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A grout sleeve connection is a typical kind of joint in prefabricated structures. However, for

construction andmanufacturing reasons, defects in this kind of joint are usually inevitable.

The joint quality of a prefabricated structure has a significant influence on its overall

performance and can lead to structural failure. Due to the complexity of various types of

materials used in grout sleeve connections, traditional non-destructive testing methods,

such as Acoustic Emission (AE), Ultrasonic Testing (UT), Guided Wave Testing (GW), are

facing great challenges. The recent development of deep learning technology provides

a new opportunity to solve this problem. Deep learning can learn the inherent rules and

abstract hierarchies of sample data, and it has a powerful ability to extract the intrinsic

features of training data in complex classification tasks. This paper illustrates a deep

learning framework for the identification of joint defects in prefabricated structures. In

this method, defect features are extracted from the acceleration time history response of

a prefabricated structure using a convolutional neural network. The proposed method

is validated by vibration experiments on a half-scaled, two-floor prefabricated frame

structure with column rebars spliced by different defective grout sleeves.

Keywords: prefabricated structure, grout sleeve, convolutional neural network, deep learning, defect identification

INTRODUCTION

In recent years, prefabricated structures have been widely used in construction, and grout sleeves
are the most widely used connection type in these structures. Usually, the special grout used in
these connections has good fluidity, early and high strength, and micro-expansion. However, most
of these sleeves have complicated internal structures and complicated construction procedures,
and this often leads to joint defects during the construction process. The underfilling of sleeve
grouting is one of the typical defects that are seen in these connections. Such defects will seriously
affect the mechanical properties of the joints and eventually affect the bearing capacity and seismic
performance of the overall structure (Zhu et al., 2019). Conveniently and effectively detecting the
fullness of sleeve grouting has always been a difficult problem in prefabricated concrete buildings.
The ultrasonic wave method (Feng et al., 2020), the impact-echo method (Chou, 2019), the X-ray
CT method (Zelelew et al., 2013; Gao et al., 2017), the damped vibration method (Zhu et al., 2018),
the X-ray method (du Plessis and Boshoff, 2019), and the embedded wire-drawing method (Gao
et al., 2019) are relatively mature detection technologies, but they are expensive and labor intensive,
which means they are not conducive to the full detection of sleeve grouting. Because such defects
are typically local, traditional global-based non-destructive dynamic testing methods also face great
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challenges when used with complex structures, because these
technologies are unable to obtain effective local feature
information from global dynamical data (Yoon et al., 2010).
Moreover, with the increasing complexity of these connections,
the influences of the different parts will increase, which will
lead to these methods being unable to effectively extract
feature information.

As a subset of machine learning in artificial intelligence
(AI), deep learning involves networks that are capable of
learning without supervision from original data. Deep learning
technology has the potential to provide a new identification
method in a case such as this because it can autonomously learn
highly abstract features from original data.

Deep learning has enabled many practical applications of
machine learning, and by extension the overall field of AI.
An increasing number of researchers have tried to apply
deep learning to identification problems in the field of civil
engineering. LeCun et al. (1989) developed the first deep
convolutional neural network (DCNN) to realize handwritten
postcode identification (LeNet-5), using back propagation (BP),
a supervised training algorithm. Cha et al. (2017) proposed
a crack detection method for concrete structures based on
a convolutional neural network (CNN) that used crack
photographs taken under different conditions (such as different
photo sizes, light sources, and shadows) for testing. Dorafshan
et al. (2018) compared the performance of commonly used edge
detectors and DCNNs in crack detection in concrete structures
and proposed a method combining a DCNN and edge detectors
that can reduce residual noise. Xu et al. (2019) proposed a
fast region-CNN (R-CNN) method for identifying and locating
multiple types of seismic damage to damaged reinforced concrete
columns from images. The image data sets were established
through on-site imaging, and these were expanded using a
data-enhancement method. Based on fast R-CNN, Beckman
et al. (2019) proposed a method for detecting concrete layer
damage and studied the influence of the distance between the
specimen and the sensor on the recognition accuracy. Chen
et al. (2019) built a four-camera vision system that can obtain
visual information about targets, including static objects and a
dynamic concrete-filled steel tube specimen. Tang et al. (2019)
presented a dynamic real-time detection method for examining
surface deformation and full-field strain in recycled aggregate
concrete-filled steel tubular columns. Mathematical models were
proposed that combined the four-ocular visual coordinates and
point-cloud matching.

