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To explore the impact of ambient and structural water on static fatigue, the initiation and
growth of 3279 Vickers induced median radial cracks were automatically recorded and
analyzed. We find that humidity is more efficient in initiating cracks and promoting their
growth than water, which is dissolved in the glass structure. In particular for slow crack
growth (< 3× 10−6 m s−1), tests in dry nitrogen showed a considerable decrease in the
crack growth exponent with increasing water content of the glasses. On the other hand,
if tests were performed in humid air, the crack growth exponent was independent of the
water content of the hydrous glasses, while stress intensity decreased slightly. These
observations indicate that water promotes the processes at the crack-tip regardless of
its origin. However, ambient water is more efficient.

Keywords: slow crack growth, automated analysis, hydrous glass, Vickers indentation, indentation fracture
toughness

INTRODUCTION

Water is omnipresent at glass surfaces. In particular at the crack-tip, where vapor and liquid water
(due to capillary condensation) can react with the stressed glass network. However, the glass-
water interaction is complex and not adequately understood, although the control of such the
environmental reactions at the crack-tip is essential for improving the practical strength and the
endurance limit of glassy products.

The basic idea of studying hydrous glasses is to create a situation where water species (hydroxyl
groups and water molecules) are already present in the glass structure and to confront them with
environmental water molecules reacting at the crack-tip. This approach requires several steps.
Firstly, water-containing glasses must be synthesized to shed light on the influence of dissolved
H2O on the glass structure. The structural effects depend on composition as was shown by
previous studies on borate (Bauer et al., 2015), borosilicate (Bauer et al., 2017; Behrens et al., 2018),
silicoborate (Balzer et al., 2019b), phosphate (Balzer et al., 2019a), aluminosilicate (Balzer et al.,
2020), and soda-lime silicate glasses (Kiefer et al., 2019). Secondly, volumetric and mechanical
properties of hydrous glasses need to be investigated. Due to their technical importance, these
investigations were carried out on soda-lime silicate glasses (Kiefer et al., 2019). For a microscope
slide glass, it was found that density, elastic moduli and Vickers hardness decrease with increasing
water content, whereas the Poisson’s ratio and the water content of the hydrous glasses are positively
correlated. On the one hand, the trends reported by previous work reflect the non-linear change
in the concentrations of hydroxyl groups and water molecules in the glasses. On the other hand,
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the properties were found to be environmentally sensitive, if
the glass surface was involved, e.g., during indentation hardness
measurements. It was observed that for dry glasses in humid
atmospheres and for hydrous glasses in dry atmospheres, the
indent size changed with the duration of the indentation,
indicating that water was capable to relax stressed bonds in
both scenarios. Particularly, the response times of water species
coming from the environment and those being dissolved in the
glass structure were found to be effectively equal. Recently, the
hydrous glass approach was applied to capture crack growth
in a nominal dry (0.13 mol% H2O) and a hydrous microscope
slide glass (17.08 mol% H2O) using the double cantilever beam
(DCB) technique (Waurischk et al., 2020). Under vacuum,
crack propagation rates > 10−7 m s−1 in the hydrous glass
were shifted to higher stress intensity, whereas under humid
environment (air) crack propagation rates of the hydrous glass
were shifted to lower stress intensity with respect to the dry
glass. The apparent toughening effect of the dissolved water
in the glass under vacuum was explained by higher energy
dissipation during fracturing. Water-related internal friction
bands observed in dynamic-mechanical spectroscopy studies
(Reinsch et al., 2013; Waurischk et al., 2020) supported this
idea. With respect to the behavior in air, it was suggested that
the dissipation mechanism was overwhelmed by environmental
water, which led to the weakening, i.e., a decrease in stress
intensity (Waurischk et al., 2020).

