%) 37.33 21.89 <0.0001

Sand (%) −11.40 −3.51 0.0007

F200 (%) −7.70 −2.56 0.0123

LL (%) −8.37 −6.55 < 0.0001

Prediction expression UCS (kPa) = 7938.1 + 257.4 × cement content
(%)–78.6 × Sand (%)–57.7 × LL (%)–53.1 × F200 (%)

Silt content and clay content were not statistically significant.
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FIGURE 7 | Comparison of the measured and predicted UCS of unsaturated and vacuum saturated specimens.

Sampling and Materials
Each soil sample to be used in chemical stabilization shall
be 35 kg. The cement used for stabilization shall meet the
requirements of Type I or I/II.

Sample Preparation and Testing
The sulfate content of the soil shall be determined. If the
soil consists of soluble sulfate content > 3,000 ppm or the
material classifies as unsuitable, chemical stabilization shall not
be performed unless consulted with the engineers.

For each soil type, prepare three samples each for the following
five mixes:

1. Mix 1: Untreated soil.
2. Mix 2: 2% cement.
3. Mix 3: 4% cement.
4. Mix 4: 6% cement.
5. Mix 5: 8% cement.

To determine the quantity of cement to be added to the soil,
multiply the cement percentage by the dry weight of the soil.
Use cement that is from the same source(s) that will be used
during construction.

Moisture–Density Relationship
First, the moisture–density relationship of the different mixtures
shall be determined. Then, UCS testing shall be performed at
target moisture contents, as described below.

The moisture versus dry density relationship of untreated and
cement-treated samples shall be determined using one of the
following alternatives:

Alternative 1:

Untreated Samples: The maximum dry density and
optimum moisture content of the untreated samples shall
be determined using standard Proctor test in accordance
with ASTM D698 (2013) (ASTM, 2013). A minimum 3-point
Proctor is recommended.

Treated Samples: The maximum dry density and optimum
moisture content shall be determined in accordance with
ASTM D558 (2019) (ASTM, 2019). All treated samples must
be compacted within 1 h of mixing. A minimum 3-point
Proctor is recommended.

Alternative 2:
The maximum dry density and optimum moisture content of

untreated and treated samples shall be determined using the ISU
2 inch by 2 inch. Moisture–Density Test Method, per Chu et al.
(1995). In preparing samples using the 2 inch by 2 inch method,
use the method of O’Flaherty et al. (1963) for guidance on the
total number of drop-hammer blows depending on the soil type
to obtain results similar to the standard Proctor test.

Alternative 3:
First, determine the optimum moisture content of the

untreated soil using standard Proctor test in accordance with
ASTM D698 (2013) (ASTM, 2013). Then use the following
equation to determine the optimum moisture content of treated
samples, by using a water to cement (w/c) ratio of 0.25:

wopt soil+cement =
[(

% cement added by weight
)
× (w/c ratio)

]
+ wopt soil (4)

Unconfined Compressive Strength
The UCS tests shall be performed on compacted samples at
respective optimum moisture contents for untreated and treated
soils, in accordance with ASTM D1633-00 (2014) (ASTM,
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FIGURE 8 | Determination of target cement content for field application.

2014b). As an alternative, tests can be performed on 2 inch by
2 inch samples prepared per Alternative 2 above.

For each mix, prepare three samples for UCS testing for
a total of 12 samples. Wrap each sample immediately after
compaction with a plastic wrap and aluminum foil and store in
a moisture-proof and airtight bag. All treated samples shall be
cured at 38◦C for 7 days. Untreated samples shall be cured for
no more than 24 h.

After curing, all samples shall be vacuum saturated in
accordance with ASTM C593 (2014) (ASTM, 2014a). For samples
that become fragile and cannot be retrieved from water for UCS
testing, report the UCS as 0 kPa.

Target Cement Content Determination
The data obtained from UCS testing shall be plotted on a graph
with cement content on x-axis and saturated UCS on y-axis. The
average UCS of three samples shall be reported on the y-axis.
The cement content corresponding to a saturated UCS of 700 kPa
shall be determined. A 0.5% cement shall be added to determine
the target cement content for the field application, as illustrated
in Figure 8.

SUMMARY AND CONCLUSION

Results of a laboratory study focused on cement stabilization of
28 soils obtained from 9 active construction sites are presented
in this paper. The materials consisted of glacial till, loess,
and alluvium sand. Type I/II Portland cement was used for
stabilization of these materials. 2 inch by 2 inch specimens
of treated and untreated specimens were prepared, cured, and
tested for UCS with and without vacuum saturation. The F200,

Atterberg limits, and AASHTO GI were determined before and
after treatment. The results were analyzed using multi-variate
regression analysis to assess influence of the various soil index
properties on post-stabilization material properties. Key findings
from the test results and analysis are as follows:

1. F200 of the material decreased with increasing cement
content for a majority of the soils. The percent cement
content, F200 before treatment, and liquid limit were found
to be statistically significant in predicting the F200 after
treatment. The multi-variate model showed an R2 of
about 0.9 and RMSE of about 7% in predicting the F200
after treatment.

2. With the exception of a few materials, the liquid limit
and plasticity index of all materials decreased with
increasing cement content. The percent cement content
and clay content parameters were found to be statistically
significant in predicting the plasticity index of materials
after stabilization. The multi-variate model showed an R2

of about 0.5 and RMSE of about 5%.
3. The GI values decreased with increasing cement content

for a majority of the soils. The percent cement content,
F200, liquid limit, and plasticity index parameters were
found to be statistically significant in predicting the group
index values after treatment. The multi-variate model
showed an R2 of about 0.7 and RMSE of about 3.

4. The UCS of specimens increased with increasing cement
content, as expected. The average saturated UCS of the
unstabilized materials varied between 0 and 400 kPa.
The average saturated UCS of stabilized materials varied
between 0.3 and 2,000 kPa at 4% cement content, 0.8 and
3700 kPa at 8% cement content, and 1.1 and 4,900 kPa at
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12% cement content. The laboratory testing and evaluation
procedure for cement stabilization mix design targets
a 700 kPa saturated UCS. The UCS of the saturated
specimens was on average 1.5 times lower than that of the
unsaturated specimens.

5. The percent cement content, sand content, fines content,
and liquid limit were found to be statistically significant
in predicting unsaturated and vacuum saturated UCS. The
models showed an R2 of about 0.85 and RMSE of about
500 kPa for vacuum saturated specimens and 700 kPa for
unsaturated specimens.
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