Abdeljaber et al. (2018) presented an enhanced CNN-based
approach which only needs two measurement sets for structural
damage detection. Dorafshan and Azari (2020) proposed one-
dimensional CNN which can successfully detect the subsurface
defects of cement overlay bridge using impact echo data.
Li et al. (2018) proposed a damage- identification method
for bridges based on a CNN. The acceleration time-history
responses from nine measuring points in a simply supported
beam were used as input data to train and test the CNN,
and the effects of different excitation sizes and different noise
environments on the CNN identification results were analyzed.
Xie et al. (2018) proposed a bridge damage-identification method

based on a stacked noise-reduction autoencoder. The damage
features of the bridge’s acceleration response were extracted using
multiple autoencoders, and the softmax function was used to
identify bridge damage. Zhao (2019) proposed a blade damage-
recognition method based on CNN, selecting a residual neural
network (ResNet) as the basic model structure, and combined a
batch gradient descent algorithm with CNN to improve learning
efficiency. Lin et al. (2017) proposed a damage-recognition
method based on CNN that automatically extracts features from
time-domain response data from the structure. A numerical test
of a simply supported Euler–Bernoulli beam was designed, and
the CNN was trained and tested using the response time history
of the beam under different working conditions. Abdeljaber
et al. (2017) developed a structural-damage-recognition system
based on a one-dimensional CNN that integrated feature
extraction and classification into a complete learning module,
thereby realizing vibration-based damage detection and real-time
damage location.

Pathirage et al. (2018) proposed a deep learning network based
on autoencoders that can identify structural damage through
vibration responses. The natural frequency, vibration mode,
and other vibration characteristics were taken as inputs, and
structural damage was the output. Lee et al. (2018) compared
DNNs with different hidden layers, activation functions, and
optimization algorithms, and tested the performance of different
combinations. Khodabandehlou et al. (2019) established an
11-layer, two-dimensional CNN that can extract features
from the acceleration response time history of a structure,
making it possible to classify bridge damage using acceleration
measurements. Duan et al. (2019) proposed a bridge damage
detection method based on CNN. The acceleration response time
history and Fourier spectrum were compared as a training data
set for the CNN. Gulgec et al. (2019) trained and compared 50
CNNs with different learning rates, convolutional layers, and
fully connected layers, and finally proposed a CNN approach
for structural damage detection and localization. Wang et al.
(2019) proposed a dual-path network composed of a ResNet
and a densely connected convolutional network. A spatial time-
frequency data set was established using multi-dimensional
vibration signals, and different railway events were classified by
monitoring data that contained environmental noise. Kim and
Sim (2019) proposed a framework composed of a fast R-CNN
and a region-suggestion network based on deep learning that
can automatically extract peaks in frequency-domain pattern
recognition. Tang et al. (2020) presented an overview of
recognition and localization methods for vision-based fruit-
picking robots. Yu et al. (2019) proposed a deep CNN-based
method for the identification of damages in buildings. The
proposed method can automatically extract high-level features
from raw signals in time domain, and the performance of the
method is verified by a five-level benchmark building. Avci
et al. (2020) introduced the recent applications of deep learning
methods which is used in vibration-based structural damage
detection in the area of civil structures.

Convolutional neural networks have been widely recognized
as powerful tools to deal with problems such as image
identification. Identification methods based on image processing
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need to collect response images as input data. While it is usually
difficult to collect images of defects in an actual prefabricated
structure, acceleration response data can be obtained from such
a structure relatively easily. However, effectively utilizing this
sensing data for structural response modeling to identify defects
remains a challenge.

In this paper, we propose an approach for sleeve joint defect
identification in prefabricated frame structures using a CNNwith
a customized architecture. The proposed method is verified by
dynamic tests of a half-scaled, two-floor prefabricated concrete
frame structure. Structural acceleration response sensing data
are taken as input samples. The existence of defects, and their
location and degree, are identified, and the accuracy is evaluated
using a confusion matrix (Thongkam et al., 2008).