With this background, the hydrous glass approach was
employed in this study with respect to the sub-critical growth of
Vickers induced median radial cracks. A series of 5 microscope
slide glasses with water contents ranging from 0.75 to 17.08
(mol%) was tested in two different environments (dry N2 gas and
air) to explore water-dependent effects. In spite of the limitations
due to unknown amplitude of the residual stress field in this case,
the technique of indentation allowed, in principle, automated
experiments as well as automated data processing and analysis
(Kiefer et al., 2020). Thus, to demonstrate statistical significance,
the growth of in total 3279 cracks was recorded (= 6.165 million
frames) and automatically analyzed to determine the mean crack
length within the first minute of propagation of each glass
with high accuracy.

EXPERIMENTAL

Preparation of Hydrous Glasses
Samples of hydrous soda-lime silicate glasses from a previous
study were used (Kiefer et al., 2019). These were synthesized from
commercial microscope slides (MSG) with a molar composition
SiO2/Na2O/CaO/MgO/Al2O3/K2O/(Fe2O3/TiO2) = 73.2/13.3/
6.6/6.2/0.5/0.2/(0 +) as analyzed by X-ray fluorescence (Axios,
PANalytical). Oxides in parentheses were present in a nominal
molar amount < 0.05. Hydration was performed using an
internally heated pressure vessel (IHPV) in which welded Pt-
capsules were placed. Samples were heated to 1673 K at a
pressure of 500 MPa for 20 h. The Pt-capsules were filled with
powder of the crushed MSG glass and the required amount
of water. Details of the hydration procedure using the IHPV

apparatus were provided in Berndt et al. (2002). The water
contents were analyzed using Fourier transformed infrared
spectroscopy and Karl-Fischer-titration. The results of these
characterizations were published in Kiefer et al. (2019). Two
platelets of ∼20 × 5 × 1 mm3 in size with diamond polished
surfaces (< 1 µm) were prepared from each hydrated glass
for Vickers indentation. The glasses were labeled 0W-MSG500
(0.75; 0), 1W-MSG500 (3.15; 0.214), 2W-MSG500 (5.89; 0.374),
4W-MSG (11.62; 0.605), and 6W-MSG500 (17.08; 0.739). The
names refer to the nominal water content in wt% and the
synthesis pressure in MPa, e.g., 4W-MSG500 = 4 wt% water,
500 MPa. The first value in parentheses behind the name indicates
the analyzed water content in mol%, while the second value is
the ratio cH2O/(cOH + cH2O) where cH2O and cOH represent the
contents of water dissolved as molecules and hydroxyl groups,
respectively, in the glass structure (Kiefer et al., 2019).

Automated Data Processing of Vickers
Induced Crack Growth
To initiate radial crack growth in the hydrous glass samples, the
surfaces were indented with a Vickers diamond under a fixed
load of 17.66 N using a universal hardness-testing machine (ZHU
2.5, Zwick&Roell, Ulm, Germany). The automated protocol
included a loading and unloading step of 5 s each [resulting
in an (un)loading rate of ± 3.53 N s−1] and a dwell time
of 15 s (Figure 1). Crack initiation and propagation were
observed through a long distance objective at a magnification
of 20x (N PLAN L, Leica, Wetzlar, Germany) of an inverted
microscope (DM-ILM, Leica, Wetzlar, Germany) and recorded
with a 5.3 megapixel CMOS sensor of a monochrome camera
(PL-D725MU-T, PixelINK, Ottawa, Canada). The microscope
was positioned directly below the hardness tester and the tip
of the Vickers diamond was aligned to be parallel to the
optical axis of the microscope. To increase the stiffness of the
experimental setup, a steel plate with a thickness of 20 mm
replaced the original microscope table. For each of the 62–143
indents per sample a video was recorded at an acquisition rate
of 30 frames per second for durations of 60 s (= 1800 frames)
or 65 s (= 1950 frames). The start of the image acquisition
was triggered by a LabView script at the beginning of the
unloading ramp (t = 0). The videos were recorded without any
compression as.seq files using the TroublePix software (Norpix,
Montreal, Canada). Decomposition of the videos into single
Tagged Image File Format (.tiff) files was carried out using the
BatchProcessor software (Norpix, Montreal, Canada). Each.tiff
image was automatically analyzed via a self-written MatLab code
(Mathworks, Natick, MA, United States) that was capable to
measure the Euclidean distance between the center of the indent
and the tip of the corner cracks for each crack of the single images.
The detection of the crack tip was performed using the gray scale
values. Lengths determined by the automated analysis were in
excellent agreement (< 2 µm) with scanning electron microscope
(SEM) measurements.

To study the impact of humidity, the measurements with the
above setup were carried out in two different environments. On
the one hand, the indentations were conducted in a glovebox
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FIGURE 1 | Scheme of the load-time curve of the Vickers indentation. Automated image acquisition was triggered at the start of the unloading ramp. Radial cracks
at the corner of the indent were observed to grow after a delay time δ.

(labmaster130, MBraun, Garching, Germany) providing a dry
nitrogen atmosphere with a H2O partial pressure pH2O ≤ 30 Pa
at 25◦C. On the other hand, the second platelet of each
specimen was measured in a cleanroom with a constant humidity
of pH2O = 942 Pa at 18◦C. Humidity in the glovebox was
monitored with a dew point sensor (Michell Instruments,
Easydew EA2-TX, Ely, United Kingdom) connected to a data
logger (Ahlborn, Almemo 8590-9, Holzkirchen, Germany). In the
cleanroom humidity was monitored using a FHAD462 sensor
connected to an Almemo 2470-2S data logger (both Ahlborn,
Holzkirchen, Germany).

RESULTS

Table 1 summarizes the total number of median radial cracks
that were initiated during Vickers indentation and counted at
the end of the video acquisition of the series in dry environment
after 60 s and of the series in humid environment after 65 s,
respectively. Representative images of Vickers induced cracks and
their growth by video capturing were presented in a previous
paper (Kiefer et al., 2020). According to Wada et al. (1974),
the probability of crack initiation was determined by the crack
number-to-corner number ratio, with 4 corners per indent z
of the Vickers diamond. Inspection of Table 1 reveals that the
probability of crack initiation is higher for each glass when
tested under the humid conditions of the cleanroom. Under
the dry conditions of the glovebox, the frequency of initiated
cracks first decreases with the water content to about 48% (4W-
MSG500) and then increases to ∼82% for the glass with the
highest water content. Under humid conditions, the probability

TABLE 1 | Total number of cracks initiated after 60 s (N60s) and 65 s (N65s),
number of indents (z) and the probability of crack initiation F60s and F65s.

Glass Vapor pressure
pH2O = 30 Pa

Vapor pressure
pH2O = 942 Pa

N60s z F60s N65s z F65s

0W-MSG500 183 62 0.736 402 126 0.796

1W-MSG500 294 121 0.606 339 111 0.762

2W-MSG500 324 135 0.599 339 118 0.717

4W-MSG500 259 135 0.479 370 121 0.763

6W-MSG500 467 143 0.815 302 92 0.819

of crack initiation does not depend significantly on the water
content of the glass.

In order to analyze a possible delay in crack initiation in more
detail, cumulative frequency functions F(δ) were generated for
each glass (Figure 2). This was done by arranging the delay of
each crack in ascending order (δ1 ≤ δ2 ≤ δ3 ≤ · · · ≤ δN, the
minimum first and the maximum last) followed by relating its
rank number Ri to the total number of possible cracks (4z). With
the commonly used median rank approximation of Benard and
Bosi-Levenbach (Benard and Bosi-Levenbach, 1953) one has:

F (δ) =
Ri(δi) − 0.3

4z + 0.4
for i = 1, . . . , 4z (1)

For example, F = (1−0.3)/(4 × 62 + 0.4) = 0.0028 for
the first crack (δ = 1.03 s) of 0W-MSG500 (pH2O = 30 Pa),
while F = (183−0.3)/(4 × 62 + 0.4) = 0.736 for the
latest crack (δ = 59.87 s). Under humid conditions, crack
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FIGURE 2 | Cumulative frequency distribution F (δ) of the number of initiated cracks tested in dry (A) and humid (B) environments. Lines connecting data points are
intended as visual guides.

initiation for all glasses occured almost completely while
unloading (δ < 5 s). When tested in dry nitrogen gas,
differences in the temporal evolution of crack initiation
between the nominally anhydrous and hydrous glasses were
evident. With increasing water content, crack initiation becomes
increasingly delayed and often occurs after unloading is
completed (δ > 5 s). In summary, Figure 2 clearly shows that
humidity shortens the delay time.