MATERIALS AND METHODS

Grout Sleeve Connection
For prefabricated concrete structures, grout sleeves are the most
widely used rebar connection type. As shown in Figure 1, a
full grouting sleeve connection mainly includes three parts: a
sleeve, ribbed steel bar, and grout. In this paper, the material
used for the sleeve was nodular cast iron and the ribbed steel
bar was made from steel with a standard value of yield strength
of 400 MPa and a modulus of elasticity of 200 GPa. The rebar
diameter was 12mm. According to the Technical Specification
for Precast Concrete Structures, the outer and inner diameters
of the sleeve were set as 44 and 34mm, respectively, and the
length was set as 250mm (China Institute of Building Standard
Design and Research, 2014). The grout was made from cement
as the basic material, and this was mixed with fine aggregate,
a concrete admixture, and other materials. After stirring with
water, this mixture had good fluidity, early and high strength,
and micro-expansion.

To form the joints, two steel bars were inserted into the
sleeve, one from each end. The upper and lower longitudinal
ribs extended into the sleeve by 120 and 110mm, respectively.

The special grout was then poured in via the grouting hole and
flowed out from the overflow slurry hole until the sleeve was
filled. In this situation, the hardened grout grips both the steel bar
and the sleeve, and due to its micro-expansion and high strength
characteristics, the positive force between the sleeve and the steel
bar is strengthened (Zheng et al., 2015).

The construction of a full grouting sleeve is very complicated,
and during the construction process, sleeve defects, such as grout
leakage, eccentricity of the steel bars, incomplete fill of grout, and
peeling of the grout from the connecting members are usually
inevitable. Grout sleeve bond failure is a typical but undesirable
failure mode in grout sleeve joints. Grout sleeve defects will
seriously affect the mechanical properties of the joint, becoming

FIGURE 2 | Incomplete fill of grout sleeve defect caused in on-site

construction.

FIGURE 1 | Full grouting sleeve connection. (A) Schematic diagram. (B) Physical diagram.
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a potential risk to the structure. Figure 2 shows an incomplete fill
of grout sleeve defect caused in on-site construction, and it is the
most common defect type in actual engineering.

CNN-Based Defect Identification Method
This study presents a defect identification method for
prefabricated concrete structures based on a deep convolutional
neural network. This network can directly extract defect
features from the dynamic response of the fabricated concrete

structure. An overview of the proposed method is shown in
Figure 3 and is described briefly as follows: (1) An experiment is
conducted to obtain acceleration response data for the fabricated
concrete structure; (2) the collected dynamic response data are
preprocessed, data sets (training, validation and test sets) are
established, and the samples are labeled; (3) a deep CNN, as
shown in Figure 4, is trained on the training data set; (4) the
loss of validation during the training process was calculated for
each epoch to test whether it is over fitting; (5) the test set is

FIGURE 3 | The process of structural defect identification based on a CNN. Here, defect probability represents that the output was mapped into a probability

distribution in the range [0, 1] through the Softmax function.

FIGURE 4 | Basic framework of the CNN. Here, C represents a convolution layer, S represents a pooling layer, FC represents the fully connected layer, N represents

the number of nodes in the input sample, and M represents the number of nodes in the output.
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used to verify the feasibility and accuracy of the CNN; (6) Defect
location and degree were identified.

The deep learning network is established based on LeNet-5
(LeCun et al., 1989), a CNN that is famous for its simple structure
and high efficiency. The Matlab toolkit DeepLearnToolbox
was employed to establish the proposed CNN architecture.
DeepLearnToolbox is the most widely used deep learning toolkit
in Matlab, and the CNN in this toolkit was built by Rasmus
Berg Palm on the basis of LeNet-5. In a recognition test of
the Modified National Institute of Standards and Technology
database, an error rate of 1.22% was obtained. The proposed
deep CNN basic framework is shown in Figure 4. It can be
seen that the CNN consisted of an input layer, three alternating
convolutional and pooling layers, a fully connected layer, and an
output layer. The components of the CNN and the selection of
the activation function and optimization algorithm are described
in the next sections.