In order to analyze crack growth in detail, the propagation
time (t−δ) was calculated by subtracting the delay δ from the
acquisition time t for each crack. Figure 3 primarily shows that
the crack length strongly depend on the H2O partial pressure,
which has been noted already in previous studies (Benbahouche
et al., 2012; Striepe et al., 2013). After 55 s, cracks have reached
about 70–120 µm under dry conditions, whereas in the humid
environment, crack lengths in the range 100–160 µm were
detected. Further, large differences in the initial propagation rates
from crack to crack are evident, leading to a broad distribution
of crack lengths already shortly after their initiation (<5 s). This
feature underlines the demand of analyzing crack propagation
using large data sets with N > 200 (Kiefer et al., 2020).

Figure 4 exemplarily shows cumulative distribution functions
of the crack length c50s (t−δ = 50 s). Cumulative frequency
analyses using CumFreq1 software indicated that c50s
were consistent with a Weibull distribution for all glasses
and environments. Two-parameter Weibull distributions
{F = 1−exp[−(c50s/cm)β] with scale parameter cm and shape
parameter β} were fitted using the OriginPro 2019 software
(OriginLab, Northampton, MA, United States) with median-
rank regression (MRR) and maximum likelihood estimators
(MLE). For MRR, data series were generated by arranging the

1www.waterlog.info/cumfreq.htm

length c50s of each crack in ascending order while simultaneously
relating its rank number Ri to the total number N of observed
cracks. For F(c50s) one has:

F (c50s) =
Ri(δi) − 0.3
N + 0.4

for i = 1, . . . , N (2)

MLE does not make use of data sorting, which could lead to
self-correlation of the data. In this case, data points in Figure 4
were plotted according to median ranks and the lines according to
the MLE solutions. Graphs of the confidence interval of Figure 4
were used to give preference for either MRR or MLE solutions.
Results of the fitting procedure were compiled in Table 2.
These fitted Weibull distributions were found to be negatively
skewed and of small tail. It is noteworthy that independent from
the fitting procedure a few short and long cracks outside the
95% confidence interval are present in most hydrous glasses
(Figure 4B). One should note that a more rigorous analysis
of fracture data requires unbiassing factors, which must be
calculated for any specific Weibull distribution, see e.g., ASTM
C1239 – 06a. The unbiased MLE treatment improves the size of
the confidence intervals, whereas for large datasets it affects only
marginally the fit parameters cm and β.

Distributions of randomly selected propagation times
indicated that the small skewness of the Weibull distributions of
Figure 4 is typical, i.e., -K is nearly constant (0.39–0.42). Hence,
the mean length cav instead of the modal length cm of cracks
was taken to simplify the evaluation of the crack propagation
rate within these limits. Figure 5 shows that the crack growth
is largely influenced by the humidity. After 50 s of propagation,
cracks have reached mean lengths in the range of 90–104 µm at
low H2O partial pressure and 125–139 µm under higher pH2O.
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FIGURE 3 | Length vs. propagation time of cracks grown in hydrous glasses in 30 Pa partial pressure of H2O (A) and in 942 Pa partial pressure of H2O (B).

Within the two series, a trend of longer cracks at higher water
contents of the glasses is evident.

A two-phase exponential growth model was used to describe
the dependence of average crack length on propagation time since
a single-phase power-law (Dériano et al., 2004; Striepe et al., 2013;
Striepe and Deubener, 2013; Pönitzsch et al., 2016; Kiefer et al.,
2020) noticeably overestimates the early stage (t−δ)≤ 5 s of most
tests in higher humidity. The fitting procedure was carried out for
cav data of each glass and testing environment of Figure 5, which
resulted in smoothed crack length data of the form:

cav = c∞ + S1exp
[
−

(t − δ)

t1

]
+ S2exp

[
−

(t − δ)

t2

]
(3)

where c∞, S1, t1, S2 and t2 are adjustable parameters. The
mean crack propagation rate vav was derived by taking the first
derivative with respect to the propagation time:

vav =
dcav
dt
= −

S2

t2
exp

[
−

(t − δ)

t2

]
−

S1

t1
exp

[
−

(t − δ)

t1

]
(4)

DISCUSSION

Figure 2 highlights the environmental sensitivity of crack delay
times. To check if an additional influence of the water speciation
on crack delay is present, crack initiation probabilities for δ = 1,
2, 3, 6, and 60 s were extracted from Figure 2 and plotted vs. the
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FIGURE 4 | Cumulative frequency F of the crack length c50s in dry and humid environments (A). Part (B) shows corresponding Weibull plots of cumulative
frequencies. Solid lines are the best fit (MMR and MLE) through the data with parameters compiled in Table 2, while dotted lines are 95% confidence intervals.
Yellow stars indicate the mean crack length cav.

TABLE 2 | Scale parameter cm, shape parameter β, skewness parameter K, standard deviation σ, and mean length cav of Weibull distributed crack lengths c50s

(propagation time t−δ = 50 s). The skewness parameter K calculates as K = (cav-cm)/σ. Weibull distributions were fitted using median-rank regression (MRR) and
maximum likelihood estimators (MLE).

Glass Vapor pressure pH2O = 30 Pa Vapor pressure pH2O = 942 Pa

cm (µm) β -K σ (µm) cav (µm) Method cm (µm) β -K σ (µm) cav (µm) Method

0W-MSG500 92.26 17.23 0.39 6.40 89.46 MRR 128.32 19.08 0.39 8.09 124.77 MRR

1W-MSG500 93.04 19.08 0.39 5.87 90.47 MLE 130.69 23.89 0.41 6.66 127.75 MRR

2W-MSG500 92.94 19.31 0.39 5.80 90.39 MLE 132.57 21.32 0.40 7.53 129.26 MRR

4W-MSG500 96.76 25.43 0.41 4.65 94.71 MLE 136.95 33.28 0.42 5.08 134.70 MRR

6W-MSG500 106.04 32.34 0.42 4.05 104.25 MRR 142.15 30.67 0.42 5.71 139.62 MRR
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FIGURE 5 | Mean crack length cav as a function of the propagation time (t−δ).
Solid lines are best representation of data as fitted by Equation (3) with
R2 = 0.977–0.999.

ratio of dissolved water molecules to total water content of the
hydrous glasses (Figure 6). On one hand, Figure 6 shows that
the influence of the water speciation is almost constant with time,
i.e., the crack initiation probability develops almost uniformly.
On the other hand, Figure 6A indicates a lower probability of
crack initiation of glasses in which dissociated H2O and water
molecules are present in equal fractions. The latter would imply
that OH-groups delay cracking while water molecules speed
up cracking. Reasons for this compositional effect need to be
addressed in a future work. However, one has to note that similar
patterns have been found for density and mechanical properties
of hydrous glasses, where OH initiated an increase in the elastic
moduli, whereas the trend caused by water molecules was the
opposite (Kiefer et al., 2019). Further, one has to stress that
this analysis is limited to a time maximum of 1 min, which
rules out effects taking place during longer observation times.
For instance, Bechgaard et al. (2018) reported that initiation
of radial cracks in calcium aluminosilicate glasses was shorter
when tested in humid atmospheres, but proceeded within 24 h
after indentation.