Convolution Layer
The convolution layer is the core of the CNN, and its purpose is
to use a convolution kernel to extract signal features. Generally,
convolution is a mathematical operation on two real variable
functions. The convolution expression of functions x and w can
be calculated as

s(t) =

∫

x(a)× w(t − a)da (1)

The discrete form of this convolution operation can be defined as

s(t) = (x ∗ w)(t) =
∑

x(a)w(t − a) (2)

In general, the first parameter in the convolution operation is
called the input, the second parameter is called the convolution
kernel, and the output is called a feature map. According
to the convolution expression, each element in the output
is obtained by the weighted addition of the elements of the
corresponding block in the input, and the weight value is
determined by the convolution kernel. The convolution kernel
therefore plays the role of filtering or feature extraction in
the convolution. Convolutional layers have powerful feature-
learning capabilities. In general, deep networks can continuously
and iteratively extract higher-level features from the features of
the underlying network.

Activation Function
Generally, a convolutional layer is followed by a non-linear
activation function. The activation function maps the linear
input data into non-linear features through its own non-linear
features, and the features obtained in the convolutional layer are

TABLE 1 | Identification accuracy for tanh and ReLU activation functions with

different learning rates.

Learning rate 0.005 0.01 0.02 0.05

tanh 76.11% 97.31% 94.08% 88.74%

ReLU 60.59% 70.97% 70.54% 64.40%

filtered. Common non-linear functions in convolutional neural
networks include the sigmoid, tanh, softsign, and ReLU functions
(Zhou and Mi, 2017). Generally, the performance of the ReLU
function is considered best. In this study, the defect identification
accuracies obtained using tanh and ReLU functions with different
learning rates of 0.005, 0.01, 0.02, and 0.05 were compared
using experimentally obtained sensing acceleration response
data. The results are shown in Table 1, and these show that the
identification accuracy of the tanh function in this example is
significantly better than that of the ReLU function. Therefore,
the tanh function was selected as the activation function of the
convolutional layer in the CNN. An expression for the tanh
function is shown in Equation (3).

y =
ex − e−x

ex + e−x
(3)

Pooling Layer
Pooling is mainly used to filter redundant features and reduce
the number of parameters, avoiding over-fitting. There are two
common pooling operations: maximum pooling and average
pooling. Maximum pooling takes the maximum value of each
pooling window and average pooling takes the average value of
each pooling window. In this work, the average pooling method
was used. The average pooling operation is shown in Figure 5.

Fully Connected Layer and Softmax Classifier
The fully connected layer is connected to all the activations in
the previous layer. In this work, all the elements in the feature
map of pooling layer S6 were processed into an M-dimensional
column vector, multiplied by weighting coefficients, and added
with corresponding offsets. The softmax function was then used
to calculate the final output of the CNN. The softmax function
can be expressed as

Si =
eVi

C
∑

i=1
eVi

(4)

where Si is the probability that the current input is the i-th
category, e is Euler’s number, Vi is the i-th output of the previous

FIGURE 5 | The average pooling operation.
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output unit, and C is the total number of categories. As shown
in Equation (4), the softmax classifier maps the output of the
previous output unit to the interval (0, 1), and this represents
the relative probabilities of different categories so that the input
samples can be classified according to their probability.

Batch Gradient Descent Algorithm
In the calculation process of the backpropagation algorithm, the
parameters in the CNN need to be optimized to minimize the
cost function to obtain an optimal solution. In this work, a cross-
entropy cost function was used. The cross-entropy cost function
can be expressed as

E = −
1

N

(

y(i) × ln(o(i))+ (1− y(i))× ln(1− o(i))
)

(5)

where E represents the cost function value, N represents the total
number of samples, y(i) represents the true output (label) of the
i-th sample, and o(i) represents the predicted output of the i-th
sample. The small-batch gradient descent algorithm was used as
the optimization algorithm. As shown inTable 1, in this example,
the identification accuracy is better when the learning rate is
0.01, so the learning rate was set as 0.01 in the batch gradient
descent algorithm.

Experimental Verification
To verify the accuracy and feasibility of the proposed deep
learning method, dynamic excitation tests were carried out on a
prefabricated half-scaled, two-floor concrete frame with different
defective columns.

Experimental Model
A half-scaled, two-floor prefabricated concrete frame structure
was constructed. This mainly comprised four parts: precast
columns, precast beams, precast foundation beams, and a poured
concrete slab. The beams and columns were made from concrete,
the standard value of compressive strength of concrete cube

FIGURE 7 | The grouting process.

FIGURE 6 | Plan and elevation views of the frame model. (A) Plan view of the column net of the frame model. (B) The A–C and 1–2 elevation views of the frame model.
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FIGURE 8 | Frame structure model after assembly. Red rectangles represent locations of defects (the dashed lines indicate that they are shaded).

FIGURE 9 | Defect setting of the second floor and excitation point

arrangement. Solid dots represent grouting sleeves and hollow dots represent

ungrouted sleeves. EX represents the excitation point location.

is 30 N/mm. Longitudinal reinforcements and stirrups were
made from hot-rolled ribbed bars with a standard value of yield
strength of 400 MPa and a modulus of elasticity of 200 GPa. The
full grouting sleeve connection method was used to splice the
internal reinforcements in the foundation beams and columns.
A plan of the column net in this experimental model is shown
in Figure 6A, and elevation views are shown in Figure 6B. Total
48 grouting connections were used in this frame structure model.
The grouting process is shown in Figure 7.

In this test, precast beam and column members were
manufactured by professional prefabricated assembly member
manufacturing plants, and they were assembled in the laboratory
of Tongji University after curing. The frame structuremodel after
assembly is shown in Figure 8.

Defect Setting
In these experiments, defects in grout sleeve joints are introduced
through incomplete grouting. To avoid structural damage to
or collapse of the structure, the defects were arranged in the

TABLE 2 | Working conditions.

Working Excitation Non-defective Defective column

condition point column number number (ungrouted

sleeve number)

1 EX1 (JZ 1–2) 1 2 (3)

2 EX2 (JZ 3–2) 3 4 (1)

3 EX3 (JZ 5–4) 5 6 (2)

4 EX4 (JZ 5–6) 5 4 (1)

5 EX5 (JZ 1–4) 1 2 (3)

6 EX6 (JZ 5–2) 5 2 (3)

7 EX7 (JZ 3–6) 4 6 (2)

precast columns of the second floor instead of the first floor.
As shown in Figure 9, for comparative analysis, defects were set
only on one of the columns on either side of a particular beam.
Excitation points were arranged across the span of the beams.
Thus, for the same excitation, both defective column vibration
responses and non-defective column vibration responses could
be obtained.

As shown in Table 2, there were seven working conditions
corresponding to seven excitation points. Taking working
condition 5 as an example, 14measuring points were arranged for
each working condition. The locations and numbers of excitation
points and measuring points are shown in Figure 10.

RESULTS AND DISCUSSION

Data Collection
Excitation was applied by vibration exciters, and acceleration
sensors were arranged at the measuring points to collect
acceleration responses. The excitation force was 200N and the
acquisition frequency was 1,024Hz. Each excitation point is
excited once, and the duration of excitation is 60 s.

According to the acceleration time-history curve analysis, the
amplitude at each measuring point in each working condition
was different. For the stability of the convolutional neural

Frontiers in Materials | www.frontiersin.org 7 October 2020 | Volume 7 | Article 298

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Tang et al. Defect Identification Through Deep Learning

network during the training process, a normalization layer is
added to the proposed network (Dorafshan and Azari, 2020). The
amplitudes of the acceleration time-histories are normalized as

yi =
xi

max
i=1,2,··· ,N

(|xi|)
(6)

where x represents the original acceleration time history, y
represents the acceleration time history after the amplitude is
normalized, and i is the index of each measuring point.

The acceleration time history from each measuring point
was taken as the input sample. For each working condition, 14
acceleration time histories were obtained. As shown in Figure 11,
the 60× 1,024 signals of each measuring point were divided into
5,000 parts. Each part includes 1,024 signals and adjacent parts
have an overlap of 1,012 signals. The first seven acceleration time
histories were collected from the columns and beams without
defects and constituted the non-defective sample; the last seven
acceleration time histories were collected from the defective
columns and beams and constituted the defective sample. That
is, there are in total 5,000 non-defective samples and 5,000 defect
samples for each working condition, and each sample contains
7 × 1,024 acceleration signals. Sixty percentange of the total
samples were randomly selected as the training set, 20% of
the samples were selected randomly as validation set, with the
remaining 20% constituting the test set.