The stress intensity KI at the tip of median radial cracks,
which are induced by Vickers indentation, can be approximated
as (Lawn and Fuller, 1975; Marshall and Lawn, 1977; Lawn and

Marshall, 1979; Ponton and Rawlings, 1989; Li et al., 1989; Ghosh
et al., 1991):

KI = χPc−m (5)

with χ = residual stress factor, P = load and, m = crack
length exponent. A recent attempt to calibrate KI of 185 single
cracks revealed that χ and m are broadly distributed. Mean
values and standard deviations of the m and χ distributions
were 1.47 ± 0.44 and 0.052 ± 31.3, respectively (Kiefer et al.,
2020). The value of the mean exponent (1.47 ≈ 3/2) confirmed
theoretical considerations for a point loading indenter (Lawn and
Fuller, 1975; Marshall and Lawn, 1977; Lawn and Marshall, 1979).
In contrast, the value of the residual stress factor χ is specific and
accounts for the elastic-plastic properties of the glass, the angular
position along the crack front and the environmental condition of
the fatigue experiment. As humidity levels and glass compositions
of this study differ from that of Kiefer et al. (2020), χ = 0.052 is
not applicable here and χ remains a tuneable parameter. If one
assumes that the residual stress factor χ scales with the square
root of the Young’s modulus-to-hardness ratio (E/HV)1/2 (Anstis
et al., 1981; Miyoshi, 1985) and setting χB = χ(E/HV)−1/2,
Equation (5) can be rewritten as:

KI

χB
=

(
E
HV

)1/2
Pc−3/2

av (6)

The calibration factor χB accounts now mainly for the
environmental reactions at the crack-tip. Thus, an interrelation
between stress intensity KI/χB and the mean crack propagation
rate vav can be established by plotting vav calculated with
Equation (4) vs. the right-hand side of Equation (6). For the
determination of KI/χB, Young’s modulus E of each hydrous
glasses was taken from a previous study (Kiefer et al., 2019) and
hardness was calculated using the mean value of the half diagonal
length a of the Vickers indent as recorded for t < δ. For instance,
see data points at t-δ ≈ 0 of Figure 2A for a, while Vickers
hardness is HV = P/(2.157 × 10−3 a2) in units of HV (GPa), P
(N), and a (µm). Figure 7 shows that in this Wiederhorn diagram
(Wiederhorn, 1967, 1974), humidity clearly shifts the lines toward
lower stress intensity values and within the two series, KI/χB
decreases with increasing water content of the glasses. Figure 7
also displays that the slope n [n = lg(vav)/lg(KI/χB)] of the lines
is affected by the testing conditions. For the series tested under
high pH2O (942 Pa), it is found that n = 20–27, whereas for
the glasses tested in low humidity, n increased from 23 to 88
with decreasing water content (Table 3). Noticeably, the hydrous
glass 4W-MSG500 shows two segments. A first segment at the
early stage of the crack propagation (vav > 2 × 10−7 m s−1) of
n = 68 and a second segment at the later stage of n = 16. Values
of n in the range between 16 and 27 were reported for crack
growth, which is controlled by the reaction of water molecules
of the environment with the glass at the crack-tip (so called
stage I reactions) (Wiederhorn, 1967, 1974; Gehrke et al., 1987).
In contrast, higher values are typical for water-independent
crack propagation (stage III reactions) (Wiederhorn, 1967, 1974;
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FIGURE 6 | Temporal evolution of the crack initiation probability as a function of the water speciation in low (A) and high (B) humidity.

FIGURE 7 | Mean crack propagation rate vav vs. uncalibrated stress intensity K I/χB. Lines of slope n (as indicated) are best linear fits through data. Error bars show
standard deviation of the crack length distributions of Table 2.

Wiederhorn and Johnson, 1974; Gehrke et al., 1987). Based on
this classification, one can assign 0W-MSG500, 1W-MSG500,
and 2W-MSG500 to stage III reactions at low pH2O of the glove
box (30 Pa), while the more hydrous glasses 4W-MSG500 (at least
at low propagation rates) and 6W-MSG500 show already stage
I reactions. This implies that for hydrous glasses of high water
contents, dissolved water promotes crack growth in a similar

way as water molecules originating from the gas phase. One
explanation for this would be that water readily escapes from
the freshly fractured surface of hydrous glasses increasing the
pH2O of the vapor at the crack tip similar to the stress-induced
emission of sodium during the fracture of anhydrous soda-lime
silicate glass (Lanford et al., 1979). This effect was related to the
local stress increase during crack propagation and can result in
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TABLE 3 | Crack growth exponent n of the equation vav = A(K I/χB)n and v = AK I
n of Vickers induced and DCB cracks in soda-lime silicate glasses, respectively.