The number of training set samples generated in this
experiment was relatively small. The batch size was therefore set
to five to ensure that there were a sufficient number of samples
for training; the epoch number was set to 20. The number of
iterations can be calculated as

IN = EN ×
TS

BS
(7)

where IN represents the number of iterations, EN represents
epoch number, TS represents the training set size, and BS
represents the batch size.

Defect Location Identification
The defects and their locations were identified for the samples
in each working condition. The samples were labeled with a
vector consisting of eight elements. The first seven elements
represent the probability that a defect is located at each of the
seven corresponding measurement points. The eighth element
represents the probability that the sample is a non-defective
sample. In this experiment, a defect was set at measuring point
4, so the label of the defective sample was [0, 0, 0, 1, 0,
0, 0, 0]; the label of the non-defective sample was [0, 0, 0,
0, 0, 0, 0, 1]. Thus, the sample is identified as a defective
sample when the fourth element in the sample output vector
is > 0.95, the sample is identified as a non-defective sample
when the eighth element in a sample output vector is >0.95,
and the identification is invalid when no element in a sample
output vector is > 0.95. Based on the above label setting, the
detailed parameters for each layer in the CNN are shown in
Table 3.

As shown in Figure 12, during the training process, the loss
function in the CNN gradually decreased with an increasing

FIGURE 10 | Arrangement of the excitation points and measuring points. (A)

Physical diagram. (B) Schematic diagram.

number of iterations and converged to a stable level for each
working condition. As shown in Figure 13, the loss of validation
during the training process was calculated for each epoch to test
whether it is over fitting, and the training stopped in the 20th
epoch (the loss of validation was not changed significantly). The
identification accuracies for each working condition during the
training process of the CNN are shown in Figure 14. It can be
seen that during the CNN training process, the identification
accuracy rate of samples in the seven working conditions
continuously increased with the growth of the epochs, and finally
stabilized at 100%. The four longitudinal working conditions
(conditions 1–4) converged faster than the three lateral working
conditions (conditions 5–7).

For each working condition, 2,000 test samples were
sequentially input into the trained convolutional neural network.
The test results showed that the identification accuracies of the
seven test sets were all 100%. This means that the proposed
method can successfully identify defects and their locations.
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FIGURE 11 | The creation of datasets.

FIGURE 12 | The loss functions for each working condition during the CNN training process. (A) Working conditions 1–4. (B) Working conditions 5–7.
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FIGURE 13 | Losses of validation for each working condition during the CNN training process. (A) Working conditions 1–4. (B) Working conditions 5–7.

TABLE 3 | Detailed parameters of each layer in the CNN.

Number Type Kernel num. Kernel size Stride Input Output

C1 Convo. 45 6 1 1, 024 × 7 6@980 × 7

S2 Pooling 5 None 1 6@980 × 7 6@196 × 7

C3 Convo. 32 12 1 6@196 × 7 12@165 × 7

S4 Pooling 5 None 1 12@165 × 7 12@33 × 7

C5 Convo. 20 12 1 12@33 × 7 12@ 14× 7

S6 Pooling 2 None 1 12@14 × 7 12@7 × 7

FC FC None None None 12@7 × 7 8 × 1

Defect Degree Identification
For defect degree identification, the precast defective columns of
working conditions 5, 6, and 7 have covered the defect degrees of
25, 75, and 50% with the same boundary conditions in the test.
So these three working conditions (5, 6, and 7) were taken as this
section’s research object. There were in total 15,000 samples, 60%
of these were randomly selected as the training set, 20% of the
samples were selected as validation set, with the remaining 20%
constituting the test set. The batch size was set to five, and the
epoch number was set to 20.

The sample labels were vectors consisting of three elements.
The first element represents the defect degree being 25%, the
second element represents the defect degree being 50%, and
the third element represents the defect degree being 75%. For
example, a sample label with 25% defect degree would be [1, 0, 0].