References Waurischk
et al., 2020

Wiederhorn, 1967 Wiederhorn,
1967

This work Waurischk
et al., 2020

This work Waurischk
et al., 2020

Wiederhorn,
1974

Wiederhorn,
1967

Wiederhorn,
1974

pH2O (Pa) 10−6 30 661 942 1132

T (◦C) 23 25 25 25 23 18 23

RH (%) ≈10−8 0.017 0.2 1 24 45 40 50 100 liq. H2O

Glass xH2O (mol%)

SLSa
≈0.1 91 (v > 2 × 107)

27 (v < 2 × 107)
25 18.1 ± 1.6 21 16.4 ± 0.8

0W-MSG0 0.13 148 16 ± 1 16 ± 1

0W-MSG500 0.75 88 ± 2 20 ± 1

1W-MSG500 3.15 72 ± 2 20 ± 1

2W-MSG500 5.89 68 ± 2 22 ± 1

4W-MSG500 11.62 68 ± 2
(v > 2 × 107)

16 ± 1
(v < 2 × 107)

27 ± 1

6W-MSG500 17.08 16 23 ± 1 14 ± 3 24 ± 1

To assure comparability with data of previous studies, n was collected from Refs. (Wiederhorn, 1974; Gehrke et al., 1987; Waurischk et al., 2020) for crack propagation rates in the range 10−8–10−5 m s−1 only. Key:
aSoda-lime silicate (SLS) glass of different compositions.
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FIGURE 8 | Mean crack propagation rate vav (N = 259 and 370) and crack propagation rates v of single cracks (stress calibrated DCB specimens) of the hydrous
glass 6W-MSG500. Stress intensities K I of the Vickers induced vav data of this study are shown for χB = 0.008 (red dots), 0.009 (green dots) and 0.010 (blue dots).
Partial pressure of H2O as indicated. DCB data from Waurischk et al. (2020). Error bars show standard deviation of the crack length distributions of Table 2.

an increased sodium concentration at the fractured surface, thus
triggering local glass corrosion (Célarié et al., 2007). Another
explanation would favor friction of an adhesive water film that
is formed by allocated water at the surfaces near to the crack-tip
(Wondraczek et al., 2006), which would drop the precondition of
water evaporation from the hydrous glass surface into the vapor
phase. However, more research is needed to provide new evidence
in support of these explanatory attempts.

Figure 7 shows that the calibration factor χB is close to 0.01 as
the critical stress intensity KIC is about unity for dry and hydrous
soda-lime silicate glasses (Wiederhorn, 1974; Gehrke et al., 1987;
Waurischk et al., 2020). However, the true value of χB of the
individual glasses is still unknown and for its determination a
calibration procedure has to be applied (Quinn and Bradt, 2007;
Marshall et al., 2015; Kiefer et al., 2020). Figure 8 shows such an
attempt for 6W-MSG500, as for this glass stable crack growth in
air and vacuum was studied earlier using double cantilever beam
geometry (DCB) (Waurischk et al., 2020). Due to the large scatter
in the DCB data, however, reconciliation of both data sets while
respecting the order of decreasing KI with increasing humidity is
difficult and it does not result in more precise identification of χB.

CONCLUSION

Automated recording and analysis of a large number of Vickers
induced cracks is a promising route to determine the crack

growth exponent with higher accuracy. Water is found to
promote slow (<3 × 10−6 m s−1) crack growth independently
of its origin. However, water molecules of the environment are
more efficient in reducing stress intensity than dissolved water
species of the glass structure. When tested in low partial pressure
of H2O, hydrous glasses show a noticeable decrease in the crack
growth exponent, which is assumed to be caused by an energy
dissipation step.
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