To realize the identification of the defect degree, the difference
between the sample output vector and the sample label vector is
calculated using the Euclidean distance (Schnitzer et al., 2012).
The Euclidean distance ρ between two points (x1, x2, . . . , xn) and
(y1, y2, . . . , yn) in n-dimensional space can be calculated from

ρ =

√

(x1 − y1)
2
+ (x2 − y2)

2
+ · · · + (xn − yn)

2 (8)

A confusion matrix is used to measure the classification and
prediction ability of the model (Thongkam et al., 2008). The

identification result of a sample can be one of four types, as shown
in Table 4: true positive (TP), false positive (FP), false negative
(FN), and true negative (TN). The precision ratio (p) and recall
ratio (r) of the confusion matrix can be calculated from

p =
TP

TP + FP
(9)

r =
TP

TP + FN
(10)

During the training process, the losses of train and validation
are shown in Figure 15. Three samples (from three working
conditions) were randomly selected from the test set. The
Euclidean distances between the output vectors and the sample
labels are shown in Table 5. Test samples were sequentially input
into the trained convolutional neural network, and the confusion
matrix of the identification results is shown in Table 6. This table
shows that both the precision ratio and the recall rate for each
sample type were 100%. The evaluation target of precision ratio is
the prediction results, the number of positive samples among the
samples whose prediction is positive. The precision ratio is 100%,
indicating that the prediction results of all samples with different
defect degrees are positive. The evaluation target of recall ratio
is the original samples, the number of positive examples that are
predicted correctly. The recall ratio is 100%, indicating that all
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FIGURE 14 | The identification accuracies of seven working conditions during

the CNN training process. (A) Working condition 1. (B) Working condition 2.

(C) Working condition 3. (D) Working condition 4. (E) Working condition 5. (F)

Working condition 6. (G) Working condition 7.

the samples with different defect degrees have been predicted
correctly. Table 6 shows that the CNN is stable and has good
identification performance for structural defect identification in a
prefabricated frame. There was no significant difference between
the recall rate and the accuracy rate, indicating that the CNNdoes
not show bias toward different defect types.

CONCLUSIONS

This paper presented a deep-CNN-based method for
identification of sleeve joint defects in prefabricated concrete
frame structures. The proposed method uses LeNet-5 as the basic
framework and refers to the CNN in the DeepLearnToolbox.

TABLE 4 | Confusion matrix.

Confusion Matrix True value

Positive Negative

Predicted value Positive TP FP

Negative FN TN

TABLE 5 | Euclidean distances between the output vectors and the sample labels.

Working Output Label Euclidean Identification

condition vector vector distance result

5 [0.98, 0.02, 0] [1, 0, 0] 0.03 25% defect

[0, 1, 0] 1.38

[0, 0, 1] 1.40

6 [0, 0.02, 0.98] [1, 0, 0] 1.40 75% defect

[0, 1, 0] 1.38

[0, 0, 1] 0.03

7 [0.02, 0.97, 0.01] [1, 0, 0] 1.37 50% defect

[0, 1, 0] 0.04

[0, 0, 1] 1.38

TABLE 6 | Confusion matrix of the identification results.

Confusion matrix Defect degree True defect Precision ratio

25% 50% 75%

Identification result 25% 1,000 0 0 100%

50% 0 1,000 0 100%

75% 0 0 1,000 100%

Recall ratio 100% 100% 100% –

Non-destructive dynamic tests on a half-scaled, two-floor
prefabricated concrete frame structure were carried out. The
CNN was trained using only the collected sensing acceleration
responses to extract features for sleeve joint defect identification.
In the experiment, there were seven working conditions due
to the different defect degrees and boundary conditions. For
each working condition, 5,000 non-defective samples and 5,000
defective samples were collected, and 60% of these were selected
randomly as the training set, 20% of these were selected as
validation set, while the remaining 20% were used to test the
CNN. The defects and their locations were identified using the
CNN, and the identification accuracy was 100% in each working
condition. The Euclidean distances between the output vectors
and the label vectors were calculated to determine the defect
identification result, and a confusion matrix was used to judge
the identification accuracy. Defects with different degrees were
identified in lateral working conditions 5, 6, and 7. The results
showed that both the precision ratio and the recall rate were
100%, and the proposed method did not show bias toward
different defect degrees. Overall, the proposed method was found
to be very effective in joint defect identification in prefabricated
concrete frame structures in the experimental situation examined
in this paper.
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FIGURE 15 | The train and validation losses during the CNN training process. (A) Train losses over iterations. (B) Validation losses over epochs.
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